BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mukherjee A, Schroeder CM. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Current Opinion in Biotechnology 2015;31:16-23. [DOI: 10.1016/j.copbio.2014.07.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 7.1] [Reference Citation Analysis]
Number Citing Articles
1 Eichhof I, Ernst JF. Oxygen-independent FbFP: Fluorescent sentinel and oxygen sensor component in Saccharomyces cerevisiae and Candida albicans. Fungal Genet Biol 2016;92:14-25. [PMID: 27126475 DOI: 10.1016/j.fgb.2016.04.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
2 Smolentseva A, Goncharov IM, Yudenko A, Bogorodskiy A, Semenov O, Nazarenko VV, Borshchevskiy V, Fonin AV, Remeeva A, Jaeger KE, Krauss U, Gordeliy V, Gushchin I. Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species. Photochem Photobiol Sci 2021;20:1645-56. [PMID: 34796467 DOI: 10.1007/s43630-021-00138-3] [Reference Citation Analysis]
3 Chia HE, Marsh ENG, Biteen JS. Extending fluorescence microscopy into anaerobic environments. Current Opinion in Chemical Biology 2019;51:98-104. [DOI: 10.1016/j.cbpa.2019.05.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
4 Vahabpour R, Basimi P, Roohvand F, Asadi H, Irani GM, Zabihollahi R, Bolhassani A. Anti-viral Effects of Superpositively Charged Mutant of Green Fluorescent Protein. Protein Pept Lett 2019;26:930-9. [PMID: 31441722 DOI: 10.2174/0929866526666190823145916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Liu G, Sheng J, Zhao Y. In Vivo Near-Infrared Fluorescence Imaging. In: Kumar CS, editor. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis. Berlin: Springer Berlin Heidelberg; 2018. pp. 67-125. [DOI: 10.1007/978-3-662-56333-5_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Pudasaini A, El-Arab KK, Zoltowski BD. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci 2015;2:18. [PMID: 25988185 DOI: 10.3389/fmolb.2015.00018] [Cited by in Crossref: 100] [Cited by in F6Publishing: 94] [Article Influence: 14.3] [Reference Citation Analysis]
7 Jullien L, Gautier A. Fluorogen-based reporters for fluorescence imaging: a review. Methods Appl Fluoresc 2015;3:042007. [PMID: 29148509 DOI: 10.1088/2050-6120/3/4/042007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
8 Khrenova MG, Meteleshko YI, Nemukhin AV. Mutants of the Flavoprotein iLOV as Prospective Red-Shifted Fluorescent Markers. J Phys Chem B 2017;121:10018-25. [DOI: 10.1021/acs.jpcb.7b07533] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
9 Remeeva A, Nazarenko VV, Goncharov IM, Yudenko A, Smolentseva A, Semenov O, Kovalev K, Gülbahar C, Schwaneberg U, Davari MD, Gordeliy V, Gushchin I. Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. Crystals 2020;10:256. [DOI: 10.3390/cryst10040256] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhao H, Zhang Y, Pan M, Song Y, Bai L, Miao Y, Huang Y, Zhu X, Song CP. Dynamic imaging of cellular pH and redox homeostasis with a genetically encoded dual-functional biosensor, pHaROS, in yeast. J Biol Chem 2019;294:15768-80. [PMID: 31488545 DOI: 10.1074/jbc.RA119.007557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Li F, Du Y, Pi G, Lei B. Long-term real-time tracking live stem cells/cancer cells in vitro/in vivo through highly biocompatible photoluminescent poly(citrate-siloxane) nanoparticles. Materials Science and Engineering: C 2018;93:380-9. [DOI: 10.1016/j.msec.2018.08.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Cardoso Ramos F, Cupellini L, Mennucci B. Computational Investigation of Structural and Spectroscopic Properties of LOV-Based Proteins with Improved Fluorescence. J Phys Chem B 2021;125:1768-77. [PMID: 33566620 DOI: 10.1021/acs.jpcb.0c10834] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Chia HE, Koebke KJ, Rangarajan AA, Koropatkin NM, Marsh ENG, Biteen JS. New Orange Ligand-Dependent Fluorescent Reporter for Anaerobic Imaging. ACS Chem Biol 2021;16:2109-15. [PMID: 34652894 DOI: 10.1021/acschembio.1c00391] [Reference Citation Analysis]
14 Rodríguez-Pulido A, Cortajarena AL, Torra J, Ruiz-González R, Nonell S, Flors C. Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Chem Commun (Camb) 2016;52:8405-8. [PMID: 27301706 DOI: 10.1039/c6cc03119f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
15 Pinilla-Redondo R, Riber L, Sørensen SJ. Fluorescence Recovery Allows the Implementation of a Fluorescence Reporter Gene Platform Applicable for the Detection and Quantification of Horizontal Gene Transfer in Anoxic Environments. Appl Environ Microbiol 2018;84:e02507-17. [PMID: 29330182 DOI: 10.1128/AEM.02507-17] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Front Microbiol 2016;7:694. [PMID: 27242719 DOI: 10.3389/fmicb.2016.00694] [Cited by in Crossref: 181] [Cited by in F6Publishing: 127] [Article Influence: 30.2] [Reference Citation Analysis]
17 Ortega-villasante C, Burén S, Blázquez-castro A, Barón-sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radical Biology and Medicine 2018;122:202-20. [DOI: 10.1016/j.freeradbiomed.2018.04.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
18 Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light‐oxygen‐voltage domain color tuning from a set of high‐resolution X‐ray structures. Proteins 2021;89:1005-16. [DOI: 10.1002/prot.26078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Takamura A, Hattori M, Yoshimura H, Ozawa T. Simultaneous time-lamination imaging of protein association using a split fluorescent timer protein. Anal Chem 2015;87:3366-72. [PMID: 25679333 DOI: 10.1021/ac504583t] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
20 Landete JM, Arqués JL. Fluorescent Lactic Acid Bacteria and Bifidobacteria as Vehicles of DNA Microbial Biosensors. Int J Mol Sci 2017;18:E1728. [PMID: 32962311 DOI: 10.3390/ijms18081728] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
21 Yang X, Feng Y, Chong H, Wang D, Hu X, Pu J, Zhan C, Liao F. High-throughput estimation of specific activities of enzyme/mutants in cell lysates through immunoturbidimetric assay of proteins. Analytical Biochemistry 2017;534:91-8. [DOI: 10.1016/j.ab.2017.05.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
22 Nazarenko VV, Remeeva A, Yudenko A, Kovalev K, Dubenko A, Goncharov IM, Kuzmichev P, Rogachev AV, Buslaev P, Borshchevskiy V, Mishin A, Dhoke GV, Schwaneberg U, Davari MD, Jaeger K, Krauss U, Gordeliy V, Gushchin I. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans : a framework for ultra-high resolution structural studies. Photochem Photobiol Sci 2019;18:1793-805. [DOI: 10.1039/c9pp00067d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
23 Westberg M, Bregnhøj M, Etzerodt M, Ogilby PR. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. J Phys Chem B 2017;121:2561-74. [PMID: 28257211 DOI: 10.1021/acs.jpcb.7b00561] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
24 Buckley AM, Petersen J, Roe AJ, Douce GR, Christie JM. LOV-based reporters for fluorescence imaging. Current Opinion in Chemical Biology 2015;27:39-45. [DOI: 10.1016/j.cbpa.2015.05.011] [Cited by in Crossref: 72] [Cited by in F6Publishing: 66] [Article Influence: 10.3] [Reference Citation Analysis]
25 Ozbakir HF, Anderson NT, Fan KC, Mukherjee A. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. Bioconjug Chem 2020;31:293-302. [PMID: 31794658 DOI: 10.1021/acs.bioconjchem.9b00688] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
26 Losi A, Mandalari C, Gärtner W. The Evolution and Functional Role of Flavin-based Prokaryotic Photoreceptors. Photochem Photobiol 2015;91:1021-31. [DOI: 10.1111/php.12489] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
27 Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. J Phys Chem B 2019;123:6133-49. [DOI: 10.1021/acs.jpcb.9b00591] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
28 Anderson NT, Weyant KB, Mukherjee A. Characterization of flavin binding in oxygen-independent fluorescent reporters. AIChE J 2020;66:e17083. [PMID: 34305141 DOI: 10.1002/aic.17083] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Mondal P, Schwinn K, Huix-rotllant M. Impact of the redox state of flavin chromophores on the UV–vis spectra, redox and acidity constants and electron affinities. Journal of Photochemistry and Photobiology A: Chemistry 2020;387:112164. [DOI: 10.1016/j.jphotochem.2019.112164] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
30 Ransom EM, Ellermeier CD, Weiss DS. Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile. Appl Environ Microbiol 2015;81:1652-60. [PMID: 25527559 DOI: 10.1128/AEM.03446-14] [Cited by in Crossref: 63] [Cited by in F6Publishing: 32] [Article Influence: 7.9] [Reference Citation Analysis]
31 Ortega-villasante C, Burén S, Barón-sola Á, Martínez F, Hernández LE. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods 2016;109:92-104. [DOI: 10.1016/j.ymeth.2016.07.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
32 Chen D, Huang Y, Jiang H, Yasen W, Guo D, Su Y, Xue B, Jin X, Zhu X. Fabrication of Activity-Reporting Glucose Oxidase Nanocapsules with Oxygen-Independent Fluorescence Variation. ACS Appl Mater Interfaces 2018;10:26005-15. [DOI: 10.1021/acsami.8b06348] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
33 Rodríguez-pulido A, Torra J, Mejías SH, Cortajarena AL, Ruiz-gonzález R, Nonell S, Flors C. Fluorescent Flavoprotein Heterodimers: Combining Photostability with Singlet Oxygen Generation. ChemPhotoChem 2018;2:571-4. [DOI: 10.1002/cptc.201800002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Péresse T, Gautier A. Next-Generation Fluorogen-Based Reporters and Biosensors for Advanced Bioimaging. Int J Mol Sci 2019;20:E6142. [PMID: 31817528 DOI: 10.3390/ijms20246142] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
35 Losi A, Gardner KH, Möglich A. Blue-Light Receptors for Optogenetics. Chem Rev 2018;118:10659-709. [PMID: 29984995 DOI: 10.1021/acs.chemrev.8b00163] [Cited by in Crossref: 89] [Cited by in F6Publishing: 77] [Article Influence: 22.3] [Reference Citation Analysis]
36 Elgamoudi BA, Ketley JM. Lighting up my life: a LOV-based fluorescent reporter for Campylobacter jejuni. Res Microbiol 2018;169:108-14. [PMID: 29113919 DOI: 10.1016/j.resmic.2017.10.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
37 Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020;84:e00008-20. [PMID: 33115939 DOI: 10.1128/MMBR.00008-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
38 Landete JM, Medina M, Arqués JL. Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria. World J Microbiol Biotechnol 2016;32:119. [PMID: 27263014 DOI: 10.1007/s11274-016-2077-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
39 Pinilla-Redondo R, Cyriaque V, Jacquiod S, Sørensen SJ, Riber L. Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 2018;99:56-67. [PMID: 30086339 DOI: 10.1016/j.plasmid.2018.08.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
40 Zheng D, Zhang Y, Liu X, Wang J. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. Photosynth Res 2020;143:221-31. [PMID: 31317382 DOI: 10.1007/s11120-019-00660-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
41 Heijstra BD, Leang C, Juminaga A. Gas fermentation: cellular engineering possibilities and scale up. Microb Cell Fact 2017;16:60. [PMID: 28403896 DOI: 10.1186/s12934-017-0676-y] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 7.2] [Reference Citation Analysis]
42 Pimviriyakul P, Chaiyen P. Overview of flavin-dependent enzymes. Enzymes 2020;47:1-36. [PMID: 32951820 DOI: 10.1016/bs.enz.2020.06.006] [Reference Citation Analysis]
43 Ai Y, Zhao C, Xing J, Liu Y, Wang Z, Jin J, Xia S, Cui G, Wang X. Excited-State Decay Pathways of Flavin Molecules in Five Redox Forms: The Role of Conical Intersections. J Phys Chem A 2018;122:7954-61. [DOI: 10.1021/acs.jpca.8b07582] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
44 Zou X, Ren Z, Wang N, Cheng Y, Jiang Y, Wang Y, Xu C. Function analysis of 5'-UTR of the cellulosomal xyl-doc cluster in Clostridium papyrosolvens. Biotechnol Biofuels 2018;11:43. [PMID: 29467821 DOI: 10.1186/s13068-018-1040-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
45 Yudenko A, Smolentseva A, Maslov I, Semenov O, Goncharov IM, Nazarenko VV, Maliar NL, Borshchevskiy V, Gordeliy V, Remeeva A, Gushchin I. Rational Design of a Split Flavin-Based Fluorescent Reporter. ACS Synth Biol 2021;10:72-83. [PMID: 33325704 DOI: 10.1021/acssynbio.0c00454] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]