BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Eoh H, Brennan PJ, Crick DC. The Mycobacterium tuberculosis MEP (2C-methyl-d-erythritol 4-phosphate) pathway as a new drug target. Tuberculosis (Edinb) 2009;89:1-11. [PMID: 18793870 DOI: 10.1016/j.tube.2008.07.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Janisch N, Levendosky K, Budell WC, Quadri LEN. Genetic Underpinnings of Carotenogenesis and Light-Induced Transcriptome Remodeling in the Opportunistic Pathogen Mycobacterium kansasii. Pathogens 2023;12. [PMID: 36678434 DOI: 10.3390/pathogens12010086] [Reference Citation Analysis]
2 Lee YJ, Kim JK, Baek SA, Yu JS, You MK, Ha SH. Differential Regulation of an OsIspH1, the Functional 4-Hydroxy-3-Methylbut-2-Enyl Diphosphate Reductase, for Photosynthetic Pigment Biosynthesis in Rice Leaves and Seeds. Front Plant Sci 2022;13:861036. [PMID: 35498655 DOI: 10.3389/fpls.2022.861036] [Reference Citation Analysis]
3 Blain JM, Grote DL, Watkins SM, Goshu GM, Muller C, Gorman JL, Ranieri G, Walter RL, Hofstetter H, Horn JR, Hagen TJ. Structural and biophysical characterization of the Burkholderia pseudomallei IspF inhibitor L-tryptophan hydroxamate. Bioorg Med Chem Lett 2021;48:128273. [PMID: 34298132 DOI: 10.1016/j.bmcl.2021.128273] [Reference Citation Analysis]
4 Eberl M, Oldfield E, Herrmann T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. Immunother Adv 2021;1:ltab005. [PMID: 35919736 DOI: 10.1093/immadv/ltab005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Huang H, Han YS, Chen J, Shi LY, Wei LL, Jiang TT, Yi WJ, Yu Y, Li ZB, Li JC. The novel potential biomarkers for multidrug-resistance tuberculosis using UPLC-Q-TOF-MS. Exp Biol Med (Maywood) 2020;245:501-11. [PMID: 32046521 DOI: 10.1177/1535370220903464] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
6 Schwenk S, Moores A, Nobeli I, McHugh TD, Arnvig KB. Cell-wall synthesis and ribosome maturation are co-regulated by an RNA switch in Mycobacterium tuberculosis. Nucleic Acids Res 2018;46:5837-49. [PMID: 29618088 DOI: 10.1093/nar/gky226] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
7 Khare G, Nangpal P, Tyagi AK. Challenges and Advances in TB Drug Discovery. Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions 2019. [DOI: 10.1007/978-981-32-9413-4_25] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Wang X, Edwards RL, Ball H, Johnson C, Haymond A, Girma M, Manikkam M, Brothers RC, McKay KT, Arnett SD, Osbourn DM, Alvarez S, Boshoff HI, Meyers MJ, Couch RD, Odom John AR, Dowd CS. MEPicides: α,β-Unsaturated Fosmidomycin Analogues as DXR Inhibitors against Malaria. J Med Chem 2018;61:8847-58. [PMID: 30192536 DOI: 10.1021/acs.jmedchem.8b01026] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
9 Wang X, Dowd CS. The Methylerythritol Phosphate Pathway: Promising Drug Targets in the Fight against Tuberculosis. ACS Infect Dis 2018;4:278-90. [PMID: 29390176 DOI: 10.1021/acsinfecdis.7b00176] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
10 Schwenk S, Moores A, Nobeli I, Mchugh TD, Arnvig KB. Cell-wall synthesis and ribosome maturation are co-regulated by an RNA switch in Mycobacterium tuberculosis.. [DOI: 10.1101/232314] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
11 Jin Y, Liu Z, Li Y, Liu W, Tao Y, Wang G. A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis. Sci Rep 2016;6:36379. [PMID: 27821871 DOI: 10.1038/srep36379] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
12 Tima HG, Huygen K, Romano M. Innate signaling by mycobacterial cell wall components and relevance for development of adjuvants for subunit vaccines. Expert Rev Vaccines 2016;15:1409-20. [PMID: 27206681 DOI: 10.1080/14760584.2016.1187067] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
13 Farah SI, Abdelrahman AA, North EJ, Chauhan H. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents. ASSAY and Drug Development Technologies 2016;14:29-38. [DOI: 10.1089/adt.2015.673] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
14 Ajayi RF, Sidwaba U, Feleni U, Douman SF, Tovide O, Botha S, Baker P, Fuku XG, Hamid S, Waryo TT, Vilakazi S, Tshihkudo R, Iwuoha EI. Chemically amplified cytochrome P450-2E1 drug metabolism nanobiosensor for rifampicin anti-tuberculosis drug. Electrochimica Acta 2014;128:149-55. [DOI: 10.1016/j.electacta.2013.12.147] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
15 Hayashi D, Kato N, Kuzuyama T, Sato Y, Ohkanda J. Antimicrobial N-(2-chlorobenzyl)-substituted hydroxamate is an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase. Chem Commun (Camb) 2013;49:5535-7. [PMID: 23476925 DOI: 10.1039/c3cc40758f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
16 Bautista EJ, Zinski J, Szczepanek SM, Johnson EL, Tulman ER, Ching WM, Geary SJ, Srivastava R. Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum. PLoS Comput Biol 2013;9:e1003208. [PMID: 24039564 DOI: 10.1371/journal.pcbi.1003208] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
17 Nowosielski M, Hoffmann M, Kuron A, Korycka-machala M, Dziadek J. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics†. J Comput Chem 2013;34:750-6. [DOI: 10.1002/jcc.23192] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
18 Gao P, Yang Y, Xiao C, Liu Y, Gan M, Guan Y, Hao X, Meng J, Zhou S, Chen X, Cui J. Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria. Eur J Pharmacol 2012;694:45-52. [PMID: 22975264 DOI: 10.1016/j.ejphar.2012.08.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
19 Testa CA, Johnson LJ. A whole-cell phenotypic screening platform for identifying methylerythritol phosphate pathway-selective inhibitors as novel antibacterial agents. Antimicrob Agents Chemother 2012;56:4906-13. [PMID: 22777049 DOI: 10.1128/AAC.00987-12] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
20 Heuston S, Begley M, Gahan CGM, Hill C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology 2012;158:1389-401. [DOI: 10.1099/mic.0.051599-0] [Cited by in Crossref: 103] [Cited by in F6Publishing: 103] [Article Influence: 9.4] [Reference Citation Analysis]
21 Ponaire S, Zinglé C, Tritsch D, Grosdemange-billiard C, Rohmer M. Growth inhibition of Mycobacterium smegmatis by prodrugs of deoxyxylulose phosphate reducto-isomerase inhibitors, promising anti-mycobacterial agents. European Journal of Medicinal Chemistry 2012;51:277-85. [DOI: 10.1016/j.ejmech.2012.02.031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
22 Veluthoor S, Badi P, Mukharjee K, Mandal V. Phytochemicals. Bioactive Natural Products 2012. [DOI: 10.1016/b978-0-444-59530-0.00015-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
23 Adhvaryu M, Vakharia B. Drug-resistant tuberculosis: emerging treatment options. Clin Pharmacol 2011;3:51-67. [PMID: 22287857 DOI: 10.2147/CPAA.S11597] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
24 Tang M, Odejinmi SI, Vankayalapati H, Wierenga KJ, Lai K. Innovative therapy for Classic Galactosemia - tale of two HTS. Mol Genet Metab 2012;105:44-55. [PMID: 22018723 DOI: 10.1016/j.ymgme.2011.09.028] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
25 Brammer LA, Smith JM, Wade H, Meyers CF. 1-Deoxy-D-xylulose 5-phosphate synthase catalyzes a novel random sequential mechanism. J Biol Chem 2011;286:36522-31. [PMID: 21878632 DOI: 10.1074/jbc.M111.259747] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 3.9] [Reference Citation Analysis]
26 Tang M, Odejinmi SI, Allette YM, Vankayalapati H, Lai K. Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria. Bioorg Med Chem 2011;19:5886-95. [PMID: 21903402 DOI: 10.1016/j.bmc.2011.08.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
27 Shan S, Chen X. Crystallization and preliminary X-ray analysis of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011;67:821-3. [PMID: 21795803 DOI: 10.1107/S1744309111019567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
28 Barh D, Jain N, Tiwari S, Parida BP, D'Afonseca V, Li L, Ali A, Santos AR, Guimarães LC, de Castro Soares S, Miyoshi A, Bhattacharjee A, Misra AN, Silva A, Kumar A, Azevedo V. A novel comparative genomics analysis for common drug and vaccine targets in Corynebacterium pseudotuberculosis and other CMN group of human pathogens. Chem Biol Drug Des 2011;78:73-84. [PMID: 21443692 DOI: 10.1111/j.1747-0285.2011.01118.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 2.8] [Reference Citation Analysis]
29 Shan S, Chen X, Liu T, Zhao H, Rao Z, Lou Z. Crystal structure of 4‐diphosphocytidyl‐2‐C‐methyl‐D‐erythritol kinase (IspE) from Mycobacterium tuberculosis. FASEB j 2011;25:1577-84. [DOI: 10.1096/fj.10-175786] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
30 Yashodhara BM, Huat CB, Naik LN, Umakanth S, Hande M, Pappachan JM. Multidrug and extensively drug-resistant tuberculosis from a general practice perspective. Infect Drug Resist 2010;3:115-22. [PMID: 21694900 DOI: 10.2147/IDR.S10743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
31 Ashforth EJ, Fu C, Liu X, Dai H, Song F, Guo H, Zhang L. Bioprospecting for antituberculosis leads from microbial metabolites. Nat Prod Rep 2010;27:1709-19. [PMID: 20922218 DOI: 10.1039/c0np00008f] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 4.2] [Reference Citation Analysis]
32 Aldrich CC, Boshoff HI, Remmel RP. Antitubercular Agents. Burger's Medicinal Chemistry and Drug Discovery 2010. [DOI: 10.1002/0471266949.bmc231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
33 Pérez-Gil J, Bergua M, Boronat A, Imperial S. Cloning and functional characterization of an enzyme from Helicobacter pylori that catalyzes two steps of the methylerythritol phosphate pathway for isoprenoid biosynthesis. Biochim Biophys Acta 2010;1800:919-28. [PMID: 20600626 DOI: 10.1016/j.bbagen.2010.06.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
34 Narayanasamy P, Eoh H, Brennan PJ, Crick DC. Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF. Chem Biol 2010;17:117-22. [PMID: 20189102 DOI: 10.1016/j.chembiol.2010.01.013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
35 Eoh H, Narayanasamy P, Brown AC, Parish T, Brennan PJ, Crick DC. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens. Chem Biol 2009;16:1230-9. [PMID: 20064433 DOI: 10.1016/j.chembiol.2009.10.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
36 Rohmer M. Methylerythritol Phosphate Pathway. Comprehensive Natural Products II 2010. [DOI: 10.1016/b978-008045382-8.00702-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
37 Rohmer M. Methylerythritol Phosphate Pathway. Comprehensive Natural Products III 2010. [DOI: 10.1016/b978-0-08-102690-8.00702-8] [Reference Citation Analysis]
38 Seeber F, Soldati-favre D. Metabolic Pathways in the Apicoplast of Apicomplexa. International Review of Cell and Molecular Biology 2010. [DOI: 10.1016/s1937-6448(10)81005-6] [Cited by in Crossref: 113] [Cited by in F6Publishing: 121] [Article Influence: 8.7] [Reference Citation Analysis]
39 Brammer LA, Meyers CF. Revealing substrate promiscuity of 1-deoxy-D-xylulose 5-phosphate synthase. Org Lett 2009;11:4748-51. [PMID: 19778006 DOI: 10.1021/ol901961q] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
40 Obiol-Pardo C, Cordero A, Rubio-Martinez J, Imperial S. Homology modeling of Mycobacterium tuberculosis 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, the third enzyme in the MEP pathway for isoprenoid biosynthesis. J Mol Model 2010;16:1061-73. [PMID: 19916033 DOI: 10.1007/s00894-009-0615-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
41 Mazikin KV, Ershov YV, Goncharenko AV, Ostrovskii DN. 2-14C-methylerythritol 2,4-cyclodiphosphate incorporation into bacterial and plant isoprenoids. Appl Biochem Microbiol 2009;45:503-5. [DOI: 10.1134/s0003683809050081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
42 Sharma A, Khuller GK, Sharma S. Peptide deformylase--a promising therapeutic target for tuberculosis and antibacterial drug discovery. Expert Opin Ther Targets 2009;13:753-65. [PMID: 19530983 DOI: 10.1517/14728220903005590] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]