BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dorhoi A, Kaufmann SH. Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol. 2016;38:153-166. [PMID: 26438324 DOI: 10.1007/s00281-015-0531-3] [Cited by in Crossref: 90] [Cited by in F6Publishing: 78] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Park SH, Yoon SR, Nam JY, Ahn JY, Jeong SJ, Ku NS, Choi JY, Yeom JS, Kim JH. Impact of tuberculosis on the incidence of osteoporosis and osteoporotic fractures: a nationwide population-based cohort study. Public Health 2023;216:13-20. [PMID: 36758345 DOI: 10.1016/j.puhe.2022.12.009] [Reference Citation Analysis]
2 Krug S, Prasad P, Xiao S, Lun S, Ruiz-Bedoya CA, Klunk M, Ordonez AA, Jain SK, Srikrishna G, Kramnik I, Bishai WR. Adjunctive Integrated Stress Response Inhibition Accelerates Tuberculosis Clearance in Mice. mBio 2023;:e0349622. [PMID: 36853048 DOI: 10.1128/mbio.03496-22] [Reference Citation Analysis]
3 Dasaradhan T, Koneti J, Kalluru R, Gadde S, Cherukuri SP, Chikatimalla R. Tuberculosis-Associated Anemia: A Narrative Review. Cureus 2022. [DOI: 10.7759/cureus.27746] [Reference Citation Analysis]
4 Chen G, Yang F, Fan S, Jin H, Liao K, Li X, Liu G, Liang J, Zhang J, Xu J, Pi J. Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Front Immunol 2022;13:956181. [DOI: 10.3389/fimmu.2022.956181] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Liu Q, Chen X, Dai X. The association of cytokine gene polymorphisms with tuberculosis susceptibility in several regional populations. Cytokine 2022;156:155915. [PMID: 35653894 DOI: 10.1016/j.cyto.2022.155915] [Reference Citation Analysis]
6 Ma N, Chen M, Ding J, Wang F, Jin J, Fan S, Chen J. Recurrent Pneumonia With Tuberculosis and Candida Co-infection Diagnosed by Metagenomic Next-Generation Sequencing: A Case Report and Literature Review. Front Med 2022;9:755308. [DOI: 10.3389/fmed.2022.755308] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Lu P, Li J, Liu C, Yang J, Peng H, Xue Z, Liu Z. Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.04.004] [Reference Citation Analysis]
8 Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol 2022;13:791136. [DOI: 10.3389/fimmu.2022.791136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Krug S, Prasad P, Xiao S, Lun S, Ruiz-bedoya CA, Klunk M, Ordonez AA, Jain SK, Srikrishna G, Kramnik I, Bishai WR. Adjunctive inhibition of the integrated stress response pathway accelerates bacterial clearance in a mouse model of tuberculosis.. [DOI: 10.1101/2021.12.31.474642] [Reference Citation Analysis]
10 Ozturk M, Chia JE, Hazra R, Saqib M, Maine RA, Guler R, Suzuki H, Mishra BB, Brombacher F, Parihar SP. Evaluation of Berberine as an Adjunct to TB Treatment. Front Immunol 2021;12:656419. [PMID: 34745081 DOI: 10.3389/fimmu.2021.656419] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kumar NP, Moideen K, Nancy A, Viswanathan V, Thiruvengadam K, Nair D, Banurekha VV, Sivakumar S, Hissar S, Kornfeld H, Babu S. Plasma Chemokines Are Baseline Predictors of Unfavorable Treatment Outcomes in Pulmonary Tuberculosis. Clin Infect Dis 2021;73:e3419-27. [PMID: 32766812 DOI: 10.1093/cid/ciaa1104] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Theobald SJ, Gräb J, Fritsch M, Suárez I, Eisfeld HS, Winter S, Koch M, Hölscher C, Pasparakis M, Kashkar H, Rybniker J. Gasdermin D mediates host cell death but not interleukin-1β secretion in Mycobacterium tuberculosis-infected macrophages. Cell Death Discov 2021;7:327. [PMID: 34718331 DOI: 10.1038/s41420-021-00716-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021;131:136222. [PMID: 33529162 DOI: 10.1172/JCI136222] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 10.5] [Reference Citation Analysis]
14 Yang A, Wu Y, Yu G, Wang H. Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir Res 2021;22:204. [PMID: 34261470 DOI: 10.1186/s12931-021-01792-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
15 Pedersen JL, Barry SE, Bokil NJ, Ellis M, Yang Y, Guan G, Wang X, Faiz A, Britton WJ, Saunders BM. High sensitivity and specificity of a 5-analyte protein and microRNA biosignature for identification of active tuberculosis. Clin Transl Immunology 2021;10:e1298. [PMID: 34188917 DOI: 10.1002/cti2.1298] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Tavolara TE, Niazi MKK, Gower AC, Ginese M, Beamer G, Gurcan MN. Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice. EBioMedicine 2021;67:103388. [PMID: 34000621 DOI: 10.1016/j.ebiom.2021.103388] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura-Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye XS, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021;22:e51678. [PMID: 33987949 DOI: 10.15252/embr.202051678] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Ghermi M, Reguieg S, Attab K, Mened N, Ghomari N, Guendouz Elghoul FZ, Saichi F, Bossi S, Bouali-Youcef Y, Bey Baba Hamed M, Kallel Sellami M. Interferon-γ (+874 T/A) and interleukin-10 (-1082 G/A) genes polymorphisms are associated with active tuberculosis in the Algerian population of Oran's city. Indian J Tuberc 2021;68:221-9. [PMID: 33845956 DOI: 10.1016/j.ijtb.2020.08.015] [Reference Citation Analysis]
19 Nienaber A, Hayford FEA, Variava E, Martinson N, Malan L. The Manipulation of the Lipid Mediator Metabolism as Adjunct Host-Directed Therapy in Tuberculosis. Front Immunol 2021;12:623941. [PMID: 33777003 DOI: 10.3389/fimmu.2021.623941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Alemnew B, Hoff ST, Abebe T, Abebe M, Aseffa A, Howe R, Wassie L. Ex vivo mRNA expression of toll-like receptors during latent tuberculosis infection. BMC Immunol 2021;22:9. [PMID: 33509080 DOI: 10.1186/s12865-021-00400-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Dallenga TK, Schaible UE. Neutrophil-Mediated Mechanisms as Targets for Host-Directed Therapies Against Tuberculosis. Advances in Host-Directed Therapies Against Tuberculosis 2021. [DOI: 10.1007/978-3-030-56905-1_13] [Reference Citation Analysis]
22 Febriana A, Olivianto E, Khotimah H. The role of tumor necrosis factor-α and Interleukin-17 with severity of lung damage in paediatric tuberculosis. INTERNATIONAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGY (ICoLiST 2020) 2021. [DOI: 10.1063/5.0052772] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Zhang Q, Sun J, Fu Y, He W, Li Y, Tan H, Xu H, Jiang X. Guttiferone K Exerts the Anti-inflammatory Effect on Mycobacterium Tuberculosis- (H37Ra-) Infected Macrophages by Targeting the TLR/IRAK-1 Mediated Akt and NF-κB Pathway. Mediators Inflamm 2020;2020:8528901. [PMID: 33100904 DOI: 10.1155/2020/8528901] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 He W, Sun J, Zhang Q, Li Y, Fu Y, Zheng Y, Jiang X. Andrographolide exerts anti-inflammatory effects in Mycobacterium tuberculosis-infected macrophages by regulating the Notch1/Akt/NF-κB axis. J Leukoc Biol 2020;108:1747-64. [PMID: 32991757 DOI: 10.1002/JLB.3MA1119-584RRR] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
25 Samsonov KY, Mordyk AV, Аroyan AR, Batischeva TL, Ivanova OG. Reparation of lung tissue in newly detected pulmonary tuberculosis as genetically determined process. Tuberk bolezni lëgk 2020;98:7-13. [DOI: 10.21292/2075-1230-2020-98-8-7-13] [Reference Citation Analysis]
26 Zhai J, Gao W, Zhao L, Lu C. Integrated transcriptomic and quantitative proteomic analysis identifies potential RNA sensors that respond to the Ag85A DNA vaccine. Microb Pathog 2020;149:104487. [PMID: 32920150 DOI: 10.1016/j.micpath.2020.104487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Yu Z, Wit W, Xiong L, Cheng Y. Associations of six common functional polymorphisms in interleukins with tuberculosis: evidence from a meta-analysis. Pathog Dis 2019;77:ftz053. [PMID: 31560754 DOI: 10.1093/femspd/ftz053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
28 Madjid A, Syafar M, Arsunan A, Maria IL. Social determinants and tuberculosis incidents on empowerment case finding in Majene district. Enfermería Clínica 2020;30:136-140. [DOI: 10.1016/j.enfcli.2020.02.011] [Reference Citation Analysis]
29 Beckwith KS, Beckwith MS, Ullmann S, Sætra RS, Kim H, Marstad A, Åsberg SE, Strand TA, Haug M, Niederweis M, Stenmark HA, Flo TH. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun 2020;11:2270. [PMID: 32385301 DOI: 10.1038/s41467-020-16143-6] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 25.0] [Reference Citation Analysis]
30 Kathamuthu GR, Munisankar S, Banurekha VV, Nair D, Sridhar R, Babu S. Filarial Coinfection Is Associated With Higher Bacterial Burdens and Altered Plasma Cytokine and Chemokine Responses in Tuberculous Lymphadenitis. Front Immunol 2020;11:706. [PMID: 32373129 DOI: 10.3389/fimmu.2020.00706] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
31 Krishnamoorthy G, Kaiser P, Abu Abed U, Weiner J 3rd, Moura-Alves P, Brinkmann V, Kaufmann SHE. FX11 limits Mycobacterium tuberculosis growth and potentiates bactericidal activity of isoniazid through host-directed activity. Dis Model Mech 2020;13:dmm041954. [PMID: 32034005 DOI: 10.1242/dmm.041954] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
32 Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020;250:636-46. [PMID: 32108337 DOI: 10.1002/path.5407] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
33 Tsenova L, Fallows D, Kolloli A, Singh P, O'Brien P, Kushner N, Kaplan G, Subbian S. Inoculum size and traits of the infecting clinical strain define the protection level against Mycobacterium tuberculosis infection in a rabbit model. Eur J Immunol 2020;50:858-72. [PMID: 32130727 DOI: 10.1002/eji.201948448] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
34 Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage‐Targeted Isoniazid–Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem 2020;132:3252-3260. [DOI: 10.1002/ange.201912122] [Reference Citation Analysis]
35 Pi J, Shen L, Yang E, Shen H, Huang D, Wang R, Hu C, Jin H, Cai H, Cai J, Zeng G, Chen ZW. Macrophage-Targeted Isoniazid-Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli. Angew Chem Int Ed Engl 2020;59:3226-34. [PMID: 31756258 DOI: 10.1002/anie.201912122] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
36 Yamauchi M, Kinjo T, Parrott G, Miyagi K, Haranaga S, Nakayama Y, Chibana K, Fujita K, Nakamoto A, Higa F, Owan I, Yonemoto K, Fujita J. Diagnostic performance of serum interferon gamma, matrix metalloproteinases, and periostin measurements for pulmonary tuberculosis in Japanese patients with pneumonia. PLoS One 2020;15:e0227636. [PMID: 31917802 DOI: 10.1371/journal.pone.0227636] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Fonseca KL, Maceiras AR, Matos R, Simoes-Costa L, Sousa J, Cá B, Barros L, Fernandes AI, Mereiter S, Reis R, Gomes J, Tapia G, Rodríguez-Martínez P, Martín-Céspedes M, Vashakidze S, Gogishvili S, Nikolaishvili K, Appelberg R, Gärtner F, Rodrigues PNS, Vilaplana C, Reis CA, Magalhães A, Saraiva M. Deficiency in the glycosyltransferase Gcnt1 increases susceptibility to tuberculosis through a mechanism involving neutrophils. Mucosal Immunol 2020;13:836-48. [PMID: 32203062 DOI: 10.1038/s41385-020-0277-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
38 Chen J, Ma A. Associations of polymorphisms in interleukins with tuberculosis: Evidence from a meta-analysis. Immunology Letters 2020;217:1-6. [DOI: 10.1016/j.imlet.2019.10.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Zhang J, Jiao L, Bai H, Wu Q, Wu T, Liu T, Hu X, Song J, Ying B. A Notch4 missense mutation is associated with susceptibility to tuberculosis in Chinese population. Infect Genet Evol 2020;78:104145. [PMID: 31838262 DOI: 10.1016/j.meegid.2019.104145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
40 Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Natarajan M, Kornfeld H, Babu S. Plasma chemokines are biomarkers of disease severity, higher bacterial burden and delayed sputum culture conversion in pulmonary tuberculosis. Sci Rep 2019;9:18217. [PMID: 31796883 DOI: 10.1038/s41598-019-54803-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
41 Dijkman K, Vervenne RAW, Sombroek CC, Boot C, Hofman SO, van Meijgaarden KE, Ottenhoff THM, Kocken CHM, Haanstra KG, Vierboom MPM, Verreck FAW. Disparate Tuberculosis Disease Development in Macaque Species Is Associated With Innate Immunity. Front Immunol 2019;10:2479. [PMID: 31736945 DOI: 10.3389/fimmu.2019.02479] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
42 He C, Liu L. Associations of polymorphisms in IL-6 and IL-18 with tuberculosis: Evidence from a meta-analysis. Microb Pathog 2020;139:103823. [PMID: 31676365 DOI: 10.1016/j.micpath.2019.103823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
43 Kumar NP, Moideen K, Nancy A, Viswanathan V, Shruthi BS, Sivakumar S, Natarajan M, Kornfeld H, Babu S. Heterogeneity in the cytokine profile of tuberculosis - diabetes co-morbidity. Cytokine 2020;125:154824. [PMID: 31472402 DOI: 10.1016/j.cyto.2019.154824] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Beckwith KS, Beckwith MS, Ullmann S, Sætra R, Kim H, Marstad A, Åsberg SE, Strand TA, Stenmark HA, Flo TH. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection.. [DOI: 10.1101/747014] [Reference Citation Analysis]
45 Kumar NP, Moideen K, Banurekha VV, Nair D, Babu S. Plasma Proinflammatory Cytokines Are Markers of Disease Severity and Bacterial Burden in Pulmonary Tuberculosis. Open Forum Infect Dis 2019;6:ofz257. [PMID: 31281858 DOI: 10.1093/ofid/ofz257] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
46 Wang L, Liu Z, Wang J, Liu H, Wu J, Tang T, Li H, Yang H, Qin L, Ma D, Chen J, Liu F, Wang P, Zheng R, Song P, Zhou Y, Cui Z, Wu X, Huang X, Liang H, Zhang S, Cao J, Wu C, Chen Y, Su D, Chen X, Zeng G, Ge B. Oxidization of TGFβ-activated kinase by MPT53 is required for immunity to Mycobacterium tuberculosis. Nat Microbiol 2019;4:1378-88. [PMID: 31110366 DOI: 10.1038/s41564-019-0436-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
47 Krishnamoorthy G, Kaiser P, Abed UA, Weiner J, Moura-alves P, Brinkmann V, Kaufmann SHE. Inhibition of host Lactate dehydrogenase A by a small-molecule limitsMycobacterium tuberculosisgrowth and potentiates bactericidal activity of isoniazid.. [DOI: 10.1101/626002] [Reference Citation Analysis]
48 Jo EK, Silwal P, Yuk JM. AMPK-Targeted Effector Networks in Mycobacterial Infection. Front Microbiol 2019;10:520. [PMID: 30930886 DOI: 10.3389/fmicb.2019.00520] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
49 Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O, Mittereder L, Mayer-Barber KD, Andrade BB, Sher A. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med 2019;216:556-70. [PMID: 30787033 DOI: 10.1084/jem.20181776] [Cited by in Crossref: 118] [Cited by in F6Publishing: 122] [Article Influence: 29.5] [Reference Citation Analysis]
50 Arrey F, Löwe D, Kuhlmann S, Kaiser P, Moura-Alves P, Krishnamoorthy G, Lozza L, Maertzdorf J, Skrahina T, Skrahina A, Gengenbacher M, Nouailles G, Kaufmann SHE. Humanized Mouse Model Mimicking Pathology of Human Tuberculosis for in vivo Evaluation of Drug Regimens. Front Immunol 2019;10:89. [PMID: 30766535 DOI: 10.3389/fimmu.2019.00089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
51 Rajamanickam A, Munisankar S, Bhootra Y, Dolla CK, Nutman TB, Babu S. Coexistent Helminth Infection-Mediated Modulation of Chemokine Responses in Latent Tuberculosis. J Immunol 2019;202:1494-500. [PMID: 30651341 DOI: 10.4049/jimmunol.1801190] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
52 Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis.Int J Mol Sci. 2019;20. [PMID: 30650615 DOI: 10.3390/ijms20020340] [Cited by in Crossref: 121] [Cited by in F6Publishing: 129] [Article Influence: 30.3] [Reference Citation Analysis]
53 de Melo MGM, Mesquita EDD, Oliveira MM, da Silva-Monteiro C, Silveira AKA, Malaquias TS, Dutra TCP, Galliez RM, Kritski AL, Silva EC; Rede-TB Study Group. Imbalance of NET and Alpha-1-Antitrypsin in Tuberculosis Patients Is Related With Hyper Inflammation and Severe Lung Tissue Damage. Front Immunol 2018;9:3147. [PMID: 30687336 DOI: 10.3389/fimmu.2018.03147] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
54 Cheung LS, Srikrishna G, Bishai WR. Role of Myeloid-Derived Suppressor Cells and Regulatory T-Cells in the Tuberculous Granuloma. Tuberculosis Host-Pathogen Interactions 2019. [DOI: 10.1007/978-3-030-25381-3_4] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
55 Hwang S, Actor JK. Modulation of Inflammation to Control Tuberculosis Disease. Translational Inflammation. Elsevier; 2019. pp. 133-52. [DOI: 10.1016/b978-0-12-813832-8.00007-8] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
56 Rendon A, Goletti D, Matteelli A. Diagnosis and treatment of latent tuberculosis infection. Tuberculosis. [DOI: 10.1183/2312508x.10022617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
57 Silwal P, Kim JK, Yuk JM, Jo EK. AMP-Activated Protein Kinase and Host Defense against Infection. Int J Mol Sci 2018;19:E3495. [PMID: 30404221 DOI: 10.3390/ijms19113495] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 5.8] [Reference Citation Analysis]
58 Bhatt K, Machado H, Osório NS, Sousa J, Cardoso F, Magalhães C, Chen B, Chen M, Kim J, Singh A, Ferreira CM, Castro AG, Torrado E, Jacobs WR Jr, Bhatt A, Saraiva M. A Nonribosomal Peptide Synthase Gene Driving Virulence in Mycobacterium tuberculosis. mSphere 2018;3:e00352-18. [PMID: 30381350 DOI: 10.1128/mSphere.00352-18] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
59 Agrawal N, Streata I, Pei G, Weiner J, Kotze L, Bandermann S, Lozza L, Walzl G, du Plessis N, Ioana M, Kaufmann SHE, Dorhoi A. Human Monocytic Suppressive Cells Promote Replication of Mycobacterium tuberculosis and Alter Stability of in vitro Generated Granulomas. Front Immunol 2018;9:2417. [PMID: 30405617 DOI: 10.3389/fimmu.2018.02417] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
60 BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 2018;40:577-91. [PMID: 30306257 DOI: 10.1007/s00281-018-0710-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
61 Jean Bosco M, Wei M, Hou H, Yu J, Lin Q, Luo Y, Sun Z, Wang F. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease. International Journal of Infectious Diseases 2018;74:1-9. [DOI: 10.1016/j.ijid.2018.06.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
62 Blauenfeldt T, Petrone L, Del Nonno F, Baiocchini A, Falasca L, Chiacchio T, Bondet V, Vanini V, Palmieri F, Galluccio G, Casrouge A, Eugen-Olsen J, Albert ML, Goletti D, Duffy D, Ruhwald M. Interplay of DDP4 and IP-10 as a Potential Mechanism for Cell Recruitment to Tuberculosis Lesions. Front Immunol 2018;9:1456. [PMID: 30026741 DOI: 10.3389/fimmu.2018.01456] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
63 da Costa Souza P, Dondo PS, Souza G, Lopes D, Moscardi M, de Miranda Martinho V, de Mattos Lourenço RD, Prieto T, Balancin ML, Assato AK, Teodoro WR, Rodrigues S, Lima M, Castellano MV, Coletta E, Parra ER, Capelozzi VL. Comprehensive analysis of immune, extracellular matrices and pathogens profile in lung granulomatosis of unexplained etiology. Hum Pathol 2018;75:104-15. [PMID: 29410258 DOI: 10.1016/j.humpath.2018.01.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
64 López-ramos JE, Macías-segura N, Cuevas-cordoba B, Araujo-garcia Z, Bastián Y, Castañeda-delgado JE, Lara-ramirez EE, Gándara-jasso B, Serrano CJ, Salinas E, Enciso-moreno JA. Improvement in the Diagnosis of Tuberculosis Combining Mycobacterium Tuberculosis Immunodominant Peptides and Serum Host Biomarkers. Archives of Medical Research 2018;49:147-153.e1. [DOI: 10.1016/j.arcmed.2018.07.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
65 Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 2018;27:170077. [PMID: 29491034 DOI: 10.1183/16000617.0077-2017] [Cited by in Crossref: 148] [Cited by in F6Publishing: 161] [Article Influence: 29.6] [Reference Citation Analysis]
66 Goletti D, Lee MR, Wang JY, Walter N, Ottenhoff THM. Update on tuberculosis biomarkers: From correlates of risk, to correlates of active disease and of cure from disease. Respirology 2018;23:455-66. [PMID: 29457312 DOI: 10.1111/resp.13272] [Cited by in Crossref: 111] [Cited by in F6Publishing: 112] [Article Influence: 22.2] [Reference Citation Analysis]
67 Hunter RL, Actor JK, Hwang SA, Khan A, Urbanowski ME, Kaushal D, Jagannath C. Pathogenesis and Animal Models of Post-Primary (Bronchogenic) Tuberculosis, A Review. Pathogens 2018;7:E19. [PMID: 29415434 DOI: 10.3390/pathogens7010019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
68 Ahsan F, Maertzdorf J, Guhlich-Bornhof U, Kaufmann SHE, Moura-Alves P. IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis. Sci Rep 2018;8:1520. [PMID: 29367626 DOI: 10.1038/s41598-018-19476-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
69 Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, Randall KT, Selseth AN, Rundstrom P, Herlache L, Lewis MS, Park H, Planer SL, Turner JM, Fischer M, Armstrong C, Zweig RC, Valvo J, Braun JM, Shankar S, Lu L, Sylwester AW, Legasse AW, Messerle M, Jarvis MA, Amon LM, Aderem A, Alter G, Laddy DJ, Stone M, Bonavia A, Evans TG, Axthelm MK, Früh K, Edlefsen PT, Picker LJ. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med 2018;24:130-43. [PMID: 29334373 DOI: 10.1038/nm.4473] [Cited by in Crossref: 154] [Cited by in F6Publishing: 160] [Article Influence: 30.8] [Reference Citation Analysis]
70 Chao WC, Yen CL, Hsieh CY, Huang YF, Tseng YL, Nigrovic PA, Shieh CC. Mycobacterial infection induces higher interleukin-1β and dysregulated lung inflammation in mice with defective leukocyte NADPH oxidase. PLoS One 2017;12:e0189453. [PMID: 29228045 DOI: 10.1371/journal.pone.0189453] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
71 Qian Z, Liu H, Li M, Shi J, Li N, Zhang Y, Zhang X, Lv J, Xie X, Bai Y, Ge Q, Ko EA, Tang H, Wang T, Wang X, Wang Z, Zhou T, Gu W. Potential Diagnostic Power of Blood Circular RNA Expression in Active Pulmonary Tuberculosis. EBioMedicine 2018;27:18-26. [PMID: 29248507 DOI: 10.1016/j.ebiom.2017.12.007] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
72 Chen Y, Cao S, Sun Y, Li C. Gene expression profiling of the TRIM protein family reveals potential biomarkers for indicating tuberculosis status. Microb Pathog 2018;114:385-92. [PMID: 29225091 DOI: 10.1016/j.micpath.2017.12.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
73 Ankrah AO, Glaudemans AWJM, Maes A, Van de Wiele C, Dierckx RAJO, Vorster M, Sathekge MM. Tuberculosis. Semin Nucl Med 2018;48:108-30. [PMID: 29452616 DOI: 10.1053/j.semnuclmed.2017.10.005] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 9.7] [Reference Citation Analysis]
74 Zhang Q, Sun J, Wang Y, He W, Wang L, Zheng Y, Wu J, Zhang Y, Jiang X. Antimycobacterial and Anti-inflammatory Mechanisms of Baicalin via Induced Autophagy in Macrophages Infected with Mycobacterium tuberculosis. Front Microbiol 2017;8:2142. [PMID: 29163427 DOI: 10.3389/fmicb.2017.02142] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 11.8] [Reference Citation Analysis]
75 de Almeida DC, Evangelista LSM, Câmara NOS. Role of aryl hydrocarbon receptor in mesenchymal stromal cell activation: A minireview. World J Stem Cells 2017;9:152-8. [PMID: 29026461 DOI: 10.4252/wjsc.v9.i9.152] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
76 Cui JY, Liang HW, Pan XL, Li D, Jiao N, Liu YH, Fu J, He XY, Sun GX, Zhang CL, Zhao CH, Li DH, Dai EY, Zen K, Zhang FM, Zhang CY, Chen X, Ling H. Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals. PLoS One 2017;12:e0184113. [PMID: 28910318 DOI: 10.1371/journal.pone.0184113] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
77 Domingo-gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines inMycobacterium tuberculosisInfection. Tuberculosis and the Tubercle Bacillus 2017. [DOI: 10.1128/9781555819569.ch2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
78 Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016;4. [PMID: 27763255 DOI: 10.1128/microbiolspec.TBTB2-0018-2016] [Cited by in Crossref: 167] [Cited by in F6Publishing: 188] [Article Influence: 27.8] [Reference Citation Analysis]
79 Fonseca KL, Rodrigues PNS, Olsson IAS, Saraiva M. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog 2017;13:e1006421. [PMID: 28817682 DOI: 10.1371/journal.ppat.1006421] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 8.7] [Reference Citation Analysis]
80 Liu H, Ge B. Interleukin-37: a new molecular target for host-directed therapy of tuberculosis. Future Microbiol 2017;12:465-8. [PMID: 28481119 DOI: 10.2217/fmb-2017-0030] [Reference Citation Analysis]
81 Pattabiraman G, Panchal R, Medvedev AE. The R753Q polymorphism in Toll-like receptor 2 (TLR2) attenuates innate immune responses to mycobacteria and impairs MyD88 adapter recruitment to TLR2. J Biol Chem 2017;292:10685-95. [PMID: 28442574 DOI: 10.1074/jbc.M117.784470] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
82 Shepelkova G, Evstifeev V, Kondratieva T, Bocharova I, Averbakh M, Apt A. Local targeting NF-κB in the lung tissue of TB-infected mice diminishes the level of pathology. Tuberculosis (Edinb) 2017;103:92-6. [PMID: 28237038 DOI: 10.1016/j.tube.2016.12.001] [Reference Citation Analysis]
83 Rao M, Valentini D, Dodoo E, Zumla A, Maeurer M. Anti-PD-1/PD-L1 therapy for infectious diseases: learning from the cancer paradigm. Int J Infect Dis 2017;56:221-8. [PMID: 28163164 DOI: 10.1016/j.ijid.2017.01.028] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 14.5] [Reference Citation Analysis]
84 Linke M, Pham HT, Katholnig K, Schnöller T, Miller A, Demel F, Schütz B, Rosner M, Kovacic B, Sukhbaatar N, Niederreiter B, Blüml S, Kuess P, Sexl V, Müller M, Mikula M, Weckwerth W, Haschemi A, Susani M, Hengstschläger M, Gambello MJ, Weichhart T. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol 2017;18:293-302. [PMID: 28092373 DOI: 10.1038/ni.3655] [Cited by in Crossref: 132] [Cited by in F6Publishing: 138] [Article Influence: 22.0] [Reference Citation Analysis]
85 Liu H, Zheng R, Wang P, Yang H, He X, Ji Q, Bai W, Chen H, Chen J, Peng W, Liu S, Liu Z, Ge B. IL-37 Confers Protection against Mycobacterial Infection Involving Suppressing Inflammation and Modulating T Cell Activation. PLoS One 2017;12:e0169922. [PMID: 28076390 DOI: 10.1371/journal.pone.0169922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
86 Segueni N, Tritto E, Bourigault ML, Rose S, Erard F, Le Bert M, Jacobs M, Di Padova F, Stiehl DP, Moulin P, Brees D, Chibout SD, Ryffel B, Kammüller M, Quesniaux VF. Controlled Mycobacterium tuberculosis infection in mice under treatment with anti-IL-17A or IL-17F antibodies, in contrast to TNFα neutralization. Sci Rep 2016;6:36923. [PMID: 27853279 DOI: 10.1038/srep36923] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
87 Petruccioli E, Scriba TJ, Petrone L, Hatherill M, Cirillo DM, Joosten SA, Ottenhoff TH, Denkinger CM, Goletti D. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur Respir J 2016;48:1751-63. [PMID: 27836953 DOI: 10.1183/13993003.01012-2016] [Cited by in Crossref: 126] [Cited by in F6Publishing: 133] [Article Influence: 18.0] [Reference Citation Analysis]
88 Platteel ACM, Marit de Groot A, Keller C, Andersen P, Ovaa H, Kloetzel PM, Mishto M, Sijts AJAM. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing. Vaccine 2016;34:5132-40. [PMID: 27593157 DOI: 10.1016/j.vaccine.2016.08.039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
89 Mesquita ED, Gil-Santana L, Ramalho D, Tonomura E, Silva EC, Oliveira MM, Andrade BB, Kritski A; Rede-TB Study group. Associations between systemic inflammation, mycobacterial loads in sputum and radiological improvement after treatment initiation in pulmonary TB patients from Brazil: a prospective cohort study. BMC Infect Dis 2016;16:368. [PMID: 27494953 DOI: 10.1186/s12879-016-1736-3] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
90 Andrade-Silva M, Correa LB, Candéa AL, Cavalher-Machado SC, Barbosa HS, Rosas EC, Henriques MG. The cannabinoid 2 receptor agonist β-caryophyllene modulates the inflammatory reaction induced by Mycobacterium bovis BCG by inhibiting neutrophil migration. Inflamm Res 2016;65:869-79. [PMID: 27379721 DOI: 10.1007/s00011-016-0969-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
91 Ordonez AA, Tasneen R, Pokkali S, Xu Z, Converse PJ, Klunk MH, Mollura DJ, Nuermberger EL, Jain SK. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Dis Model Mech 2016;9:779-88. [PMID: 27482816 DOI: 10.1242/dmm.025643] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 5.4] [Reference Citation Analysis]
92 Ahsan F, Moura-alves P, Guhlich-bornhof U, Klemm M, Kaufmann SHE, Maertzdorf J. Role of Interleukin 36γ in Host Defense Against Tuberculosis. J Infect Dis 2016;214:464-74. [DOI: 10.1093/infdis/jiw152] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
93 Kaufmann SHE. Immunopathology of mycobacterial diseases. Semin Immunopathol 2016;38:135-8. [DOI: 10.1007/s00281-015-0547-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]