BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nusbaum RJ, Calderon VE, Huante MB, Sutjita P, Vijayakumar S, Lancaster KL, Hunter RL, Actor JK, Cirillo JD, Aronson J, Gelman BB, Lisinicchia JG, Valbuena G, Endsley JJ. Pulmonary Tuberculosis in Humanized Mice Infected with HIV-1. Sci Rep 2016;6:21522. [PMID: 26908312 DOI: 10.1038/srep21522] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Singh P, Kolloli A, Subbian S. Animal Models of Tuberculosis. In: Venketaraman V, editor. Understanding the Host Immune Response Against Mycobacterium tuberculosis Infection. Cham: Springer International Publishing; 2018. pp. 67-97. [DOI: 10.1007/978-3-319-97367-8_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Escaffre O, Saito TB, Juelich TL, Ikegami T, Smith JK, Perez DD, Atkins C, Levine CB, Huante MB, Nusbaum RJ, Endsley JJ, Freiberg AN, Rockx B. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection. J Virol 2017;91:e00275-17. [PMID: 28539439 DOI: 10.1128/JVI.00275-17] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
3 Kroesen VM, Rodríguez-Martínez P, García E, Rosales Y, Díaz J, Martín-Céspedes M, Tapia G, Sarrias MR, Cardona PJ, Vilaplana C. A Beneficial Effect of Low-Dose Aspirin in a Murine Model of Active Tuberculosis. Front Immunol 2018;9:798. [PMID: 29740435 DOI: 10.3389/fimmu.2018.00798] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
4 Sharan R, Bucşan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, Khader SA, Kaushal D. Chronic Immune Activation in TB/HIV Co-infection. Trends Microbiol 2020;28:619-32. [PMID: 32417227 DOI: 10.1016/j.tim.2020.03.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
5 Huante MB, Saito TB, Nusbaum RJ, Naqvi KF, Chauhan S, Hunter RL, Actor JK, Rudra JS, Endsley MA, Lisinicchia JG, Gelman BB, Endsley JJ. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the Setting of HIV Co-infection. Front Cell Infect Microbiol 2020;10:150. [PMID: 32373548 DOI: 10.3389/fcimb.2020.00150] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Santos JHA, Bührer-Sékula S, Melo GC, Cordeiro-Santos M, Pimentel JPD, Gomes-Silva A, Costa AG, Saraceni V, Da-Cruz AM, Lacerda MVG. Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile. Rev Soc Bras Med Trop 2019;52:e20190315. [PMID: 31800922 DOI: 10.1590/0037-8682-0315-2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Waters R, Ndengane M, Abrahams MR, Diedrich CR, Wilkinson RJ, Coussens AK. The Mtb-HIV syndemic interaction: why treating M. tuberculosis infection may be crucial for HIV-1 eradication. Future Virol 2020;15:101-25. [PMID: 32273900 DOI: 10.2217/fvl-2019-0069] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Devi P, Khan A, Chattopadhyay P, Mehta P, Sahni S, Sharma S, Pandey R. Co-infections as Modulators of Disease Outcome: Minor Players or Major Players? Front Microbiol 2021;12:664386. [PMID: 34295314 DOI: 10.3389/fmicb.2021.664386] [Reference Citation Analysis]
9 Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2020;11:617516. [PMID: 33746940 DOI: 10.3389/fimmu.2020.617516] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2019;77:ftz037. [PMID: 31381766 DOI: 10.1093/femspd/ftz037] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
11 Larson EC, Novis CL, Martins LJ, Macedo AB, Kimball KE, Bosque A, Planelles V, Barrows LR. Mycobacterium tuberculosis reactivates latent HIV-1 in T cells in vitro. PLoS One 2017;12:e0185162. [PMID: 28949981 DOI: 10.1371/journal.pone.0185162] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
12 Quinn CM, Poplin V, Kasibante J, Yuquimpo K, Gakuru J, Cresswell FV, Bahr NC. Tuberculosis IRIS: Pathogenesis, Presentation, and Management across the Spectrum of Disease. Life (Basel) 2020;10:E262. [PMID: 33138069 DOI: 10.3390/life10110262] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Yong KSM, Her Z, Chen Q. Humanized Mice as Unique Tools for Human-Specific Studies. Arch Immunol Ther Exp (Warsz). 2018;66:245-266. [PMID: 29411049 DOI: 10.1007/s00005-018-0506-x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
14 Mukundan S, Bhatt R, Lucas J, Tereyek M, Chang TL, Subbian S, Parekkadan B. 3D host cell and pathogen-based bioassay development for testing anti-tuberculosis (TB) drug response and modeling immunodeficiency. Biomol Concepts 2021;12:117-28. [PMID: 34473918 DOI: 10.1515/bmc-2021-0013] [Reference Citation Analysis]
15 Robinson RT, Huppler AR. The Goldilocks model of immune symbiosis with Mycobacteria and Candida colonizers. Cytokine 2017;97:49-65. [PMID: 28570933 DOI: 10.1016/j.cyto.2017.05.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
16 Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020;21:E6148. [PMID: 32858917 DOI: 10.3390/ijms21176148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2020;100:603-32. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
18 Choi SR, Britigan BE, Narayanasamy P. Treatment of Virulent Mycobacterium tuberculosis and HIV Coinfected Macrophages with Gallium Nanoparticles Inhibits Pathogen Growth and Modulates Macrophage Cytokine Production. mSphere 2019;4:e00443-19. [PMID: 31341073 DOI: 10.1128/mSphere.00443-19] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
19 Yao Y, Lai R, Afkhami S, Haddadi S, Zganiacz A, Vahedi F, Ashkar AA, Kaushic C, Jeyanathan M, Xing Z. Enhancement of Antituberculosis Immunity in a Humanized Model System by a Novel Virus-Vectored Respiratory Mucosal Vaccine. J Infect Dis 2017;216:135-45. [PMID: 28531291 DOI: 10.1093/infdis/jix252] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
20 Larsen MH, Lacourciere K, Parker TM, Kraigsley A, Achkar JM, Adams LB, Dupnik KM, Hall-Stoodley L, Hartman T, Kanipe C, Kurtz SL, Miller MA, Salvador LCM, Spencer JS, Robinson RT. The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis (Edinb) 2020;121:101914. [PMID: 32279870 DOI: 10.1016/j.tube.2020.101914] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Endsley JJ, Huante MB, Naqvi KF, Gelman BB, Endsley MA. Advancing our understanding of HIV co-infections and neurological disease using the humanized mouse. Retrovirology 2021;18:14. [PMID: 34134725 DOI: 10.1186/s12977-021-00559-z] [Reference Citation Analysis]
22 Akkina R, Barber DL, Bility MT, Bissig KD, Burwitz BJ, Eichelberg K, Endsley JJ, Garcia JV, Hafner R, Karakousis PC, Korba BE, Koshy R, Lambros C, Menne S, Nuermberger EL, Ploss A, Podell BK, Poluektova LY, Sanders-Beer BE, Subbian S, Wahl A. Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Curr HIV Res 2020;18:19-28. [PMID: 31870268 DOI: 10.2174/1570162X18666191223114019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
23 Naqvi KF, Huante MB, Saito TB, Endsley MA, Gelman BB, Endsley JJ. Novel Role for Macrophage Galactose-Type Lectin-1 to Regulate Innate Immunity against Mycobacterium tuberculosis. J Immunol 2021:ji2001276. [PMID: 34183369 DOI: 10.4049/jimmunol.2001276] [Reference Citation Analysis]
24 Zhan L, Tang J, Sun M, Qin C. Animal Models for Tuberculosis in Translational and Precision Medicine. Front Microbiol 2017;8:717. [PMID: 28522990 DOI: 10.3389/fmicb.2017.00717] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 6.4] [Reference Citation Analysis]
25 Tyagi P, Pal VK, Agrawal R, Singh S, Srinivasan S, Singh A. Mycobacterium tuberculosis Reactivates HIV-1 via Exosome-Mediated Resetting of Cellular Redox Potential and Bioenergetics. mBio 2020;11:e03293-19. [PMID: 32127457 DOI: 10.1128/mBio.03293-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
26 Ndlovu LN, Peetluk L, Moodley S, Nhamoyebonde S, Ngoepe AT, Mazibuko M, Khan K, Karim F, Pym AS, Maruri F, Moosa MS, van der Heijden YF, Sterling TR, Leslie A. Increased Neutrophil Count and Decreased Neutrophil CD15 Expression Correlate With TB Disease Severity and Treatment Response Irrespective of HIV Co-infection. Front Immunol 2020;11:1872. [PMID: 32983107 DOI: 10.3389/fimmu.2020.01872] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
27 Bortell N, Aguilera ER, Lenz LL. Pulmonary insults exacerbate susceptibility to oral Listeria monocytogenes infection through the production of IL-10 by NK cells. PLoS Pathog 2021;17:e1009531. [PMID: 33878120 DOI: 10.1371/journal.ppat.1009531] [Reference Citation Analysis]
28 Li Y, Di Santo JP. Modeling Infectious Diseases in Mice with a "Humanized" Immune System. Microbiol Spectr 2019;7. [PMID: 30953434 DOI: 10.1128/microbiolspec.BAI-0019-2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
29 Sharan R, Kaushal D. Vaccine strategies for the Mtb/HIV copandemic. NPJ Vaccines 2020;5:95. [PMID: 33083030 DOI: 10.1038/s41541-020-00245-9] [Reference Citation Analysis]
30 Thirunavukkarasu S, Plain KM, de Silva K, Marais BJ, Whittington RJ. Applying the One Health Concept to Mycobacterial Research - Overcoming Parochialism. Zoonoses Public Health 2017;64:401-22. [PMID: 28084673 DOI: 10.1111/zph.12334] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
31 Singh AK, Gupta UD. Animal models of tuberculosis: Lesson learnt. Indian J Med Res 2018;147:456-63. [PMID: 30082569 DOI: 10.4103/ijmr.IJMR_554_18] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
32 Li J, Zhao A, Tang J, Wang G, Shi Y, Zhan L, Qin C. Tuberculosis vaccine development: from classic to clinical candidates. Eur J Clin Microbiol Infect Dis 2020;39:1405-25. [PMID: 32060754 DOI: 10.1007/s10096-020-03843-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
33 Kumar A, Mahajan A, Salazar EA, Pruitt K, Guzman CA, Clauss MA, Almodovar S, Dhillon NK. Impact of human immunodeficiency virus on pulmonary vascular disease. Glob Cardiol Sci Pract 2021;2021:e202112. [PMID: 34285903 DOI: 10.21542/gcsp.2021.12] [Reference Citation Analysis]
34 Fonseca KL, Rodrigues PNS, Olsson IAS, Saraiva M. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog 2017;13:e1006421. [PMID: 28817682 DOI: 10.1371/journal.ppat.1006421] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
35 Vecchione MB, Eiras J, Suarez GV, Angerami MT, Marquez C, Sued O, Ben G, Pérez HM, Gonzalez D, Maidana P, Mesch V, Quiroga MF, Bruttomesso AC. Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection. Sci Rep 2018;8:6692. [PMID: 29703963 DOI: 10.1038/s41598-018-24771-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
36 Chiacchio T, Delogu G, Vanini V, Cuzzi G, De Maio F, Pinnetti C, Sampaolesi A, Antinori A, Goletti D. Immune characterization of the HBHA-specific response in Mycobacterium tuberculosis-infected patients with or without HIV infection. PLoS One 2017;12:e0183846. [PMID: 28837654 DOI: 10.1371/journal.pone.0183846] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
37 Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol 2018;163:1-21. [PMID: 28980078 DOI: 10.1007/s00705-017-3569-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]