BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yudasaka M, Yomogida Y, Zhang M, Tanaka T, Nakahara M, Kobayashi N, Okamatsu-Ogura Y, Machida K, Ishihara K, Saeki K. Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat. Sci Rep. 2017;7:44760. [PMID: 28317858 DOI: 10.1038/srep44760] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Lu S, Zhang Y, Li J, Zhang J, Zhang C, Xiong L. Multifunctional Imaging of Vessels, Brown Adipose Tissue, and Bones in the Visible and Second Near-infrared Region Using Dual-Emitting Polymer Dots. ACS Appl Mater Interfaces 2022. [PMID: 35970519 DOI: 10.1021/acsami.2c10420] [Reference Citation Analysis]
2 Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD. Carbon nanotubes in biomedical applications: current status, promises, and challenges. Carbon Lett 2022;32:1207-1226. [DOI: 10.1007/s42823-022-00364-4] [Reference Citation Analysis]
3 Chan SSY, Lee D, Meivita MP, Li L, Tan YS, Bajalovic N, Loke DK. Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor Framework. ACS Omega 2022;7:18459-70. [PMID: 35694527 DOI: 10.1021/acsomega.2c00842] [Reference Citation Analysis]
4 Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2022;876-877:503463. [DOI: 10.1016/j.mrgentox.2022.503463] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ichihashi K, Umezawa M, Ueya Y, Okubo K, Takamoto E, Matsuda T, Kamimura M, Soga K. Effect of the enantiomeric structure of hydrophobic polymers on the encapsulation properties of a second near infrared (NIR-II) fluorescent dye for in vivo deep imaging. RSC Adv 2022;12:1310-8. [PMID: 35425212 DOI: 10.1039/d1ra08330a] [Reference Citation Analysis]
6 Sapna K, Sonia J, Kumara BN, Arun AB, Prasad KS. Carbon Nanotubes for Bio-imaging Applications. Handbook of Carbon Nanotubes 2022. [DOI: 10.1007/978-3-030-91346-5_40] [Reference Citation Analysis]
7 Thakur A, Bharti R, Sharma R. Carbon nanotubes: Types, synthesis, cytotoxicity and applications in biomedical. Materials Today: Proceedings 2022;50:2256-2268. [DOI: 10.1016/j.matpr.2021.10.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Ishmukhametov I, Fakhrullin R. Dark-Field Hyperspectral Microscopy for Carbon Nanotubes Bioimaging. Applied Sciences 2021;11:12132. [DOI: 10.3390/app112412132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Yudasaka M, Okamatsu-Ogura Y, Tanaka T, Saeki K, Kataura H. Cold-induced Conversion of Connective Tissue Skeleton in Brown Adipose Tissues. Acta Histochem Cytochem 2021;54:131-41. [PMID: 34764522 DOI: 10.1267/ahc.21-00030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Nguyen TL, Takai M, Ishihara K, Oyama K, Fujii S, Yusa S. Facile preparation of water-soluble multiwalled carbon nanotubes bearing phosphorylcholine groups for heat generation under near-infrared irradiation. Polym J 2021;53:1001-1009. [DOI: 10.1038/s41428-021-00495-x] [Reference Citation Analysis]
11 Yang J, Zhang H, Parhat K, Xu H, Li M, Wang X, Ran C. Molecular Imaging of Brown Adipose Tissue Mass. Int J Mol Sci 2021;22:9436. [PMID: 34502347 DOI: 10.3390/ijms22179436] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Onyancha RB, Aigbe UO, Ukhurebor KE, Muchiri PW. Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: A comprehensive review. Journal of Molecular Structure 2021;1238:130462. [DOI: 10.1016/j.molstruc.2021.130462] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
13 Yeniyurt Y, Kilic S, Güner-Yılmaz ÖZ, Bozoglu S, Meran M, Baysak E, Kurkcuoglu O, Hizal G, Karatepe N, Batirel S, Güner FS. Fmoc-PEG Coated Single-Wall Carbon Nanotube Carriers by Non-covalent Functionalization: An Experimental and Molecular Dynamics Study. Front Bioeng Biotechnol 2021;9:648366. [PMID: 34055757 DOI: 10.3389/fbioe.2021.648366] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Hirano A, Kameda T. Aromaphilicity Index of Amino Acids: Molecular Dynamics Simulations of the Protein Binding Affinity for Carbon Nanomaterials. ACS Appl Nano Mater 2021;4:2486-95. [DOI: 10.1021/acsanm.0c03047] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
15 Zheng X, Wang J, Rao J. The Chemistry in Surface Functionalization of Nanoparticles for Molecular Imaging. Molecular Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00021-1] [Reference Citation Analysis]
16 Sapna K, Sonia J, Kumara BN, Arun AB, Prasad KS. Carbon Nanotubes for Bio-imaging Applications. Handbook of Carbon Nanotubes 2021. [DOI: 10.1007/978-3-319-70614-6_40-1] [Reference Citation Analysis]
17 Dolan M, Watts B, Tvrdy K. Tailored synthesis of hydrogel media for chirality separation of single walled carbon nanotubes. Carbon 2021;171:597-609. [DOI: 10.1016/j.carbon.2020.08.074] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
18 Sarkar P, Ghosal K, Chakraborty D, Sarkar K. Biocompatibility and biomedical applications of various carbon-based materials. Handbook of Carbon-Based Nanomaterials 2021. [DOI: 10.1016/b978-0-12-821996-6.00015-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
19 Onoda A, Umezawa M. Carbon Nanotubes—Potential of Use for Deep Bioimaging. Transparency in Biology 2021. [DOI: 10.1007/978-981-15-9627-8_5] [Reference Citation Analysis]
20 Nishio M, Saeki K. The Remaining Mysteries about Brown Adipose Tissues. Cells 2020;9:E2449. [PMID: 33182625 DOI: 10.3390/cells9112449] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
21 Manjunatha K, Ravindra R, Antony A, Poornesh P. Third-order nonlinear optical studies of carbon nanotubes developed by floating catalyst technique. Optical Materials 2020;109:110315. [DOI: 10.1016/j.optmat.2020.110315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Kiratipaiboon C, Voronkova M, Ghosh R, Rojanasakul LW, Dinu CZ, Chen YC, Rojanasakul Y. SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition. ACS Biomater Sci Eng 2020;6:5290-304. [PMID: 33455278 DOI: 10.1021/acsbiomaterials.0c00887] [Reference Citation Analysis]
23 Nguyen TL, Katayama R, Kojima C, Matsumoto A, Ishihara K, Yusa S. Singlet oxygen generation by sonication using a water-soluble fullerene (C60) complex: a potential application for sonodynamic therapy. Polym J 2020;52:1387-94. [DOI: 10.1038/s41428-020-0390-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020;158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
25 Gu J, Wang X, Yang H, Li H, Wang J. Preclinical in vivo imaging for brown adipose tissue. Life Sci 2020;249:117500. [PMID: 32147430 DOI: 10.1016/j.lfs.2020.117500] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Sato K, Konno T. Carbon Nanotube Immobilized Electrode Using Amphiphilic Phospholipid Polymer with Anti‐fouling and Dispersion Property for Electrochemical Analysis. Electroanalysis 2020;32:898-901. [DOI: 10.1002/elan.201900549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020;378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
28 Wang G, Tanaka T, Wei X, Yudasaka M, Hirano A, Kataura H. Directly crosslinked dextran gels for SWCNT separation. Carbon 2020;156:422-9. [DOI: 10.1016/j.carbon.2019.09.081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
29 de Medeiros TV, Naccache R. Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications. Near Infrared-Emitting Nanoparticles for Biomedical Applications 2020. [DOI: 10.1007/978-3-030-32036-2_7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Janas D. Perfectly imperfect: a review of chemical tools for exciton engineering in single-walled carbon nanotubes. Mater Horiz 2020;7:2860-81. [DOI: 10.1039/d0mh00845a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
31 Thangudu S. Next Generation Nanomaterials: Smart Nanomaterials, Significance, and Biomedical Applications. Applications of Nanomaterials in Human Health 2020. [DOI: 10.1007/978-981-15-4802-4_15] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
32 Deshmukh MA, Jeon JY, Ha TJ. Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron 2020;150:111919. [PMID: 31787449 DOI: 10.1016/j.bios.2019.111919] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
33 Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Appl Bio Mater 2019;2:5492-511. [DOI: 10.1021/acsabm.9b00587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
34 Alvarez-Primo F, Anil Kumar S, Manciu FS, Joddar B. Fabrication of Surfactant-Dispersed HiPco Single-Walled Carbon Nanotube-Based Alginate Hydrogel Composites as Cellular Products. Int J Mol Sci 2019;20:E4802. [PMID: 31569637 DOI: 10.3390/ijms20194802] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
35 Li Y, Wu X, Kim M, Fortner J, Qu H, Wang Y. Fluorescent Ultrashort Nanotubes from Defect-Induced Chemical Cutting. Chem Mater 2019;31:4536-44. [PMID: 32742079 DOI: 10.1021/acs.chemmater.9b01196] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
36 Nagai Y, Yudasaka M, Kataura H, Fujigaya T. Brighter near-IR emission of single-walled carbon nanotubes modified with a cross-linked polymer coating. Chem Commun (Camb) 2019;55:6854-7. [PMID: 31123733 DOI: 10.1039/c9cc02712b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
37 Bati ASR, Yu L, Batmunkh M, Shapter JG. Recent Advances in Applications of Sorted Single‐Walled Carbon Nanotubes. Adv Funct Mater 2019;29:1902273. [DOI: 10.1002/adfm.201902273] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
38 Umemura K, Ishibashi Y, Ito M, Homma Y. Quantitative Detection of the Disappearance of the Antioxidant Ability of Catechin by Near-Infrared Absorption and Near-Infrared Photoluminescence Spectra of Single-Walled Carbon Nanotubes. ACS Omega 2019;4:7750-8. [PMID: 31459864 DOI: 10.1021/acsomega.9b00767] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
39 Takeuchi T, Iizumi Y, Yudasaka M, Kizaka-Kondoh S, Okazaki T. Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as in Vivo Fluorescence Imaging Probes. Bioconjug Chem 2019;30:1323-30. [PMID: 30848886 DOI: 10.1021/acs.bioconjchem.9b00088] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
40 Simon J, Flahaut E, Golzio M. Overview of Carbon Nanotubes for Biomedical Applications. Materials (Basel) 2019;12:E624. [PMID: 30791507 DOI: 10.3390/ma12040624] [Cited by in Crossref: 120] [Cited by in F6Publishing: 128] [Article Influence: 30.0] [Reference Citation Analysis]
41 Hirata E, Yudasaka M, Ushijima N, Sakaguchi N, Maeda Y, Tanaka T, Kataura H, Yokoyama A. Fate of Carbon Nanotubes Locally Implanted in Mice Evaluated by Near-Infrared Fluorescence Imaging: Implications for Tissue Regeneration. ACS Appl Nano Mater 2019;2:1382-90. [DOI: 10.1021/acsanm.8b02267] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
42 Patel KD, Singh RK, Kim H. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019;6:434-69. [DOI: 10.1039/c8mh00966j] [Cited by in Crossref: 173] [Cited by in F6Publishing: 179] [Article Influence: 43.3] [Reference Citation Analysis]
43 Miyauchi Y. Photon Energy Up-conversion in Carbon Nanotubes. Nanocarbons for Energy Conversion: Supramolecular Approaches 2019. [DOI: 10.1007/978-3-319-92917-0_21] [Reference Citation Analysis]
44 Yamagami M, Tajima T, Ishimoto K, Miyake H, Michiue H, Takaguchi Y. Physical modification of carbon nanotubes with a dendrimer bearing terminal mercaptoundecahydrododecaborates (Na 2 B 12 H 11 S). Heteroatom Chem 2018. [DOI: 10.1002/hc.21467] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
45 Swasey SM, Copp SM, Nicholson HC, Gorovits A, Bogdanov P, Gwinn EG. High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm. Nanoscale 2018;10:19701-5. [PMID: 30350832 DOI: 10.1039/c8nr05781h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
46 Pillar-little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY. Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: Detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon 2018;140:616-23. [DOI: 10.1016/j.carbon.2018.09.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 7.0] [Reference Citation Analysis]
47 Yudasaka M, Yomogida Y, Zhang M, Nakahara M, Kobayashi N, Tanaka T, Okamatsu-Ogura Y, Saeki K, Kataura H. Fasting-dependent Vascular Permeability Enhancement in Brown Adipose Tissues Evidenced by Using Carbon Nanotubes as Fluorescent Probes. Sci Rep 2018;8:14446. [PMID: 30262832 DOI: 10.1038/s41598-018-32758-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
48 Swasey SM, Nicholson HC, Copp SM, Bogdanov P, Gorovits A, Gwinn EG. Adaptation of a visible wavelength fluorescence microplate reader for discovery of near-infrared fluorescent probes. Review of Scientific Instruments 2018;89:095111. [DOI: 10.1063/1.5023258] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
49 Guo Y, Li Y, Yang Y, Tang S, Zhang Y, Xiong L. Multiscale Imaging of Brown Adipose Tissue in Living Mice/Rats with Fluorescent Polymer Dots. ACS Appl Mater Interfaces 2018;10:20884-96. [DOI: 10.1021/acsami.8b06094] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
50 Iizumi Y, Yudasaka M, Kim J, Sakakita H, Takeuchi T, Okazaki T. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Sci Rep 2018;8:6272. [PMID: 29674647 DOI: 10.1038/s41598-018-24399-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
51 Yang J, Yang J, Ran C. Spectral Unmixing Imaging for Differentiating Brown Adipose Tissue Mass and Its Activation. Contrast Media Mol Imaging 2018;2018:6134186. [PMID: 29531505 DOI: 10.1155/2018/6134186] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
52 Farrera C, Torres Andón F, Feliu N. Carbon Nanotubes as Optical Sensors in Biomedicine. ACS Nano 2017;11:10637-43. [PMID: 29087693 DOI: 10.1021/acsnano.7b06701] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 13.3] [Reference Citation Analysis]
53 Mu M, Konno T, Inoue Y, Ishihara K. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures. Colloids and Surfaces B: Biointerfaces 2017;158:249-56. [DOI: 10.1016/j.colsurfb.2017.06.040] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
54 Ishihara K, Mu M, Konno T. Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds. Journal of Biomaterials Science, Polymer Edition 2018;29:844-62. [DOI: 10.1080/09205063.2017.1377023] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
55 Kobayashi N, Nakahara M, Oka M, Saeki K. Additional attention to combination antiretroviral therapy-related lipodystrophy. World J Virol 2017; 6(3): 49-52 [PMID: 28868242 DOI: 10.5501/wjv.v6.i3.49] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]