BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tombácz D, Prazsák I, Csabai Z, Moldován N, Dénes B, Snyder M, Boldogkői Z. Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci Rep 2020;10:13822. [PMID: 32796917 DOI: 10.1038/s41598-020-70794-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Costa VG, Costa SM, Saramago M, Cunha MV, Arraiano CM, Viegas SC, Matos RG. Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms 2022;10:2303. [DOI: 10.3390/microorganisms10112303] [Reference Citation Analysis]
2 Prazsák I, Csabai Z, Torma G, Papp H, Földes F, Kemenesi G, Jakab F, Gulyás G, Fülöp Á, Megyeri K, Dénes B, Boldogkői Z, Tombácz D. Transcriptome dataset of six human pathogen RNA viruses generated by nanopore sequencing. Data in Brief 2022;43:108386. [DOI: 10.1016/j.dib.2022.108386] [Reference Citation Analysis]
3 Tombácz D, Kakuk B, Torma G, Csabai Z, Gulyás G, Tamás V, Zádori Z, Jefferson VA, Meyer F, Boldogkői Z. In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing. Viruses 2022;14:1289. [PMID: 35746760 DOI: 10.3390/v14061289] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Xu SM, Curry-Hyde A, Sytnyk V, Janitz M. RNA polyadenylation patterns in the human transcriptome. Gene 2022;816:146133. [PMID: 34998928 DOI: 10.1016/j.gene.2021.146133] [Reference Citation Analysis]
5 Saud Z, Hitchings MD, Butt TM. Nanopore sequencing and de novo assembly of a misidentified Camelpox vaccine reveals putative epigenetic modifications and alternate protein signal peptides. Sci Rep 2021;11:17758. [PMID: 34493784 DOI: 10.1038/s41598-021-97158-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Tombácz D, Prazsák I, Torma G, Csabai Z, Balázs Z, Moldován N, Dénes B, Snyder M, Boldogkői Z. Time-Course Transcriptome Profiling of a Poxvirus Using Long-Read Full-Length Assay. Pathogens 2021;10:919. [PMID: 34451383 DOI: 10.3390/pathogens10080919] [Reference Citation Analysis]
7 Kakuk B, Tombácz D, Balázs Z, Moldován N, Csabai Z, Torma G, Megyeri K, Snyder M, Boldogkői Z. Combined nanopore and single-molecule real-time sequencing survey of human betaherpesvirus 5 transcriptome. Sci Rep 2021;11:14487. [PMID: 34262076 DOI: 10.1038/s41598-021-93593-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
8 Maróti Z, Tombácz D, Prazsák I, Moldován N, Csabai Z, Torma G, Balázs Z, Kalmár T, Dénes B, Snyder M, Boldogkői Z. Time-course transcriptome analysis of host cell response to poxvirus infection using a dual long-read sequencing approach. BMC Res Notes 2021;14:239. [PMID: 34167576 DOI: 10.1186/s13104-021-05657-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Tombácz D, Moldován N, Torma G, Nagy T, Hornyák Á, Csabai Z, Gulyás G, Boldogkői M, Jefferson VA, Zádori Z, Meyer F, Boldogkői Z. Dynamic Transcriptome Sequencing of Bovine Alphaherpesvirus Type 1 and Host Cells Carried Out by a Multi-Technique Approach. Front Genet 2021;12:619056. [PMID: 33897757 DOI: 10.3389/fgene.2021.619056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined Short and Long-Read Sequencing Reveals a Complex Transcriptomic Architecture of African Swine Fever Virus. Viruses 2021;13:579. [PMID: 33808073 DOI: 10.3390/v13040579] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]