1 |
Chauhan W, Zennadi R. Keap1-Nrf2 Heterodimer: A Therapeutic Target to Ameliorate Sickle Cell Disease. Antioxidants 2023;12:740. [DOI: 10.3390/antiox12030740] [Reference Citation Analysis]
|
2 |
Wiatr M, Hadzhieva M, Lecerf M, Noé R, Justesen S, Lacroix-Desmazes S, Dragon-Durey MA, Dimitrov JD. Hyperoxidized Species of Heme Have a Potent Capacity to Induce Autoreactivity of Human IgG Antibodies. Int J Mol Sci 2023;24. [PMID: 36834827 DOI: 10.3390/ijms24043416] [Reference Citation Analysis]
|
3 |
Kong W, Zhou W, He Z, Zhang X, Li S, Zhong R, Liu J. Polymerized human cord hemoglobin assisted with ascorbic acid as a red blood cell substitute alleviating oxidative stress for blood transfusion. Front Bioeng Biotechnol 2023;11:1151975. [PMID: 36911194 DOI: 10.3389/fbioe.2023.1151975] [Reference Citation Analysis]
|
4 |
Deravi N, Norouzkhani N, Keylani K, Haghi SM, Rafiei SKS. Deferoxamine and other iron chelators. Reference Module in Biomedical Sciences 2023. [DOI: 10.1016/b978-0-12-824315-2.00591-1] [Reference Citation Analysis]
|
5 |
Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102536] [Reference Citation Analysis]
|
6 |
Elemo GN, Erukainure OL, Okafor JNC, Banerjee P, Preissner R, Nwachukwu Nicholas-Okpara VA, Atolani O, Omowunmi O, Ezeanyanaso CS, Awosika A, Shode F. Underutilized legumes, Cajanus cajan and Glycine max may bring about antisickling effect in sickle cell disease by modulation of redox homeostasis in sickled erythrocytes and alteration of its functional chemistry. J Food Biochem 2022;:e14322. [PMID: 35894096 DOI: 10.1111/jfbc.14322] [Reference Citation Analysis]
|
7 |
Alramadhani D, Aljahdali AS, Abdulmalik O, Pierce BD, Safo MK. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities. IJMS 2022;23:7448. [DOI: 10.3390/ijms23137448] [Reference Citation Analysis]
|
8 |
Tebbi CK. Sickle Cell Disease, a Review. Hemato 2022;3:341-366. [DOI: 10.3390/hemato3020024] [Reference Citation Analysis]
|
9 |
Entezari S, Haghi SM, Norouzkhani N, Sahebnazar B, Vosoughian F, Akbarzadeh D, Islampanah M, Naghsh N, Abbasalizadeh M, Deravi N, Abd Elhakim Y. Iron Chelators in Treatment of Iron Overload. Journal of Toxicology 2022;2022:1-18. [DOI: 10.1155/2022/4911205] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
10 |
Song A, Wen AQ, Wen YE, Dzieciatkowska M, Kellems RE, Juneja HS, D'Alessandro A, Xia Y. p97 dysfunction underlies a loss of quality control of damaged membrane proteins and promotes oxidative stress and sickling in sickle cell disease. FASEB J 2022;36:e22246. [PMID: 35405035 DOI: 10.1096/fj.202101500RR] [Reference Citation Analysis]
|
11 |
Traber MG, Kamal-eldin A. Oxidative Stress and Vitamin E in Anemia. Nutrition and Health 2022. [DOI: 10.1007/978-3-031-14521-6_16] [Reference Citation Analysis]
|
12 |
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021;10:1608. [PMID: 34679742 DOI: 10.3390/antiox10101608] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Conran N, Embury SH. Sickle cell vaso-occlusion: The dialectic between red cells and white cells. Exp Biol Med (Maywood) 2021;246:1458-72. [PMID: 33794696 DOI: 10.1177/15353702211005392] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Engwa GA, Okolie A, Chidili JPC, Okore PA, Onu PC, Ugwu MO, Oko DE, Ferdinand PU. Relationship of oxidative stress and antioxidant response with vaso-occlusive crisis in sickle cell anaemia. Afr Health Sci 2021;21:150-8. [PMID: 34394292 DOI: 10.4314/ahs.v21i1.20] [Reference Citation Analysis]
|
15 |
Vona R, Sposi NM, Mattia L, Gambardella L, Straface E, Pietraforte D. Sickle Cell Disease: Role of Oxidative Stress and Antioxidant Therapy. Antioxidants (Basel) 2021;10:296. [PMID: 33669171 DOI: 10.3390/antiox10020296] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
16 |
Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural Antioxidants in Anemia Treatment. Int J Mol Sci 2021;22:1883. [PMID: 33668657 DOI: 10.3390/ijms22041883] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
17 |
Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radical Biology and Medicine 2020;157:15-37. [DOI: 10.1016/j.freeradbiomed.2020.02.026] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 20.7] [Reference Citation Analysis]
|
18 |
Massaccesi L, Galliera E, Corsi Romanelli MM. Erythrocytes as markers of oxidative stress related pathologies. Mech Ageing Dev 2020;191:111333. [PMID: 32814082 DOI: 10.1016/j.mad.2020.111333] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
19 |
Alayash AI. Mechanisms of Toxicity and Modulation of Hemoglobin-based Oxygen Carriers. Shock 2019;52:41-9. [PMID: 29112106 DOI: 10.1097/SHK.0000000000001044] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 14.3] [Reference Citation Analysis]
|
20 |
Zhu X, Xi C, Ward A, Takezaki M, Shi H, Peterson KR, Pace BS. NRF2 mediates γ-globin gene regulation through epigenetic modifications in a β-YAC transgenic mouse model. Exp Biol Med (Maywood) 2020;245:1308-18. [PMID: 32715783 DOI: 10.1177/1535370220945305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
21 |
Pernow J, Mahdi A, Yang J, Zhou Z. Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovasc Res 2019;115:1596-605. [PMID: 31198931 DOI: 10.1093/cvr/cvz156] [Cited by in Crossref: 59] [Cited by in F6Publishing: 64] [Article Influence: 19.7] [Reference Citation Analysis]
|
22 |
Bolarinwa AB, Oduwole O, Okebe J, Ogbenna AA, Otokiti OE, Olatinwo AT. Antioxidant supplementation for sickle cell disease. Cochrane Database of Systematic Reviews 2020. [DOI: 10.1002/14651858.cd013590] [Reference Citation Analysis]
|
23 |
Nader E, Romana M, Connes P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front Immunol 2020;11:454. [PMID: 32231672 DOI: 10.3389/fimmu.2020.00454] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
|
24 |
Czaja B, Gutierrez M, Závodszky G, de Kanter D, Hoekstra A, Eniola-Adefeso O. The influence of red blood cell deformability on hematocrit profiles and platelet margination. PLoS Comput Biol 2020;16:e1007716. [PMID: 32163405 DOI: 10.1371/journal.pcbi.1007716] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
25 |
Matte A, Cappellini MD, Iolascon A, Enrica F, De Franceschi L. Emerging drugs in randomized controlled trials for sickle cell disease: are we on the brink of a new era in research and treatment? Expert Opin Investig Drugs 2020;29:23-31. [PMID: 31847604 DOI: 10.1080/13543784.2020.1703947] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
|
26 |
Kiser ZM, Lizcano A, Nguyen J, Becker GL, Belcher JD, Varki AP, Vercellotti GM. Decreased erythrocyte binding of Siglec-9 increases neutrophil activation in sickle cell disease. Blood Cells Mol Dis 2020;81:102399. [PMID: 31901888 DOI: 10.1016/j.bcmd.2019.102399] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
|
27 |
Díaz-Castillo A, Contreras-Puentes N, Alvear-Sedán C, Moneriz-Pretell C, Rodríguez-Cavallo E, Mendez-Cuadro D. Sickle Cell Trait Induces Oxidative Damage on Plasmodium falciparum Proteome at Erythrocyte Stages. Int J Mol Sci 2019;20:E5769. [PMID: 31744112 DOI: 10.3390/ijms20225769] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
28 |
Chaves NA, Alegria TGP, Dantas LS, Netto LES, Miyamoto S, Bonini Domingos CR, da Silva DGH. Impaired antioxidant capacity causes a disruption of metabolic homeostasis in sickle erythrocytes. Free Radical Biology and Medicine 2019;141:34-46. [DOI: 10.1016/j.freeradbiomed.2019.05.034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
29 |
Al Balushi H, Hannemann A, Rees D, Brewin J, Gibson JS. The Effect of Antioxidants on the Properties of Red Blood Cells From Patients With Sickle Cell Anemia. Front Physiol 2019;10:976. [PMID: 31456691 DOI: 10.3389/fphys.2019.00976] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
30 |
Fröhlich B, Jäger J, Lansche C, Sanchez CP, Cyrklaff M, Buchholz B, Soubeiga ST, Simpore J, Ito H, Schwarz US, Lanzer M, Tanaka M. Hemoglobin S and C affect biomechanical membrane properties of P. falciparum-infected erythrocytes. Commun Biol 2019;2:311. [PMID: 31428699 DOI: 10.1038/s42003-019-0556-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
|
31 |
Muhammad A, Waziri AD, Forcados GE, Sanusi B, Sani H, Malami I, Abubakar IB, Abbah MF, Nelson AT, Musa B, Mohammed HA. Antisickling Effects of Quercetin may be Associated with Modulation of Deoxyhaemoglobin, 2, 3-bisphosphoglycerate mutase, Redox Homeostasis and Alteration of Functional Chemistry in Human Sickle Erythrocytes. Annals of Science and Technology 2019;4:38-47. [DOI: 10.2478/ast-2019-0005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
32 |
Joppa K, Mét K, Missebukpo A, Agbè S, Vovor A, Aklikokou K. Preventive and Curative Effect of Morinda lucida Extraction the Anemia and its Toxicological Evaluation. Research J of Medicinal Plants 2019;13:89-95. [DOI: 10.3923/rjmp.2019.89.95] [Reference Citation Analysis]
|
33 |
Liu H, Adebiyi M, Liu RR, Song A, Manalo J, Wen YE, Wen AQ, Weng T, Ko J, Idowu M, Kellems RE, Eltzschig HK, Blackburn MR, Juneja HS, Xia Y. Elevated ecto-5'-nucleotidase: a missing pathogenic factor and new therapeutic target for sickle cell disease. Blood Adv 2018;2:1957-68. [PMID: 30097462 DOI: 10.1182/bloodadvances.2018015784] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
34 |
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019;135:182-97. [PMID: 30849489 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
|
35 |
Smith OS, Ajose OA, Adegoke SA, Adegoke OA, Adedeji TA, Oderinu KA. Plasma level of antioxidants is related to frequency of vaso-occlusive crises in children with sickle cell anaemia in steady state in Nigeria. Pediatric Hematology Oncology Journal 2019;4:17-22. [DOI: 10.1016/j.phoj.2019.03.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
36 |
Poljšak B, Jamnik P, Raspor P, Pesti M. Oxidation-Antioxidation-Reduction Processes in the Cell: Impacts of Environmental Pollution. Encyclopedia of Environmental Health 2019. [DOI: 10.1016/b978-0-12-409548-9.11733-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
37 |
Erhabor O, Jiya NM, Abubakar MB, Usman S. Some Antioxidant Enzymes among Children with Sickle Cell Disease Attending Usmanu Danfodiyo University Teaching Hospital Sokoto, North Western Nigeria. OJBD 2019;09:60-76. [DOI: 10.4236/ojbd.2019.93007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
38 |
Matte A, Zorzi F, Mazzi F, Federti E, Olivieri O, De Franceschi L. New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2019;11:e2019002. [PMID: 30671208 DOI: 10.4084/MJHID.2019.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
|
39 |
Schmidt HM, Kelley EE, Straub AC. The impact of xanthine oxidase (XO) on hemolytic diseases. Redox Biol 2019;21:101072. [PMID: 30580157 DOI: 10.1016/j.redox.2018.101072] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 10.6] [Reference Citation Analysis]
|
40 |
Lansche C, Dasanna AK, Quadt K, Fröhlich B, Missirlis D, Tétard M, Gamain B, Buchholz B, Sanchez CP, Tanaka M, Schwarz US, Lanzer M. The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Commun Biol 2018;1:211. [PMID: 30534603 DOI: 10.1038/s42003-018-0223-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
|
41 |
Contreras-Puentes N, Rodríguez-Cavallo E, Méndez-Cuadro D. Membrane protein carbonylation of Plasmodium falciparum infected erythrocytes under conditions of sickle cell trait and G6PD deficiency. Mol Biochem Parasitol 2019;227:5-14. [PMID: 30472238 DOI: 10.1016/j.molbiopara.2018.11.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
|
42 |
Li B, Zhu X, Ward CM, Starlard-Davenport A, Takezaki M, Berry A, Ward A, Wilder C, Neunert C, Kutlar A, Pace BS. MIR-144-mediated NRF2 gene silencing inhibits fetal hemoglobin expression in sickle cell disease. Exp Hematol 2019;70:85-96.e5. [PMID: 30412705 DOI: 10.1016/j.exphem.2018.11.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
|
43 |
Biswal S, Rizwan H, Pal S, Sabnam S, Parida P, Pal A. Oxidative stress, antioxidant capacity, biomolecule damage, and inflammation symptoms of sickle cell disease in children. Hematology 2019;24:1-9. [PMID: 30010491 DOI: 10.1080/10245332.2018.1498441] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
|
44 |
Hannemann A, Rees DC, Brewin JN, Noe A, Low B, Gibson JS. Oxidative stress and phosphatidylserine exposure in red cells from patients with sickle cell anaemia. Br J Haematol 2018;182:567-78. [PMID: 29938778 DOI: 10.1111/bjh.15441] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
|
45 |
van Beers EJ, van Wijk R. Oxidative stress in sickle cell disease; more than a DAMP squib. Clin Hemorheol Microcirc 2018;68:239-50. [PMID: 29614635 DOI: 10.3233/CH-189010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
|
46 |
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2017;41:828-53. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
|
47 |
Al Balushi HWM, Rees DC, Brewin JN, Hannemann A, Gibson JS. The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia. Physiol Rep 2018;6. [PMID: 29504282 DOI: 10.14814/phy2.13626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
|
48 |
Lin YH, Huang SS, Wu SJ, Sung KB. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy. J Biomed Opt 2017;22:1-11. [PMID: 29188659 DOI: 10.1117/1.JBO.22.11.116009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
49 |
Sun K, D'Alessandro A, Ahmed MH, Zhang Y, Song A, Ko TP, Nemkov T, Reisz JA, Wu H, Adebiyi M, Peng Z, Gong J, Liu H, Huang A, Wen YE, Wen AQ, Berka V, Bogdanov MV, Abdulmalik O, Han L, Tsai AL, Idowu M, Juneja HS, Kellems RE, Dowhan W, Hansen KC, Safo MK, Xia Y. Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease. Sci Rep 2017;7:15281. [PMID: 29127281 DOI: 10.1038/s41598-017-13667-8] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
|
50 |
Erukainure O, Ajiboye J, Abbah U, Asieba G, Mamuru S, Zaruwa M, Manhas N, Singh P, Islam M. Monodora myristica (African nutmeg) modulates redox homeostasis and alters functional chemistry in sickled erythrocytes. Hum Exp Toxicol 2018;37:458-67. [DOI: 10.1177/0960327117712385] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
|
51 |
Alayash AI. Oxidative pathways in the sickle cell and beyond. Blood Cells Mol Dis 2018;70:78-86. [PMID: 28554826 DOI: 10.1016/j.bcmd.2017.05.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
|
52 |
Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 2017;26:794-813. [PMID: 27650096 DOI: 10.1089/ars.2016.6806] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
|
53 |
Castilhos LG, de Oliveira JS, Adefegha SA, Magni LP, Doleski PH, Abdalla FH, de Andrade CM, Leal DBR. Increased oxidative stress alters nucleosides metabolite levels in sickle cell anemia. Redox Rep 2017;22:451-9. [PMID: 28209096 DOI: 10.1080/13510002.2017.1288973] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
54 |
Sungu JK, Mukuku O, Mutombo AM, Mawaw P, Aloni MN, Luboya ON. Trace elements in children suffering from sickle cell anemia: A case-control study. J Clin Lab Anal 2018;32. [PMID: 28205320 DOI: 10.1002/jcla.22160] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
|
55 |
da Silva DGH, Belini Junior E, de Souza Torres L, Okumura JV, Marcel Barberino W, Garcia de Oliveira R, Urbinatti Teixeira V, Lopes de Castro Lobo C, Alves de Almeida E, Bonini-Domingos CR. Impact of genetic polymorphisms in key enzymes of homocysteine metabolism on the pathophysiology of sickle cell anemia. Free Radic Biol Med 2017;106:53-61. [PMID: 28188925 DOI: 10.1016/j.freeradbiomed.2017.02.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
56 |
Cyrklaff M, Srismith S, Nyboer B, Burda K, Hoffmann A, Lasitschka F, Adjalley S, Bisseye C, Simpore J, Mueller AK, Sanchez CP, Frischknecht F, Lanzer M. Oxidative insult can induce malaria-protective trait of sickle and fetal erythrocytes. Nat Commun 2016;7:13401. [PMID: 27824335 DOI: 10.1038/ncomms13401] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
|
57 |
Prescott C, Bottle SE. Biological Relevance of Free Radicals and Nitroxides. Cell Biochem Biophys 2017;75:227-40. [PMID: 27709467 DOI: 10.1007/s12013-016-0759-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
|
58 |
Khan SA, Damanhouri G, Ali A, Khan SA, Khan A, Bakillah A, Marouf S, Al Harbi G, Halawani SH, Makki A. Precipitating factors and targeted therapies in combating the perils of sickle cell disease--- A special nutritional consideration. Nutr Metab (Lond) 2016;13:50. [PMID: 27508000 DOI: 10.1186/s12986-016-0109-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
|
59 |
Hermann PB, Pianovski MAD, Henneberg R, Nascimento AJ, Leonart MSS. Erythrocyte oxidative stress markers in children with sickle cell disease. Jornal de Pediatria (Versão em Português) 2016;92:394-399. [DOI: 10.1016/j.jpedp.2016.04.005] [Reference Citation Analysis]
|
60 |
Hermann PB, Pianovski MA, Henneberg R, Nascimento AJ, Leonart MS. Erythrocyte oxidative stress markers in children with sickle cell disease. J Pediatr (Rio J) 2016;92:394-9. [PMID: 27117632 DOI: 10.1016/j.jped.2015.10.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
|
61 |
Renella R. Clinically-oriented proteomic investigation of sickle cell disease: Opportunities and challenges. Prot Clin Appl 2016;10:816-30. [DOI: 10.1002/prca.201500133] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
|
62 |
Przyborski JM, Nyboer B, Lanzer M. Ticket to ride: export of proteins to the Plasmodium falciparum-infected erythrocyte. Mol Microbiol 2016;101:1-11. [PMID: 26996123 DOI: 10.1111/mmi.13380] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
|
63 |
Romeu M, Rubió L, Sánchez-martos V, Castañer O, de la Torre R, Valls RM, Ras R, Pedret A, Catalán Ú, López de las Hazas MDC, Motilva MJ, Fitó M, Solà R, Giralt M. Virgin Olive Oil Enriched with Its Own Phenols or Complemented with Thyme Phenols Improves DNA Protection against Oxidation and Antioxidant Enzyme Activity in Hyperlipidemic Subjects. J Agric Food Chem 2016;64:1879-88. [DOI: 10.1021/acs.jafc.5b04915] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
|
64 |
Wang M, Zhu K, Zhang L, Li L, Zhao J. Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity. Mol Med Rep 2016;13:2864-70. [PMID: 26846911 DOI: 10.3892/mmr.2016.4855] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
|
65 |
Al-Naama LM, Hassan MK, Mehdi JK. Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia. Qatar Med J 2015;2015:14. [PMID: 26835411 DOI: 10.5339/qmj.2015.14] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
|
66 |
Tshilanda DD, Mutwale PK, Onyamboko DVN, Babady PB, Tsalu PV, Tshibangu DST, Ngombe NK, Frederich M, Ngbolua K, Mpiana PT. Chemical Fingerprint and Anti-Sickling Activity of Rosmarinic Acid and Methanolic Extracts from Three Species of <i>Ocimum</i> from DR Congo. JBM 2016;04:59-68. [DOI: 10.4236/jbm.2016.41008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
|
67 |
Khatamifar M, Fatemi SJ, Rashidi Ranjbar Z. Toxic effects arising from selenium and deferasirox interaction in the biological system. Toxin Reviews 2015;34:92-5. [DOI: 10.3109/15569543.2015.1036453] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
|
68 |
Ribeiro AB, Berto A, Ribeiro D, Freitas M, Chisté RC, Visentainer JV, Fernandes E. Stem bark and flower extracts of Vismia cauliflora are highly effective antioxidants to human blood cells by preventing oxidative burst in neutrophils and oxidative damage in erythrocytes. Pharm Biol 2015;53:1691-8. [PMID: 25868622 DOI: 10.3109/13880209.2014.1001407] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
|
69 |
da Silva DG, Ricci O Jr, de Almeida EA, Bonini-Domingos CR. Potential utility of melatonin as an antioxidant therapy in the management of sickle cell anemia. J Pineal Res 2015;58:178-88. [PMID: 25545035 DOI: 10.1111/jpi.12204] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
|
70 |
Wang H, Bastian SEP, Lawrence A, Howarth GS. Factors Derived From Escherichia Coli Nissle 1917, Grown in Different Growth Media, Enhance Cell Death in a Model of 5-Fluorouracil-Induced Caco-2 Intestinal Epithelial Cell Damage. Nutrition and Cancer 2015;67:316-26. [DOI: 10.1080/01635581.2015.990570] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
|
71 |
Owusu-Ansah A, Choi SH, Petrosiute A, Letterio JJ, Huang AY. Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: a review. Front Med 2015;9:46-56. [PMID: 25511620 DOI: 10.1007/s11684-015-0375-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
|
72 |
Rubió L, Serra A, Macià A, Piñol C, Romero M, Motilva M. In vivo distribution and deconjugation of hydroxytyrosol phase II metabolites in red blood cells: A potential new target for hydroxytyrosol. Journal of Functional Foods 2014;10:139-43. [DOI: 10.1016/j.jff.2014.06.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
|