BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Losi A, Gardner KH, Möglich A. Blue-Light Receptors for Optogenetics. Chem Rev 2018;118:10659-709. [PMID: 29984995 DOI: 10.1021/acs.chemrev.8b00163] [Cited by in Crossref: 89] [Cited by in F6Publishing: 77] [Article Influence: 22.3] [Reference Citation Analysis]
Number Citing Articles
1 Möglich A. An Open-Source, Cross-Platform Resource for Nonlinear Least-Squares Curve Fitting. J Chem Educ 2018;95:2273-8. [DOI: 10.1021/acs.jchemed.8b00649] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
2 Dietler J, Stabel R, Möglich A. Pulsatile illumination for photobiology and optogenetics. Methods Enzymol 2019;624:227-48. [PMID: 31370931 DOI: 10.1016/bs.mie.2019.04.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
3 Khrenova MG, Kulakova AM, Nemukhin AV. Light-Induced Change of Arginine Conformation Modulates the Rate of Adenosine Triphosphate to Cyclic Adenosine Monophosphate Conversion in the Optogenetic System Containing Photoactivated Adenylyl Cyclase. J Chem Inf Model 2021;61:1215-25. [PMID: 33677973 DOI: 10.1021/acs.jcim.0c01308] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kneuttinger AC, Straub K, Bittner P, Simeth NA, Bruckmann A, Busch F, Rajendran C, Hupfeld E, Wysocki VH, Horinek D, König B, Merkl R, Sterner R. Light Regulation of Enzyme Allostery through Photo-responsive Unnatural Amino Acids. Cell Chem Biol 2019;26:1501-1514.e9. [PMID: 31495713 DOI: 10.1016/j.chembiol.2019.08.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
5 Yee EF, Oldemeyer S, Böhm E, Ganguly A, York DM, Kottke T, Crane BR. Peripheral Methionine Residues Impact Flavin Photoreduction and Protonation in an Engineered LOV Domain Light Sensor. Biochemistry 2021;60:1148-64. [PMID: 33787242 DOI: 10.1021/acs.biochem.1c00064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Pudasaini A, Green R, Song YH, Blumenfeld A, Karki N, Imaizumi T, Zoltowski BD. Steric and Electronic Interactions at Gln154 in ZEITLUPE Induce Reorganization of the LOV Domain Dimer Interface. Biochemistry 2021;60:95-103. [PMID: 33337855 DOI: 10.1021/acs.biochem.0c00819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
7 Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Chow BY. Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation. Photochem Photobiol Sci 2020;19:353-61. [PMID: 32048687 DOI: 10.1039/c9pp00434c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Lin Y, Yao Y, Zhang W, Fang Q, Zhang L, Zhang Y, Xu Y. Applications of upconversion nanoparticles in cellular optogenetics. Acta Biomater 2021:S1742-7061(21)00561-4. [PMID: 34461347 DOI: 10.1016/j.actbio.2021.08.035] [Reference Citation Analysis]
9 Smolentseva A, Goncharov IM, Yudenko A, Bogorodskiy A, Semenov O, Nazarenko VV, Borshchevskiy V, Fonin AV, Remeeva A, Jaeger KE, Krauss U, Gordeliy V, Gushchin I. Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species. Photochem Photobiol Sci 2021;20:1645-56. [PMID: 34796467 DOI: 10.1007/s43630-021-00138-3] [Reference Citation Analysis]
10 Green D, Roy P, Hall CR, Iuliano JN, Jones GA, Lukacs A, Tonge PJ, Meech SR. Excited State Resonance Raman of Flavin Mononucleotide: Comparison of Theory and Experiment. J Phys Chem A 2021;125:6171-9. [PMID: 34240863 DOI: 10.1021/acs.jpca.1c04063] [Reference Citation Analysis]
11 Park A, Jacob AD, Walters BJ, Park S, Rashid AJ, Jung JH, Lau J, Woolley GA, Frankland PW, Josselyn SA. A time-dependent role for the transcription factor CREB in neuronal allocation to an engram underlying a fear memory revealed using a novel in vivo optogenetic tool to modulate CREB function. Neuropsychopharmacology 2020;45:916-24. [PMID: 31837649 DOI: 10.1038/s41386-019-0588-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
12 Chia HE, Koebke KJ, Rangarajan AA, Koropatkin NM, Marsh ENG, Biteen JS. New Orange Ligand-Dependent Fluorescent Reporter for Anaerobic Imaging. ACS Chem Biol 2021;16:2109-15. [PMID: 34652894 DOI: 10.1021/acschembio.1c00391] [Reference Citation Analysis]
13 Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019;119:2043-86. [DOI: 10.1021/acs.chemrev.8b00554] [Cited by in Crossref: 140] [Cited by in F6Publishing: 113] [Article Influence: 46.7] [Reference Citation Analysis]
14 Banerjee S, Mitra D. Structural Basis of Design and Engineering for Advanced Plant Optogenetics. Trends in Plant Science 2020;25:35-65. [DOI: 10.1016/j.tplants.2019.10.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
15 Golonka D, Fischbach P, Jena SG, Kleeberg JRW, Essen LO, Toettcher JE, Zurbriggen MD, Möglich A. Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. Commun Biol 2019;2:448. [PMID: 31815202 DOI: 10.1038/s42003-019-0687-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
16 Kaushik M, Sharma R, Veetil S, Srivastava S, Kateriya S. Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. Applied Sciences 2019;9:3924. [DOI: 10.3390/app9183924] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
17 Tan P, He L, Huang Y, Zhou Y. Optophysiology: Illuminating cell physiology with optogenetics. Physiol Rev 2022. [PMID: 35072525 DOI: 10.1152/physrev.00021.2021] [Reference Citation Analysis]
18 Kim NY, Lee S, Yu J, Kim N, Won SS, Park H, Heo WD. Optogenetic control of mRNA localization and translation in live cells. Nat Cell Biol 2020;22:341-52. [PMID: 32066905 DOI: 10.1038/s41556-020-0468-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
19 Isomura A. Light Control of Gene Expression Dynamics. Adv Exp Med Biol 2021;1293:235-46. [PMID: 33398817 DOI: 10.1007/978-981-15-8763-4_14] [Reference Citation Analysis]
20 Wang Z, Yan Y, Zhang H. Design and Characterization of an Optogenetic System in Pichia pastoris. ACS Synth Biol . [DOI: 10.1021/acssynbio.1c00422] [Reference Citation Analysis]
21 Hart JE, Sullivan S, Hermanowicz P, Petersen J, Diaz-Ramos LA, Hoey DJ, Łabuz J, Christie JM. Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A 2019;116:12550-7. [PMID: 31160455 DOI: 10.1073/pnas.1902915116] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
22 Deb A, Grewal RK, Roy S, Mitra D. Residue interaction dynamics in Vaucheria aureochrome1 light‐oxygen‐voltage: Bridging theory and experiments. Proteins 2020;88:1660-74. [DOI: 10.1002/prot.25984] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Golonka D, Gerken U, Köhler J, Möglich A. The Association Kinetics Encode the Light Dependence of Arabidopsis Phytochrome B Interactions. J Mol Biol 2020;432:4327-40. [PMID: 32534065 DOI: 10.1016/j.jmb.2020.06.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Meteleshko YI, Nemukhin AV, Khrenova MG. Novel flavin-based fluorescent proteins with red-shifted emission bands: a computational study. Photochem Photobiol Sci 2019;18:177-89. [PMID: 30403258 DOI: 10.1039/c8pp00361k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
25 Stabel R, Stüven B, Hansen JN, Körschen HG, Wachten D, Möglich A. Revisiting and Redesigning Light-Activated Cyclic-Mononucleotide Phosphodiesterases. J Mol Biol 2019;431:3029-45. [PMID: 31301407 DOI: 10.1016/j.jmb.2019.07.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
26 Lehtinen K, Nokia MS, Takala H. Red Light Optogenetics in Neuroscience. Front Cell Neurosci 2022;15:778900. [DOI: 10.3389/fncel.2021.778900] [Reference Citation Analysis]
27 Wang Y, Veglia G, Zhong D, Gao J. Activation mechanism of Drosophila cryptochrome through an allosteric switch. Sci Adv 2021;7:eabg3815. [PMID: 34144991 DOI: 10.1126/sciadv.abg3815] [Reference Citation Analysis]
28 Pérez ALA, Piva LC, Fulber JPC, de Moraes LMP, De Marco JL, Vieira HLA, Coelho CM, Reis VCB, Torres FAG. Optogenetic strategies for the control of gene expression in yeasts. Biotechnol Adv 2021;:107839. [PMID: 34592347 DOI: 10.1016/j.biotechadv.2021.107839] [Reference Citation Analysis]
29 Chia N, Lee SY, Tong Y. Optogenetic tools for microbial synthetic biology. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107953] [Reference Citation Analysis]
30 Weber AM, Kaiser J, Ziegler T, Pilsl S, Renzl C, Sixt L, Pietruschka G, Moniot S, Kakoti A, Juraschitz M, Schrottke S, Lledo Bryant L, Steegborn C, Bittl R, Mayer G, Möglich A. A blue light receptor that mediates RNA binding and translational regulation. Nat Chem Biol 2019;15:1085-92. [PMID: 31451761 DOI: 10.1038/s41589-019-0346-y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 11.7] [Reference Citation Analysis]
31 Rademacher A, Erdel F, Trojanowski J, Rippe K. Tracing Reversible Light-Induced Chromatin Binding with Near-infrared Fluorescent Proteins. Methods Mol Biol 2020;2173:171-88. [PMID: 32651918 DOI: 10.1007/978-1-0716-0755-8_12] [Reference Citation Analysis]
32 Iuliano JN, Hall CR, Green D, Jones GA, Lukacs A, Illarionov B, Bacher A, Fischer M, French JB, Tonge PJ, Meech SR. Excited State Vibrations of Isotopically Labeled FMN Free and Bound to a Light-Oxygen-Voltage (LOV) Protein. J Phys Chem B 2020;124:7152-65. [PMID: 32786715 DOI: 10.1021/acs.jpcb.0c04943] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Maia RNA, Ehrenberg D, Oldemeyer S, Knieps-Grünhagen E, Krauss U, Heberle J. Real-Time Tracking of Proton Transfer from the Reactive Cysteine to the Flavin Chromophore of a Photosensing Light Oxygen Voltage Protein. J Am Chem Soc 2021;143:12535-42. [PMID: 34347468 DOI: 10.1021/jacs.1c03409] [Reference Citation Analysis]
34 Cardoso Ramos F, Cupellini L, Mennucci B. Computational Investigation of Structural and Spectroscopic Properties of LOV-Based Proteins with Improved Fluorescence. J Phys Chem B 2021;125:1768-77. [PMID: 33566620 DOI: 10.1021/acs.jpcb.0c10834] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Mumford TR, Roth L, Bugaj LJ. Reverse and Forward Engineering Multicellular Structures with Optogenetics. Curr Opin Biomed Eng 2020;16:61-71. [PMID: 33718689 DOI: 10.1016/j.cobme.2020.100250] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
36 Ibrahim MMA, Nelson JR, Archer GS, Athrey G. Effects of Monochromatic Lighting During Incubation and Vaccination on the Splenic Transcriptome Profiles of Chicken. Front Genet 2021;12:628041. [PMID: 34093639 DOI: 10.3389/fgene.2021.628041] [Reference Citation Analysis]
37 Wittmann T, Dema A, van Haren J. Lights, cytoskeleton, action: Optogenetic control of cell dynamics. Curr Opin Cell Biol 2020;66:1-10. [PMID: 32371345 DOI: 10.1016/j.ceb.2020.03.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
38 Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part I. Acta Naturae 2021;13:52-64. [PMID: 34707897 DOI: 10.32607/actanaturae.11414] [Reference Citation Analysis]
39 Goncharov IM, Smolentseva A, Semenov O, Natarov I, Nazarenko VV, Yudenko A, Remeeva A, Gushchin I. High-resolution structure of a naturally red-shifted LOV domain. Biochem Biophys Res Commun 2021;567:143-7. [PMID: 34153684 DOI: 10.1016/j.bbrc.2021.06.046] [Reference Citation Analysis]
40 Sokolovski SG, Zherebtsov EA, Kar RK, Golonka D, Stabel R, Chichkov NB, Gorodetsky A, Schapiro I, Möglich A, Rafailov EU. Two-photon conversion of a bacterial phytochrome. Biophys J 2021;120:964-74. [PMID: 33545103 DOI: 10.1016/j.bpj.2021.01.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Reference Citation Analysis]
42 Benedetti L, Marvin JS, Falahati H, Guillén-Samander A, Looger LL, De Camilli P. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. Elife 2020;9:e63230. [PMID: 33174843 DOI: 10.7554/eLife.63230] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Möglich A. Signal transduction in photoreceptor histidine kinases. Protein Sci 2019;28:1923-46. [PMID: 31397927 DOI: 10.1002/pro.3705] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
44 Benedetti L. Optogenetic Tools for Manipulating Protein Subcellular Localization and Intracellular Signaling at Organelle Contact Sites. Curr Protoc 2021;1:e71. [PMID: 33657274 DOI: 10.1002/cpz1.71] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Tokonami S, Onose M, Nakasone Y, Terazima M. Slow Conformational Changes of Blue Light Sensor BLUF Proteins in Milliseconds. J Am Chem Soc 2022. [PMID: 35196858 DOI: 10.1021/jacs.1c13121] [Reference Citation Analysis]
46 Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021. [PMID: 34669383 DOI: 10.1021/acs.chemrev.1c00194] [Reference Citation Analysis]
47 Hannanta-Anan P, Glantz ST, Chow BY. Optically inducible membrane recruitment and signaling systems. Curr Opin Struct Biol 2019;57:84-92. [PMID: 30884362 DOI: 10.1016/j.sbi.2019.01.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
48 Christie JM, Zurbriggen MD. Optogenetics in plants. New Phytol 2021;229:3108-15. [PMID: 33064858 DOI: 10.1111/nph.17008] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Stüven B, Stabel R, Ohlendorf R, Beck J, Schubert R, Möglich A. Characterization and engineering of photoactivated adenylyl cyclases. Biological Chemistry 2019;400:429-41. [DOI: 10.1515/hsz-2018-0375] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
50 Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light‐oxygen‐voltage domain color tuning from a set of high‐resolution X‐ray structures. Proteins 2021;89:1005-16. [DOI: 10.1002/prot.26078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Polverini E, Schackert FK, Losi A. Interplay among the “flipping” glutamine, a conserved phenylalanine, water and hydrogen bonds within a blue-light sensing LOV domain. Photochem Photobiol Sci 2020;19:892-904. [DOI: 10.1039/d0pp00082e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Li LL, Klein FM, Li Greci L, Popinigis A, Freudenberg F, Courtney MJ. Resonance energy transfer sensitises and monitors in situ switching of LOV2-based optogenetic actuators. Nat Commun 2020;11:5107. [PMID: 33037199 DOI: 10.1038/s41467-020-18816-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
53 Ding Y, Zhao Z, Matysik J, Gärtner W, Losi A. Mapping the role of aromatic amino acids within a blue-light sensing LOV domain. Phys Chem Chem Phys 2021;23:16767-75. [PMID: 34319324 DOI: 10.1039/d1cp02217b] [Reference Citation Analysis]
54 Lukacs A, Tonge PJ, Meech SR. Photophysics of the Blue Light Using Flavin Domain. Acc Chem Res 2022. [PMID: 35016505 DOI: 10.1021/acs.accounts.1c00659] [Reference Citation Analysis]
55 Goings JJ, Hammes-schiffer S. Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics. J Am Chem Soc 2019;141:20470-9. [DOI: 10.1021/jacs.9b11196] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
56 Andrikopoulos PC, Chaudhari AS, Liu Y, Konold PE, Kennis JTM, Schneider B, Fuertes G. QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors. Phys Chem Chem Phys 2021;23:13934-50. [PMID: 34142688 DOI: 10.1039/d1cp00447f] [Reference Citation Analysis]
57 Westberg M, Etzerodt M, Ogilby PR. Rational design of genetically encoded singlet oxygen photosensitizing proteins. Current Opinion in Structural Biology 2019;57:56-62. [DOI: 10.1016/j.sbi.2019.01.025] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
58 Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019;9:4115-44. [DOI: 10.1021/acscatal.9b00656] [Cited by in Crossref: 99] [Cited by in F6Publishing: 49] [Article Influence: 33.0] [Reference Citation Analysis]
59 Dikiy I, Edupuganti UR, Abzalimov RR, Borbat PP, Srivastava M, Freed JH, Gardner KH. Insights into histidine kinase activation mechanisms from the monomeric blue light sensor EL346. Proc Natl Acad Sci U S A 2019;116:4963-72. [PMID: 30808807 DOI: 10.1073/pnas.1813586116] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
60 Chang D, Feng S, Girik V, Riezman H, Winssinger N. Luciferase Controlled Protein Interactions. J Am Chem Soc 2021;143:3665-70. [PMID: 33684293 DOI: 10.1021/jacs.0c11016] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Dietler J, Schubert R, Krafft TGA, Meiler S, Kainrath S, Richter F, Schweimer K, Weyand M, Janovjak H, Möglich A. A Light-Oxygen-Voltage Receptor Integrates Light and Temperature. J Mol Biol 2021;433:167107. [PMID: 34146595 DOI: 10.1016/j.jmb.2021.167107] [Reference Citation Analysis]
62 Petersen J, Rredhi A, Szyttenholm J, Oldemeyer S, Kottke T, Mittag M. The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. Front Plant Sci 2021;12:766509. [PMID: 34790217 DOI: 10.3389/fpls.2021.766509] [Reference Citation Analysis]
63 Iwata T, Masuda S. Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications. Adv Exp Med Biol 2021;1293:189-206. [PMID: 33398814 DOI: 10.1007/978-981-15-8763-4_11] [Reference Citation Analysis]
64 Consiglieri E, Xu Q, Bregnhøj M, Westberg M, Ogilby PR, Losi A. Single mutation in a novel bacterial LOV protein yields a singlet oxygen generator. Photochem Photobiol Sci 2019;18:2657-60. [PMID: 31624823 DOI: 10.1039/c9pp00328b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
65 Iuliano JN, Collado JT, Gil AA, Ravindran PT, Lukacs A, Shin S, Woroniecka HA, Adamczyk K, Aramini JM, Edupuganti UR, Hall CR, Greetham GM, Sazanovich IV, Clark IP, Daryaee T, Toettcher JE, French JB, Gardner KH, Simmerling CL, Meech SR, Tonge PJ. Unraveling the Mechanism of a LOV Domain Optogenetic Sensor: A Glutamine Lever Induces Unfolding of the Jα Helix. ACS Chem Biol 2020;15:2752-65. [PMID: 32880430 DOI: 10.1021/acschembio.0c00543] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
66 Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. J Phys Chem B 2019;123:6133-49. [DOI: 10.1021/acs.jpcb.9b00591] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
67 Sgamma T, Forgione I, Luziatelli F, Iacona C, Mancinelli R, Thomas B, Ruzzi M, Muleo R. Monochromic Radiations Provided by Light Emitted Diode (LED) Modulate Infection and Defense Response to Fire Blight in Pear Trees. Plants (Basel) 2021;10:1886. [PMID: 34579419 DOI: 10.3390/plants10091886] [Reference Citation Analysis]
68 Andrikopoulos PC, Liu Y, Picchiotti A, Lenngren N, Kloz M, Chaudhari AS, Precek M, Rebarz M, Andreasson J, Hajdu J, Schneider B, Fuertes G. Femtosecond-to-nanosecond dynamics of flavin mononucleotide monitored by stimulated Raman spectroscopy and simulations. Phys Chem Chem Phys 2020;22:6538-52. [PMID: 31994556 DOI: 10.1039/c9cp04918e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
69 Dietler J, Liang C, Frank S, Müller AK, Greiner A, Möglich A. Photobiologically Directed Assembly of Gold Nanoparticles. Adv Biol (Weinh) 2021;5:e2000179. [PMID: 34028211 DOI: 10.1002/adbi.202000179] [Reference Citation Analysis]
70 Klewer L, Wu YW. Light-Induced Dimerization Approaches to Control Cellular Processes. Chemistry 2019;25:12452-63. [PMID: 31304989 DOI: 10.1002/chem.201900562] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
71 Röllen K, Granzin J, Remeeva A, Davari MD, Gensch T, Nazarenko VV, Kovalev K, Bogorodskiy A, Borshchevskiy V, Hemmer S, Schwaneberg U, Gordeliy V, Jaeger KE, Batra-Safferling R, Gushchin I, Krauss U. The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. J Biol Chem 2021;296:100662. [PMID: 33862085 DOI: 10.1016/j.jbc.2021.100662] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
72 Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021. [PMID: 33864718 DOI: 10.1111/febs.15880] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
73 Miller NA, Kaneshiro AK, Konar A, Alonso-Mori R, Britz A, Deb A, Glownia JM, Koralek JD, Mallik L, Meadows JH, Michocki LB, van Driel TB, Koutmos M, Padmanabhan S, Elías-Arnanz M, Kubarych KJ, Marsh ENG, Penner-Hahn JE, Sension RJ. The Photoactive Excited State of the B12-Based Photoreceptor CarH. J Phys Chem B 2020;124:10732-8. [PMID: 33174757 DOI: 10.1021/acs.jpcb.0c09428] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
74 Dikiy I, Gardner KH. Shining light on the alphaproteobacterial general stress response: Comment on: Fiebig et al., Mol Microbiol, 2019. Mol Microbiol 2019;112:438-41. [PMID: 31120626 DOI: 10.1111/mmi.14311] [Reference Citation Analysis]
75 Younas T, Vidallon MLP, Tabor RF, He L. Open-Closed Structure of Light-Responsive Protein LOV2 Regulates Its Molecular Interaction with a Binding Partner. J Phys Chem Lett 2020;11:8647-53. [PMID: 32945680 DOI: 10.1021/acs.jpclett.0c02252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
76 Padmanabhan S, Monera-Girona AJ, Pérez-Castaño R, Bastida-Martínez E, Pajares-Martínez E, Bernal-Bernal D, Galbis-Martínez ML, Polanco MC, Iniesta AA, Fontes M, Elías-Arnanz M. Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021;9:1067. [PMID: 34063365 DOI: 10.3390/microorganisms9051067] [Reference Citation Analysis]
77 Kwon E, Heo WD. Optogenetic tools for dissecting complex intracellular signaling pathways. Biochem Biophys Res Commun 2020;527:331-6. [PMID: 31948753 DOI: 10.1016/j.bbrc.2019.12.132] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
78 Chen G, Cao Y, Tang Y, Yang X, Liu Y, Huang D, Zhang Y, Li C, Wang Q. Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. Adv Sci (Weinh) 2020;7:1903783. [PMID: 32328436 DOI: 10.1002/advs.201903783] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
79 Hernández-Rodríguez EW, Escorcia AM, van der Kamp MW, Montero-Alejo AL, Caballero J. Multi-scale simulation reveals that an amino acid substitution increases photosensitizing reaction inputs in Rhodopsins. J Comput Chem 2020;41:2278-95. [PMID: 32757375 DOI: 10.1002/jcc.26392] [Reference Citation Analysis]
80 Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021;20:451-73. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Remeeva A, Nazarenko VV, Goncharov IM, Yudenko A, Smolentseva A, Semenov O, Kovalev K, Gülbahar C, Schwaneberg U, Davari MD, Gordeliy V, Gushchin I. Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. Crystals 2020;10:256. [DOI: 10.3390/cryst10040256] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
82 Goings JJ, Li P, Zhu Q, Hammes-Schiffer S. Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc Natl Acad Sci U S A 2020;117:26626-32. [PMID: 33037153 DOI: 10.1073/pnas.2016719117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
83 Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2020;137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
84 Kabir MP, Orozco-gonzalez Y, Gozem S. Electronic spectra of flavin in different redox and protonation states: a computational perspective on the effect of the electrostatic environment. Phys Chem Chem Phys 2019;21:16526-37. [DOI: 10.1039/c9cp02230a] [Cited by in Crossref: 15] [Article Influence: 5.0] [Reference Citation Analysis]
85 Padmanabhan S, Pérez-castaño R, Elías-arnanz M. B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology. Current Opinion in Structural Biology 2019;57:47-55. [DOI: 10.1016/j.sbi.2019.01.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
86 Tang R, Yang S, Nagel G, Gao S. mem-iLID, a fast and economic protein purification method. Biosci Rep 2021;41:BSR20210800. [PMID: 34142112 DOI: 10.1042/BSR20210800] [Reference Citation Analysis]
87 van Haren J, Adachi LS, Wittmann T. Optogenetic Control of Microtubule Dynamics. Methods Mol Biol 2020;2101:211-34. [PMID: 31879907 DOI: 10.1007/978-1-0716-0219-5_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Kneuttinger AC, Zwisele S, Straub K, Bruckmann A, Busch F, Kinateder T, Gaim B, Wysocki VH, Merkl R, Sterner R. Light-Regulation of Tryptophan Synthase by Combining Protein Design and Enzymology. Int J Mol Sci 2019;20:E5106. [PMID: 31618845 DOI: 10.3390/ijms20205106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Nohr D, Weber S, Schleicher E. EPR spectroscopy on flavin radicals in flavoproteins. Methods Enzymol 2019;620:251-75. [PMID: 31072489 DOI: 10.1016/bs.mie.2019.03.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
90 Dennis PB, Onderko EL, Slocik JM, Bird LJ, Phillips DA, Crookes-goodson WJ, Glaven SM. Proteins for bioinspired optical and electronic materials. MRS Bull 2020;45:1027-33. [DOI: 10.1557/mrs.2020.297] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Hart JE, Gardner KH. Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors. J Biol Chem 2021;296:100594. [PMID: 33781746 DOI: 10.1016/j.jbc.2021.100594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Yudenko A, Smolentseva A, Maslov I, Semenov O, Goncharov IM, Nazarenko VV, Maliar NL, Borshchevskiy V, Gordeliy V, Remeeva A, Gushchin I. Rational Design of a Split Flavin-Based Fluorescent Reporter. ACS Synth Biol 2021;10:72-83. [PMID: 33325704 DOI: 10.1021/acssynbio.0c00454] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]