BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, Pierce R, McClanahan TK, Sadekova S, de Waal Malefyt R. Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. J Immunol. 2010;185:679-687. [PMID: 20511558 DOI: 10.4049/jimmunol.1000366] [Cited by in Crossref: 142] [Cited by in F6Publishing: 129] [Article Influence: 12.9] [Reference Citation Analysis]
Number Citing Articles
1 Kumawat AK, Strid H, Tysk C, Bohr J, Hörnquist EH. Microscopic colitis patients demonstrate a mixed Th17/Tc17 and Th1/Tc1 mucosal cytokine profile. Mol Immunol. 2013;55:355-364. [PMID: 23566938 DOI: 10.1016/j.molimm.2013.03.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
2 Thomi R, Yerly D, Yawalkar N, Simon D, Schlapbach C, Hunger RE. Interleukin-32 is highly expressed in lesions of hidradenitis suppurativa. Br J Dermatol 2017;177:1358-66. [PMID: 28301691 DOI: 10.1111/bjd.15458] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
3 Papadopoulou G, Xanthou G. Metabolic rewiring: a new master of Th17 cell plasticity and heterogeneity. FEBS J 2021. [PMID: 33794075 DOI: 10.1111/febs.15853] [Reference Citation Analysis]
4 Boniface K. Role of Th17 cells in the pathogenesis of rheumatoid arthritis. WJR 2013;3:25. [DOI: 10.5499/wjr.v3.i3.25] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt FA, Liniany LP, Knight D, Samsel LA, Berlinguer-Palmini R, Yim JJ, Felizardo TC, Eckhaus MA, Edgington-Mitchell L, Martinez-Fabregas J, Zhu J, Fowler DH, van Kasteren SI, Laurence A, Bogyo M, Watts C, Shevach EM, Amarnath S. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity 2018;49:247-263.e7. [PMID: 30054205 DOI: 10.1016/j.immuni.2018.05.006] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 15.3] [Reference Citation Analysis]
6 Kaiser Y, Lepzien R, Kullberg S, Eklund A, Smed-sörensen A, Grunewald J. Expanded lung T-bet + RORγT + CD4 + T-cells in sarcoidosis patients with a favourable disease phenotype. Eur Respir J 2016;48:484-94. [DOI: 10.1183/13993003.00092-2016] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 7.6] [Reference Citation Analysis]
7 Medawar L, Tukiman HM, Mbayo G, Donkor S, Owolabi O, Sutherland JS. Analysis of cellular and soluble profiles in QuantiFERON nonconverters, converters, and reverters in the Gambia. Immun Inflamm Dis 2019;7:260-70. [PMID: 31430056 DOI: 10.1002/iid3.269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Morrison PJ, Ballantyne SJ, Kullberg MC. Interleukin-23 and T helper 17-type responses in intestinal inflammation: from cytokines to T-cell plasticity. Immunology 2011;133:397-408. [PMID: 21631495 DOI: 10.1111/j.1365-2567.2011.03454.x] [Cited by in Crossref: 81] [Cited by in F6Publishing: 69] [Article Influence: 8.1] [Reference Citation Analysis]
9 Dragicevic A, Dzopalic T, Vasilijic S, Vucevic D, Tomic S, Bozic B, Colic M. Signaling through Toll-like receptor 3 and Dectin-1 potentiates the capability of human monocyte-derived dendritic cells to promote T-helper 1 and T-helper 17 immune responses. Cytotherapy 2012;14:598-607. [PMID: 22424215 DOI: 10.3109/14653249.2012.667873] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
10 Carretero M, Guerrero-Aspizua S, Illera N, Galvez V, Navarro M, García-García F, Dopazo J, Jorcano JL, Larcher F, del Rio M. Differential Features between Chronic Skin Inflammatory Diseases Revealed in Skin-Humanized Psoriasis and Atopic Dermatitis Mouse Models. J Invest Dermatol 2016;136:136-45. [PMID: 26763433 DOI: 10.1038/JID.2015.362] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 4.2] [Reference Citation Analysis]
11 Benham H, Norris P, Goodall J, Wechalekar MD, FitzGerald O, Szentpetery A, Smith M, Thomas R, Gaston H. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther 2013;15:R136. [PMID: 24286492 DOI: 10.1186/ar4317] [Cited by in Crossref: 136] [Cited by in F6Publishing: 114] [Article Influence: 17.0] [Reference Citation Analysis]
12 Harris KM, Ramachandran G, Basu S, Rollins S, Mann D, Cross AS. The IL-23/Th17 axis is involved in the adaptive immune response to Bacillus anthracis in humans. Eur J Immunol 2014;44:752-62. [PMID: 24643777 DOI: 10.1002/eji.201343784] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
13 Yang P, Qian F, Zhang M, Xu A, Wang X, Jiang B, Zhou L. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 2019;106:1233-40. [DOI: 10.1002/jlb.4ru0619-197r] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
14 Axtell RC, Raman C, Steinman L. Interferon-β exacerbates Th17-mediated inflammatory disease. Trends Immunol 2011;32:272-7. [PMID: 21530402 DOI: 10.1016/j.it.2011.03.008] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 8.2] [Reference Citation Analysis]
15 Singh PP, Yu C, Mathew R, Perez VL, Saban DR. Meibomian gland dysfunction is suppressed via selective inhibition of immune responses by topical LFA-1/ICAM antagonism with lifitegrast in the allergic eye disease (AED) model. Ocul Surf 2021;21:271-8. [PMID: 33812087 DOI: 10.1016/j.jtos.2021.03.009] [Reference Citation Analysis]
16 Brembilla NC, Montanari E, Truchetet ME, Raschi E, Meroni P, Chizzolini C. Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: differential effects in healthy and systemic sclerosis fibroblasts. Arthritis Res Ther 2013;15:R151. [PMID: 24289089 DOI: 10.1186/ar4334] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 6.3] [Reference Citation Analysis]
17 Sato K, Miyoshi F, Yokota K, Araki Y, Asanuma Y, Akiyama Y, Yoh K, Takahashi S, Aburatani H, Mimura T. Marked induction of c-Maf protein during Th17 cell differentiation and its implication in memory Th cell development. J Biol Chem 2011;286:14963-71. [PMID: 21402704 DOI: 10.1074/jbc.M111.218867] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
18 Robinson RT. IL12Rβ1: the cytokine receptor that we used to know. Cytokine 2015;71:348-59. [PMID: 25516297 DOI: 10.1016/j.cyto.2014.11.018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
19 Axtell RC, Raman C, Steinman L. Type I interferons: beneficial in Th1 and detrimental in Th17 autoimmunity. Clin Rev Allergy Immunol 2013;44:114-20. [PMID: 22231516 DOI: 10.1007/s12016-011-8296-5] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 6.8] [Reference Citation Analysis]
20 Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020;68:296-309. [PMID: 32827097 DOI: 10.1007/s12026-020-09149-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
21 Shao L, Li M, Zhang B, Chang P. Bacterial dysbiosis incites Th17 cell revolt in irradiated gut. Biomed Pharmacother 2020;131:110674. [PMID: 32866810 DOI: 10.1016/j.biopha.2020.110674] [Reference Citation Analysis]
22 Melnikov M, Sharanova S, Sviridova A, Rogovskii V, Murugina N, Nikolaeva A, Dagil Y, Murugin V, Ospelnikova T, Boyko A, Pashenkov M. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS One 2020;15:e0240305. [PMID: 33126239 DOI: 10.1371/journal.pone.0240305] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
23 Smith JA, Colbert RA. Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol 2014;66:231-41. [PMID: 24504793 DOI: 10.1002/art.38291] [Cited by in Crossref: 130] [Cited by in F6Publishing: 92] [Article Influence: 18.6] [Reference Citation Analysis]
24 Basile JI, Kviatcovsky D, Romero MM, Balboa L, Monteserin J, Ritacco V, Lopez B, Sabio y García C, García A, Vescovo M, Montaner PG, Palmero D, Del Carmen Sasiain M, de la Barrera S. Mycobacterium tuberculosis multi-drug-resistant strain M induces IL-17+ IFNγ- CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB tuberculosis. Clin Exp Immunol 2017;187:160-73. [PMID: 27681197 DOI: 10.1111/cei.12873] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
25 Duhen R, Glatigny S, Arbelaez CA, Blair TC, Oukka M, Bettelli E. Cutting edge: the pathogenicity of IFN-γ-producing Th17 cells is independent of T-bet. J Immunol 2013;190:4478-82. [PMID: 23543757 DOI: 10.4049/jimmunol.1203172] [Cited by in Crossref: 116] [Cited by in F6Publishing: 106] [Article Influence: 14.5] [Reference Citation Analysis]
26 Liu Y, Pan W, Yang S, Wu X, Wu J, Ma J, Yuan Z, Meng S. Interleukin-22 protects rat PC12 pheochromocytoma cells from serum deprivation-induced cell death. Mol Cell Biochem 2012;371:137-46. [DOI: 10.1007/s11010-012-1430-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
27 Salem M, El Azreq MA, Pelletier J, Robaye B, Aoudjit F, Sévigny J. Exacerbated intestinal inflammation in P2Y6 deficient mice is associated with Th17 activation. Biochim Biophys Acta Mol Basis Dis 2019;1865:2595-605. [PMID: 31271845 DOI: 10.1016/j.bbadis.2019.06.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
28 Collins PL, Henderson MA, Aune TM. Lineage-specific adjacent IFNG and IL26 genes share a common distal enhancer element. Genes Immun 2012;13:481-8. [PMID: 22622197 DOI: 10.1038/gene.2012.22] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
29 Croes M, Öner FC, van Neerven D, Sabir E, Kruyt MC, Blokhuis TJ, Dhert WJA, Alblas J. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 2016;84:262-70. [PMID: 26780388 DOI: 10.1016/j.bone.2016.01.010] [Cited by in Crossref: 89] [Cited by in F6Publishing: 66] [Article Influence: 17.8] [Reference Citation Analysis]
30 Cohen CJ, Crome SQ, MacDonald KG, Dai EL, Mager DL, Levings MK. Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J Immunol 2011;187:5615-26. [PMID: 22048764 DOI: 10.4049/jimmunol.1101058] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 7.7] [Reference Citation Analysis]
31 Bengsch B, Seigel B, Flecken T, Wolanski J, Blum HE, Thimme R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J Immunol 2012;188:5438-47. [PMID: 22539793 DOI: 10.4049/jimmunol.1103801] [Cited by in Crossref: 105] [Cited by in F6Publishing: 96] [Article Influence: 11.7] [Reference Citation Analysis]
32 Lee FT, Dangi A, Shah S, Burnette M, Yang YG, Kirk AD, Hering BJ, Miller SD, Luo X. Rejection of xenogeneic porcine islets in humanized mice is characterized by graft-infiltrating Th17 cells and activated B cells. Am J Transplant 2020;20:1538-50. [PMID: 31883299 DOI: 10.1111/ajt.15763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 MacDonald TT, Biancheri P, Sarra M, Monteleone G. What’s the next best cytokine target in IBD? Inflamm Bowel Dis. 2012;18:2180-2189. [PMID: 22508526 DOI: 10.1002/ibd.22967] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
34 Abdollahi E, Tavasolian F, Momtazi-Borojeni AA, Samadi M, Rafatpanah H. Protective role of R381Q (rs11209026) polymorphism in IL-23R gene in immune-mediated diseases: A comprehensive review. J Immunotoxicol 2016;13:286-300. [PMID: 27043356 DOI: 10.3109/1547691X.2015.1115448] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 5.4] [Reference Citation Analysis]
35 Dzopalic T, Dragicevic A, Bozic B, Rajkovic I, Colic M. Dose-dependent response of dendritic cells to 7-thia-8-oxo-guanosine and its modulation by polyinosinic:polycytidylic acid. Exp Biol Med (Maywood) 2012;237:784-92. [PMID: 22859738 DOI: 10.1258/ebm.2012.011409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
36 Fadlallah S, Hussein H, Jallad MA, Shehab M, Jurjus AR, Matar GM, Rahal EA. Effect of Epstein-Barr Virus DNA on the Incidence and Severity of Arthritis in a Rheumatoid Arthritis Mouse Model. Front Immunol 2021;12:672752. [PMID: 34040613 DOI: 10.3389/fimmu.2021.672752] [Reference Citation Analysis]
37 Paulissen SM, van Hamburg JP, Davelaar N, Vroman H, Hazes JM, de Jong PH, Lubberts E. CCR6(+) Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis. Arthritis Res Ther 2015;17:344. [PMID: 26617177 DOI: 10.1186/s13075-015-0800-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
38 Arlehamn CL, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, Sette A, Vijayanand P, Peters B. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol 2014;193:2931-40. [PMID: 25092889 DOI: 10.4049/jimmunol.1401151] [Cited by in Crossref: 60] [Cited by in F6Publishing: 51] [Article Influence: 8.6] [Reference Citation Analysis]
39 Avau A, Matthys P. Therapeutic Potential of Interferon-γ and Its Antagonists in Autoinflammation: Lessons from Murine Models of Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome. Pharmaceuticals (Basel) 2015;8:793-815. [PMID: 26610523 DOI: 10.3390/ph8040793] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
40 Paiva IA, Badolato-Corrêa J, Familiar-Macedo D, de-Oliveira-Pinto LM. Th17 Cells in Viral Infections-Friend or Foe? Cells 2021;10:1159. [PMID: 34064728 DOI: 10.3390/cells10051159] [Reference Citation Analysis]
41 Abarca-Zabalía J, García MI, Lozano Ros A, Marín-Jiménez I, Martínez-Ginés ML, López-Cauce B, Martín-Barbero ML, Salvador-Martín S, Sanjurjo-Saez M, García-Domínguez JM, López Fernández LA. Differential Expression of SMAD Genes and S1PR1 on Circulating CD4+ T Cells in Multiple Sclerosis and Crohn's Disease. Int J Mol Sci 2020;21:E676. [PMID: 31968593 DOI: 10.3390/ijms21020676] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
42 Glatigny S, Bettelli E. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS). Cold Spring Harb Perspect Med 2018;8:a028977. [PMID: 29311122 DOI: 10.1101/cshperspect.a028977] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 14.7] [Reference Citation Analysis]
43 Dillon SM, Liu J, Purba CM, Christians AJ, Kibbie JJ, Castleman MJ, McCarter MD, Wilson CC. Age-related alterations in human gut CD4 T cell phenotype, T helper cell frequencies, and functional responses to enteric bacteria. J Leukoc Biol 2020;107:119-32. [PMID: 31573727 DOI: 10.1002/JLB.5A0919-177RR] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Ersvær E, Melve GK, Bruserud Ø. Future perspectives: should Th17 cells be considered as a possible therapeutic target in acute myeloid leukemia patients receiving allogeneic stem cell transplantation? Cancer Immunol Immunother 2011;60:1669-81. [DOI: 10.1007/s00262-011-1118-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
45 Dang AT, Teles RM, Weiss DI, Parvatiyar K, Sarno EN, Ochoa MT, Cheng G, Gilliet M, Bloom BR, Modlin RL. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest 2019;129:1926-39. [PMID: 30939123 DOI: 10.1172/JCI99550] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
46 van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of Autoimmunity 2018;87:69-81. [DOI: 10.1016/j.jaut.2017.12.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 19.0] [Reference Citation Analysis]
47 Wan Q, Kozhaya L, ElHed A, Ramesh R, Carlson TJ, Djuretic IM, Sundrud MS, Unutmaz D. Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J Exp Med 2011;208:1875-87. [PMID: 21825017 DOI: 10.1084/jem.20102516] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 6.6] [Reference Citation Analysis]
48 Ness-Schwickerath KJ, Morita CT. Regulation and function of IL-17A- and IL-22-producing γδ T cells. Cell Mol Life Sci 2011;68:2371-90. [PMID: 21573786 DOI: 10.1007/s00018-011-0700-z] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
49 Harris KM. Monocytes differentiated with GM-CSF and IL-15 initiate Th17 and Th1 responses that are contact-dependent and mediated by IL-15. J Leukoc Biol 2011;90:727-34. [PMID: 21724805 DOI: 10.1189/jlb.0311132] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
50 Wang Y, Godec J, Ben-Aissa K, Cui K, Zhao K, Pucsek AB, Lee YK, Weaver CT, Yagi R, Lazarevic V. The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells. Immunity 2014;40:355-66. [PMID: 24530058 DOI: 10.1016/j.immuni.2014.01.002] [Cited by in Crossref: 128] [Cited by in F6Publishing: 119] [Article Influence: 18.3] [Reference Citation Analysis]
51 Ramstein J, Broos CE, Simpson LJ, Ansel KM, Sun SA, Ho ME, Woodruff PG, Bhakta NR, Christian L, Nguyen CP, Antalek BJ, Benn BS, Hendriks RW, van den Blink B, Kool M, Koth LL. IFN-γ-Producing T-Helper 17.1 Cells Are Increased in Sarcoidosis and Are More Prevalent than T-Helper Type 1 Cells. Am J Respir Crit Care Med 2016;193:1281-91. [PMID: 26649486 DOI: 10.1164/rccm.201507-1499OC] [Cited by in Crossref: 112] [Cited by in F6Publishing: 44] [Article Influence: 28.0] [Reference Citation Analysis]
52 Rainard P, Cunha P, Bougarn S, Fromageau A, Rossignol C, Gilbert FB, Berthon P. T helper 17-associated cytokines are produced during antigen-specific inflammation in the mammary gland. PLoS One 2013;8:e63471. [PMID: 23696826 DOI: 10.1371/journal.pone.0063471] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 5.4] [Reference Citation Analysis]
53 Lexberg MH, Taubner A, Albrecht I, Lepenies I, Richter A, Kamradt T, Radbruch A, Chang HD. IFN-γ and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol 2010;40:3017-27. [PMID: 21061434 DOI: 10.1002/eji.201040539] [Cited by in Crossref: 110] [Cited by in F6Publishing: 98] [Article Influence: 10.0] [Reference Citation Analysis]
54 Szkaradkiewicz A, Karpiński TM, Zeidler A, Szkaradkiewicz AK, Masiuk H, Giedrys-Kalemba S. Cytokine response in patients with chronic infections caused by Staphylococcus aureus strains and diversification of their Agr system classes. Eur J Clin Microbiol Infect Dis 2012;31:2809-15. [PMID: 22639172 DOI: 10.1007/s10096-012-1633-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
55 Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13:668-677. [PMID: 24418308 DOI: 10.1016/j.autrev.2013.12.004] [Cited by in Crossref: 485] [Cited by in F6Publishing: 421] [Article Influence: 69.3] [Reference Citation Analysis]
56 Rojahn TB, Vorstandlechner V, Krausgruber T, Bauer WM, Alkon N, Bangert C, Thaler FM, Sadeghyar F, Fortelny N, Gernedl V, Rindler K, Elbe-bürger A, Bock C, Mildner M, Brunner PM. Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type–specific immune regulation in atopic dermatitis. Journal of Allergy and Clinical Immunology 2020;146:1056-69. [DOI: 10.1016/j.jaci.2020.03.041] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 23.0] [Reference Citation Analysis]
57 Barros-Martins J, Schmolka N, Fontinha D, Pires de Miranda M, Simas JP, Brok I, Ferreira C, Veldhoen M, Silva-Santos B, Serre K. Effector γδ T Cell Differentiation Relies on Master but Not Auxiliary Th Cell Transcription Factors. J Immunol 2016;196:3642-52. [PMID: 26994218 DOI: 10.4049/jimmunol.1501921] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
58 Lees JR. Interferon gamma in autoimmunity: A complicated player on a complex stage. Cytokine 2015;74:18-26. [PMID: 25464925 DOI: 10.1016/j.cyto.2014.10.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
59 Said A, Weindl G. Regulation of Dendritic Cell Function in Inflammation. J Immunol Res 2015;2015:743169. [PMID: 26229971 DOI: 10.1155/2015/743169] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 6.7] [Reference Citation Analysis]
60 Lam EP, Kariyawasam HH, Rana BM, Durham SR, McKenzie AN, Powell N, Orban N, Lennartz-Walker M, Hopkins C, Ying S, Rimmer J, Lund VJ, Cousins DJ, Till SJ. IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. J Allergy Clin Immunol 2016;137:1514-24. [PMID: 26684290 DOI: 10.1016/j.jaci.2015.10.019] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 8.3] [Reference Citation Analysis]
61 Tamburini BA, Kedl RM, Bellgrau D. IL-6-inducing whole yeast-based immunotherapy directly controls IL-12-dependent CD8 T-cell responses. J Immunother 2012;35:14-22. [PMID: 22130158 DOI: 10.1097/CJI.0b013e3182356888] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
62 Liu J, Zhang H, Jia L, Sun H. Effects of Treg cells and IDO on human epithelial ovarian cancer cells under hypoxic conditions. Mol Med Rep 2015;11:1708-14. [PMID: 25376937 DOI: 10.3892/mmr.2014.2893] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
63 Ryan ES, Micci L, Fromentin R, Paganini S, McGary CS, Easley K, Chomont N, Paiardini M. Loss of Function of Intestinal IL-17 and IL-22 Producing Cells Contributes to Inflammation and Viral Persistence in SIV-Infected Rhesus Macaques. PLoS Pathog 2016;12:e1005412. [PMID: 26829644 DOI: 10.1371/journal.ppat.1005412] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 8.4] [Reference Citation Analysis]
64 Finkielsztein A, Schlinker AC, Zhang L, Miller WM, Datta SK. Human megakaryocyte progenitors derived from hematopoietic stem cells of normal individuals are MHC class II-expressing professional APC that enhance Th17 and Th1/Th17 responses. Immunol Lett 2015;163:84-95. [PMID: 25454068 DOI: 10.1016/j.imlet.2014.11.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
65 Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, Garefalaki A, Potocnik AJ, Stockinger B. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 2011;12:255-63. [PMID: 21278737 DOI: 10.1038/ni.1993] [Cited by in Crossref: 761] [Cited by in F6Publishing: 692] [Article Influence: 76.1] [Reference Citation Analysis]
66 Monteiro A, Rosado P, Rosado L, Fonseca AM, Paiva A. Alterations in circulating T cell functional subpopulations in interferon-beta treated multiple sclerosis patients: A pilot study. Journal of Neuroimmunology 2020;339:577113. [DOI: 10.1016/j.jneuroim.2019.577113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L, Villanova F, Tosi I, Capon F, Trembath RC, Peris K. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS One. 2011;6:e17160. [PMID: 21364948 DOI: 10.1371/journal.pone.0017160] [Cited by in Crossref: 188] [Cited by in F6Publishing: 164] [Article Influence: 18.8] [Reference Citation Analysis]
68 Wacleche VS, Goulet JP, Gosselin A, Monteiro P, Soudeyns H, Fromentin R, Jenabian MA, Vartanian S, Deeks SG, Chomont N, Routy JP, Ancuta P. New insights into the heterogeneity of Th17 subsets contributing to HIV-1 persistence during antiretroviral therapy. Retrovirology 2016;13:59. [PMID: 27553844 DOI: 10.1186/s12977-016-0293-6] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 10.2] [Reference Citation Analysis]
69 Wacleche VS, Landay A, Routy JP, Ancuta P. The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017;9:E303. [PMID: 29048384 DOI: 10.3390/v9100303] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
70 Wilde B, Thewissen M, Damoiseaux J, Hilhorst M, van Paassen P, Witzke O, Cohen Tervaert JW. Th17 expansion in granulomatosis with polyangiitis (Wegener's): the role of disease activity, immune regulation and therapy. Arthritis Res Ther 2012;14:R227. [PMID: 23079279 DOI: 10.1186/ar4066] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
71 Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, McColl SR. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 2014;10:e1003905. [PMID: 24586147 DOI: 10.1371/journal.ppat.1003905] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 7.3] [Reference Citation Analysis]
72 Di Meglio P, Villanova F, Napolitano L, Tosi I, Terranova Barberio M, Mak RK, Nutland S, Smith CH, Barker JNWN, Todd JA, Nestle FO. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients. J Invest Dermatol 2013;133:2381-9. [PMID: 23563201 DOI: 10.1038/jid.2013.170] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
73 Okamoto S, Fujiwara H, Nishimori H, Matsuoka K, Fujii N, Kondo E, Tanaka T, Yoshimura A, Tanimoto M, Maeda Y. Anti-IL-12/23 p40 antibody attenuates experimental chronic graft-versus-host disease via suppression of IFN-γ/IL-17-producing cells. J Immunol 2015;194:1357-63. [PMID: 25527789 DOI: 10.4049/jimmunol.1400973] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
74 Leipe J, Pirronello F, Schulze-Koops H, Skapenko A. Altered T cell plasticity favours Th17 cells in early arthritis. Rheumatology (Oxford) 2020;59:2754-63. [PMID: 32030419 DOI: 10.1093/rheumatology/kez660] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y, O'Shea JJ. Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol 2014;381:279-326. [PMID: 24831346 DOI: 10.1007/82_2014_371] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
76 Su Z, Lu H, Jiang H, Zhu H, Li Z, Zhang P, Ni P, Shen H, Xu W, Xu H. IFN-γ-producing Th17 cells bias by HMGB1-T-bet/RUNX3 axis might contribute to progression of coronary artery atherosclerosis. Atherosclerosis 2015;243:421-8. [PMID: 26520896 DOI: 10.1016/j.atherosclerosis.2015.09.037] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
77 Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie AS, Coutte L, Locht C. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 2021;6:6. [PMID: 33420041 DOI: 10.1038/s41541-020-00270-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
78 Hansmann L, Schmidl C, Kett J, Steger L, Andreesen R, Hoffmann P, Rehli M, Edinger M. Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression. J Immunol 2012;188:1275-82. [PMID: 22210907 DOI: 10.4049/jimmunol.1102288] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 4.4] [Reference Citation Analysis]
79 Paul S, Singh AK, Shilpi G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol. 2014;33:537-558. [PMID: 24354324 DOI: 10.3109/08830185.2013.863306] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
80 Leipe J, Pirronello F, Klose A, Schulze-Koops H, Skapenko A. Increased plasticity of non-classic Th1 cells toward the Th17 phenotype. Mod Rheumatol 2020;30:930-6. [PMID: 31512538 DOI: 10.1080/14397595.2019.1667473] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
81 Ringkowski S, Thomas PS, Herbert C. Interleukin-12 family cytokines and sarcoidosis. Front Pharmacol 2014;5:233. [PMID: 25386143 DOI: 10.3389/fphar.2014.00233] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
82 de Santana Brito J, Ferreira GRS, Klimczak E, Gryshuk L, de Lima Santos ND, de Siqueira Patriota LL, Moreira LR, Soares AKA, Barboza BR, Paiva PMG, do Amaral Ferraz Navarro DM, de Lorena VMB, de Melo CML, Coriolano MC, Napoleão TH. Lectin from inflorescences of ornamental crop Alpinia purpurata acts on immune cells to promote Th1 and Th17 responses, nitric oxide release, and lymphocyte activation. Biomedicine & Pharmacotherapy 2017;94:865-72. [DOI: 10.1016/j.biopha.2017.08.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
83 Romano M, Sollazzo D, Trabanelli S, Barone M, Polverelli N, Perricone M, Forte D, Luatti S, Cavo M, Vianelli N, Jandus C, Palandri F, Catani L. Mutations in JAK2 and Calreticulin genes are associated with specific alterations of the immune system in myelofibrosis. Oncoimmunology 2017;6:e1345402. [PMID: 29123956 DOI: 10.1080/2162402X.2017.1345402] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
84 Monteleone I, Pallone F, Monteleone G. Th17-related cytokines: new players in the control of chronic intestinal inflammation. BMC Med 2011;9:122. [PMID: 22082127 DOI: 10.1186/1741-7015-9-122] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 5.2] [Reference Citation Analysis]
85 Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni SM. Is TGFβ as an anti-inflammatory cytokine required for differentiation of inflammatory T H 17 cells? Journal of Immunotoxicology 2016;13:775-83. [DOI: 10.1080/1547691x.2016.1193574] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
86 Vdovenko D, Eriksson U. Regulatory Role of CD4+ T Cells in Myocarditis. J Immunol Res 2018;2018:4396351. [PMID: 30035131 DOI: 10.1155/2018/4396351] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
87 Wisniewski JA, Muehling LM, Eccles JD, Capaldo BJ, Agrawal R, Shirley DA, Patrie JT, Workman LJ, Schuyler AJ, Lawrence MG, Teague WG, Woodfolk JA. TH1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. J Allergy Clin Immunol 2018;141:2048-2060.e13. [PMID: 28939412 DOI: 10.1016/j.jaci.2017.08.020] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 12.8] [Reference Citation Analysis]
88 Cooney LA, Towery K, Endres J, Fox DA. Sensitivity and resistance to regulation by IL-4 during Th17 maturation. J Immunol 2011;187:4440-50. [PMID: 21949021 DOI: 10.4049/jimmunol.1002860] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
89 Wu UI, Olivier KN, Kuhns DB, Fink DL, Sampaio EP, Zelazny AM, Shallom SJ, Marciano BE, Lionakis MS, Holland SM. Patients with Idiopathic Pulmonary Nontuberculous Mycobacterial Disease Have Normal Th1/Th2 Cytokine Responses but Diminished Th17 Cytokine and Enhanced Granulocyte-Macrophage Colony-Stimulating Factor Production. Open Forum Infect Dis 2019;6:ofz484. [PMID: 31807607 DOI: 10.1093/ofid/ofz484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
90 Baricza E, Tamási V, Marton N, Buzás EI, Nagy G. The emerging role of aryl hydrocarbon receptor in the activation and differentiation of Th17 cells. Cell Mol Life Sci 2016;73:95-117. [DOI: 10.1007/s00018-015-2056-2] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
91 Fogli LK, Sundrud MS, Goel S, Bajwa S, Jensen K, Derudder E, Sun A, Coffre M, Uyttenhove C, Van Snick J, Schmidt-Supprian M, Rao A, Grunig G, Durbin J, Casola S, Rajewsky K, Koralov SB. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. J Immunol 2013;191:3100-11. [PMID: 23966625 DOI: 10.4049/jimmunol.1301360] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 7.4] [Reference Citation Analysis]
92 Cantini G, Pisati F, Mastropietro A, Frattini V, Iwakura Y, Finocchiaro G, Pellegatta S. A critical role for regulatory T cells in driving cytokine profiles of Th17 cells and their modulation of glioma microenvironment. Cancer Immunol Immunother 2011;60:1739-50. [DOI: 10.1007/s00262-011-1069-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
93 Tøndell A, Moen T, Børset M, Salvesen Ø, Rø AD, Sue-Chu M. Bronchoalveolar lavage fluid IFN-γ+ Th17 cells and regulatory T cells in pulmonary sarcoidosis. Mediators Inflamm 2014;2014:438070. [PMID: 24882950 DOI: 10.1155/2014/438070] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
94 Dunay GA, Tóth I, Eberhard JM, Degen O, Tolosa E, van Lunzen J, Hauber J, Schulze Zur Wiesch J. Parallel assessment of Th17 cell frequencies by surface marker co-expression versus ex vivo IL-17 production in HIV-1 infection. Cytometry B Clin Cytom 2016;90:486-92. [PMID: 26666875 DOI: 10.1002/cyto.b.21352] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
95 Melnikov M, Rogovskii V, Boyko A, Pashenkov M. The influence of biogenic amines on Th17-mediated immune response in multiple sclerosis. Multiple Sclerosis and Related Disorders 2018;21:19-23. [DOI: 10.1016/j.msard.2018.02.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
96 Fu M, Wang G. Keratin 17 as a therapeutic target for the treatment of psoriasis. J Dermatol Sci 2012;67:161-5. [PMID: 22795618 DOI: 10.1016/j.jdermsci.2012.06.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
97 Jurado JO, Pasquinelli V, Alvarez IB, Peña D, Rovetta AI, Tateosian NL, Romeo HE, Musella RM, Palmero D, Chuluyán HE, García VE. IL-17 and IFN-γ expression in lymphocytes from patients with active tuberculosis correlates with the severity of the disease. J Leukoc Biol 2012;91:991-1002. [PMID: 22416258 DOI: 10.1189/jlb.1211619] [Cited by in Crossref: 95] [Cited by in F6Publishing: 89] [Article Influence: 10.6] [Reference Citation Analysis]
98 Melnikov M, Belousova O, Murugin V, Pashenkov М, Boyко A. The role of dopamine in modulation of Th-17 immune response in multiple sclerosis. J Neuroimmunol 2016;292:97-101. [PMID: 26943966 DOI: 10.1016/j.jneuroim.2016.01.020] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
99 Broos CE, Koth LL, van Nimwegen M, in ‘t Veen JC, Paulissen SM, van Hamburg JP, Annema JT, Heller-baan R, Kleinjan A, Hoogsteden HC, Wijsenbeek MS, Hendriks RW, van den Blink B, Kool M. Increased T-helper 17.1 cells in sarcoidosis mediastinal lymph nodes. Eur Respir J 2018;51:1701124. [DOI: 10.1183/13993003.01124-2017] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 13.3] [Reference Citation Analysis]
100 Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2017;79:408-16. [DOI: 10.1016/j.pnpbp.2017.07.023] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
101 Basso PJ, Fonseca MT, Bonfá G, Alves VB, Sales-Campos H, Nardini V, Cardoso CR. Association among genetic predisposition, gut microbiota, and host immune response in the etiopathogenesis of inflammatory bowel disease. Braz J Med Biol Res 2014;47:727-37. [PMID: 25075576 DOI: 10.1590/1414-431x20143932] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 4.9] [Reference Citation Analysis]
102 Shih HY, Sciumè G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, Bonelli M, Bosselut R, Kanno Y, Muljo SA, O'Shea JJ. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol Rev 2014;261:23-49. [PMID: 25123275 DOI: 10.1111/imr.12208] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 10.7] [Reference Citation Analysis]
103 Matsunaga Y, Hashimoto Y, Ishiko A. Stratum corneum levels of calprotectin proteins S100A8/A9 correlate with disease activity in psoriasis patients. J Dermatol 2021. [PMID: 34165193 DOI: 10.1111/1346-8138.16032] [Reference Citation Analysis]
104 Xu WH, Hu XL, Liu XF, Bai P, Sun YC. Peripheral Tc17 and Tc17/Interferon-γ Cells are Increased and Associated with Lung Function in Patients with Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2016;129:909-16. [PMID: 27064034 DOI: 10.4103/0366-6999.179798] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
105 Pohl M, Kawakami N, Kitic M, Bauer J, Martins R, Fischer MT, Machado-Santos J, Mader S, Ellwart JW, Misu T, Fujihara K, Wekerle H, Reindl M, Lassmann H, Bradl M. T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol Commun 2013;1:85. [PMID: 24367907 DOI: 10.1186/2051-5960-1-85] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 6.9] [Reference Citation Analysis]
106 Nasef NA, Ferguson LR. Inflammatory bowel disease and pregnancy: overlapping pathways. Transl Res. 2012;160:65-83. [PMID: 22687963 DOI: 10.1016/j.trsl.2011.12.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
107 Keohane C, Kordasti S, Seidl T, Perez Abellan P, Thomas NSB, Harrison CN, Mclornan DP, Mufti GJ. JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells. Br J Haematol 2015;171:60-73. [DOI: 10.1111/bjh.13519] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
108 Marijnissen RJ, Koenders MI, van de Veerdonk FL, Dulos J, Netea MG, Boots AM, Joosten LA, van den Berg WB. Exposure to Candida albicans polarizes a T-cell driven arthritis model towards Th17 responses, resulting in a more destructive arthritis. PLoS One 2012;7:e38889. [PMID: 22719976 DOI: 10.1371/journal.pone.0038889] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
109 Paulissen SM, van Hamburg JP, Dankers W, Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine 2015;74:43-53. [DOI: 10.1016/j.cyto.2015.02.002] [Cited by in Crossref: 77] [Cited by in F6Publishing: 64] [Article Influence: 12.8] [Reference Citation Analysis]
110 Xu W, Li R, Sun Y. Increased IFN-γ-producing Th17/Th1 cells and their association with lung function and current smoking status in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2019;19:137. [PMID: 31349846 DOI: 10.1186/s12890-019-0899-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
111 Basile JI, Geffner LJ, Romero MM, Balboa L, Sabio Y García C, Ritacco V, García A, Cuffré M, Abbate E, López B, Barrera L, Ambroggi M, Alemán M, Sasiain MC, de la Barrera SS. Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J Infect Dis 2011;204:1054-64. [PMID: 21881121 DOI: 10.1093/infdis/jir460] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 7.6] [Reference Citation Analysis]
112 Saxena A, Desbois S, Carrié N, Lawand M, Mars LT, Liblau RS. Tc17 CD8 + T Cells Potentiate Th1-Mediated Autoimmune Diabetes in a Mouse Model. J I 2012;189:3140-9. [DOI: 10.4049/jimmunol.1103111] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
113 Karlsen K, Korsholm KS, Mortensen R, Ghiasi SM, Andersen P, Foged C, Christensen D. A stable nanoparticulate DDA/MMG formulation acts synergistically with CpG ODN 1826 to enhance the CD4⁺ T-cell response. Nanomedicine (Lond) 2014;9:2625-38. [PMID: 25529567 DOI: 10.2217/nnm.14.197] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
114 Abebe F, Belay M, Legesse M, Mihret A, Franken KS. Association of ESAT-6/CFP-10-induced IFN-γ, TNF-α and IL-10 with clinical tuberculosis: evidence from cohorts of pulmonary tuberculosis patients, household contacts and community controls in an endemic setting. Clin Exp Immunol 2017;189:241-9. [PMID: 28374535 DOI: 10.1111/cei.12972] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
115 Sundrud MS, Trivigno C. Identity crisis of Th17 cells: many forms, many functions, many questions. Semin Immunol 2013;25:263-72. [PMID: 24239567 DOI: 10.1016/j.smim.2013.10.021] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
116 Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Defining the human T helper 17 cell phenotype. Trends Immunol 2012;33:505-12. [PMID: 22682163 DOI: 10.1016/j.it.2012.05.004] [Cited by in Crossref: 97] [Cited by in F6Publishing: 89] [Article Influence: 10.8] [Reference Citation Analysis]
117 Ten Berge B, Paats MS, Bergen IM, van den Blink B, Hoogsteden HC, Lambrecht BN, Hendriks RW, Kleinjan A. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford) 2012;51:37-46. [PMID: 22075064 DOI: 10.1093/rheumatology/ker316] [Cited by in Crossref: 88] [Cited by in F6Publishing: 69] [Article Influence: 8.8] [Reference Citation Analysis]
118 Chraa D, Naim A, Olive D, Badou A. T lymphocyte subsets in cancer immunity: Friends or foes. J Leukoc Biol 2018;105:243-55. [DOI: 10.1002/jlb.mr0318-097r] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 15.3] [Reference Citation Analysis]
119 Peelen E, Thewissen M, Knippenberg S, Smolders J, Muris AH, Menheere P, Tervaert JW, Hupperts R, Damoiseaux J. Fraction of IL-10+ and IL-17+ CD8 T cells is increased in MS patients in remission and during a relapse, but is not influenced by immune modulators. J Neuroimmunol 2013;258:77-84. [PMID: 23517930 DOI: 10.1016/j.jneuroim.2013.02.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
120 Matsuyama M, Ishii Y, Sakurai H, Ano S, Morishima Y, Yoh K, Takahashi S, Ogawa K, Hizawa N. Overexpression of RORγt Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium. PLoS One 2016;11:e0147064. [PMID: 26784959 DOI: 10.1371/journal.pone.0147064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
121 Saini C, Ramesh V, Nath I. CD4+ Th17 cells discriminate clinical types and constitute a third subset of non Th1, Non Th2 T cells in human leprosy. PLoS Negl Trop Dis 2013;7:e2338. [PMID: 23936569 DOI: 10.1371/journal.pntd.0002338] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
122 Zhao XY, Xu LL, Lu SY, Huang XJ. IL-17-producing T cells contribute to acute graft-versus-host disease in patients undergoing unmanipulated blood and marrow transplantation. Eur J Immunol 2011;41:514-26. [PMID: 21268020 DOI: 10.1002/eji.201040793] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
123 Machacek M, Slawson C, Fields PE. O-GlcNAc: a novel regulator of immunometabolism. J Bioenerg Biomembr 2018;50:223-9. [PMID: 29404877 DOI: 10.1007/s10863-018-9744-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
124 Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun 2018;87:1-15. [PMID: 29275836 DOI: 10.1016/j.jaut.2017.12.007] [Cited by in Crossref: 107] [Cited by in F6Publishing: 86] [Article Influence: 26.8] [Reference Citation Analysis]
125 Bharadwaj AS, Schewitz-Bowers LP, Wei L, Lee RW, Smith JR. Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium. Invest Ophthalmol Vis Sci 2013;54:6917-25. [PMID: 24022011 DOI: 10.1167/iovs.13-12058] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
126 Srenathan U, Steel K, Taams LS. IL-17+ CD8+ T cells: Differentiation, phenotype and role in inflammatory disease. Immunol Lett 2016;178:20-6. [PMID: 27173097 DOI: 10.1016/j.imlet.2016.05.001] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 12.6] [Reference Citation Analysis]
127 Foucher ED, Blanchard S, Preisser L, Descamps P, Ifrah N, Delneste Y, Jeannin P. IL-34- and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1α. Eur J Immunol 2015;45:1092-102. [PMID: 25545357 DOI: 10.1002/eji.201444606] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
128 Serre K, Silva-Santos B. Molecular Mechanisms of Differentiation of Murine Pro-Inflammatory γδ T Cell Subsets. Front Immunol 2013;4:431. [PMID: 24367369 DOI: 10.3389/fimmu.2013.00431] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
129 Troncone E, Marafini I, Pallone F, Monteleone G. Th17 cytokines in inflammatory bowel diseases: discerning the good from the bad. Int Rev Immunol 2013;32:526-33. [PMID: 24041379 DOI: 10.3109/08830185.2013.823421] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]