1 |
Bussell EH, Cunniffe NJ. Optimal strategies to protect a sub-population at risk due to an established epidemic. J R Soc Interface 2022;19:20210718. [PMID: 35016554 DOI: 10.1098/rsif.2021.0718] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
2 |
Bussell EH, Cunniffe NJ. Optimal strategies to protect a sub-population at risk due to an established epidemic.. [DOI: 10.1101/2021.09.10.459742] [Reference Citation Analysis]
|
3 |
Müller J, Kretzschmar M. Contact tracing - Old models and new challenges. Infect Dis Model 2021;6:222-31. [PMID: 33506153 DOI: 10.1016/j.idm.2020.12.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
|
4 |
Bussell EH, Dangerfield CE, Gilligan CA, Cunniffe NJ. Applying optimal control theory to complex epidemiological models to inform real-world disease management. Philos Trans R Soc Lond B Biol Sci 2019;374:20180284. [PMID: 31104600 DOI: 10.1098/rstb.2018.0284] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
|
5 |
Jesus T, Wanner E, Cardoso R. A receding horizon control approach for integrated vector management of Aedes aegypti using chemical and biological control: A mono and a multiobjective approach. Math Meth Appl Sci 2020;43:3220-37. [DOI: 10.1002/mma.6115] [Reference Citation Analysis]
|
6 |
Gromov D, Bulla I, Silvia Serea O, Romero-Severson EO. Numerical optimal control for HIV prevention with dynamic budget allocation. Math Med Biol 2018;35:469-91. [PMID: 29106566 DOI: 10.1093/imammb/dqx015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
7 |
Bulla I, Spickanll IH, Gromov D, Romero-Severson EO. Sensitivity of joint contagiousness and susceptibility-based dynamic optimal control strategies for HIV prevention. PLoS One 2018;13:e0204741. [PMID: 30335855 DOI: 10.1371/journal.pone.0204741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
|
8 |
Bussell E, Dangerfield C, Gilligan C, Cunniffe N. Applying optimal control theory to complex epidemiological models to inform real-world disease management.. [DOI: 10.1101/405746] [Reference Citation Analysis]
|
9 |
Bodó Á, Simon P. Stochastic simulation control of epidemic propagation on networks. Electron J Qual Theory Differ Equ 2018. [DOI: 10.14232/ejqtde.2018.1.41] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
|
10 |
Kiss IZ, Miller JC, Simon PL. Introduction to networks and diseases. Interdisciplinary Applied Mathematics 2017. [DOI: 10.1007/978-3-319-50806-1_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|
11 |
Looker KJ, Wallace LA, Turner KM. Impact and cost-effectiveness of chlamydia testing in Scotland: a mathematical modelling study. Theor Biol Med Model 2015;12:2. [PMID: 25588390 DOI: 10.1186/1742-4682-12-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
|
12 |
Sélley F, Besenyei Á, Kiss IZ, Simon PL. Dynamic Control of Modern, Network-Based Epidemic Models. SIAM J Appl Dyn Syst 2015;14:168-87. [DOI: 10.1137/130947039] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
|