BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zadeh Shirazi A, Fornaciari E, McDonnell MD, Yaghoobi M, Cevallos Y, Tello-Oquendo L, Inca D, Gomez GA. The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey. J Pers Med 2020;10:E224. [PMID: 33198332 DOI: 10.3390/jpm10040224] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Gore DV, Sinha AK, Deshpande V. Automatic CAD System for Brain Diseases Classification Using CNN-LSTM Model. Advances in Intelligent Systems and Computing 2023. [DOI: 10.1007/978-981-19-4676-9_54] [Reference Citation Analysis]
2 Murthy SM, Vanathi A, Kalaiyarasi D, Usha S, Saranya D. Deep in memory architectures learning of Trade-Offs for productivity. AIP Conference Proceedings 2023. [DOI: 10.1063/5.0110650] [Reference Citation Analysis]
3 Zahoor MM, Khan SH, Sadiq M, Liang J, Hassnain SA. Brain tumor MRI Classification using a Novel Deep Residual and Regional CNN.. [DOI: 10.21203/rs.3.rs-2369069/v1] [Reference Citation Analysis]
4 Abbas A, Gaber MM, Abdelsamea MM. XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification. Sensors (Basel) 2022;22. [PMID: 36560243 DOI: 10.3390/s22249875] [Reference Citation Analysis]
5 Requa J, Godard T, Mandal R, Balzer B, Whittemore D, George E, Barcelona F, Lambert C, Lee J, Lambert A, Larson A, Osmond G. High-fidelity detection, subtyping, and localization of five skin neoplasms using supervised and semi-supervised learning. J Pathol Inform 2023;14:100159. [PMID: 36506813 DOI: 10.1016/j.jpi.2022.100159] [Reference Citation Analysis]
6 Xie Y, Zaccagna F, Rundo L, Testa C, Agati R, Lodi R, Manners DN, Tonon C. Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives. Diagnostics 2022;12:1850. [DOI: 10.3390/diagnostics12081850] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
7 Zhou X, Tang C, Huang P, Tian S, Mercaldo F, Santone A. ASI-DBNet: An Adaptive Sparse Interactive ResNet-Vision Transformer Dual-Branch Network for the Grading of Brain Cancer Histopathological Images. Interdiscip Sci Comput Life Sci 2022. [DOI: 10.1007/s12539-022-00532-0] [Reference Citation Analysis]
8 Russo C, Maresca P, Marinelli A. Cognitive computing tools for identification and classification of brain tumors starting from Magnetic Resonance Imaging: preliminary results. 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON) 2022. [DOI: 10.1109/melecon53508.2022.9842916] [Reference Citation Analysis]
9 Hong J, Huang Y, Ye J, Wang J, Xu X, Wu Y, Li Y, Zhao J, Li R, Kang J, Lai X. 3D FRN-ResNet: An Automated Major Depressive Disorder Structural Magnetic Resonance Imaging Data Identification Framework. Front Aging Neurosci 2022;14:912283. [DOI: 10.3389/fnagi.2022.912283] [Reference Citation Analysis]
10 R S, S PG, Nair AJ, S S, S SK. Alzheimer’s Disease Detectoin Using Multiple Convolutional Neural Networks. 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE) 2022. [DOI: 10.1109/icdcece53908.2022.9793103] [Reference Citation Analysis]
11 Sahu SP, Kumar A, Gupta A, Sharmila TS. Brain Tumour Detection Using UNet Based Semantic Segmentation Scheme. Applied Computational Technologies 2022. [DOI: 10.1007/978-981-19-2719-5_30] [Reference Citation Analysis]
12 Ma C, Li H, Zhang K, Gao Y, Yang L. Risk Factors of Restroke in Patients with Lacunar Cerebral Infarction Using Magnetic Resonance Imaging Image Features under Deep Learning Algorithm. Contrast Media Mol Imaging 2021;2021:2527595. [PMID: 34887708 DOI: 10.1155/2021/2527595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Du W, He Y, Li Y, Wu Z. Brain tumor diagnosis using EfficientNet. Second IYSF Academic Symposium on Artificial Intelligence and Computer Engineering 2021. [DOI: 10.1117/12.2623082] [Reference Citation Analysis]
14 Amin J, Sharif M, Haldorai A, Yasmin M, Nayak RS. Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell Syst . [DOI: 10.1007/s40747-021-00563-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
15 Ali M, Ali R. Multi-Input Dual-Stream Capsule Network for Improved Lung and Colon Cancer Classification. Diagnostics (Basel) 2021;11:1485. [PMID: 34441419 DOI: 10.3390/diagnostics11081485] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zadeh Shirazi A, McDonnell MD, Fornaciari E, Bagherian NS, Scheer KG, Samuel MS, Yaghoobi M, Ormsby RJ, Poonnoose S, Tumes DJ, Gomez GA. A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma. Br J Cancer 2021;125:337-50. [PMID: 33927352 DOI: 10.1038/s41416-021-01394-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
17 Irmak E. Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iran J Sci Technol Trans Electr Eng 2021;45:1015-36. [DOI: 10.1007/s40998-021-00426-9] [Cited by in Crossref: 37] [Cited by in F6Publishing: 14] [Article Influence: 18.5] [Reference Citation Analysis]
18 Cevallos Y, Nakano T, Tello-oquendo L, Chopra N, Shirazi AZ, Inca D, Santillán I. Theoretical Basis for Gene Expression Modeling Based on the IEEE 1906.1 Standard. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021. [DOI: 10.1007/978-3-030-92163-7_12] [Reference Citation Analysis]