BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nadeem MW, Ghamdi MAA, Hussain M, Khan MA, Khan KM, Almotiri SH, Butt SA. Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sci 2020;10:E118. [PMID: 32098333 DOI: 10.3390/brainsci10020118] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 23.7] [Reference Citation Analysis]
Number Citing Articles
1 Kurdi SZ, Ali MH, Jaber MM, Saba T, Rehman A, Damaševičius R. Brain Tumor Classification Using Meta-Heuristic Optimized Convolutional Neural Networks. JPM 2023;13:181. [DOI: 10.3390/jpm13020181] [Reference Citation Analysis]
2 Rather IH, Minz S, Kumar S. Hybrid Texture-Based Feature Extraction Model for Brain Tumour Classification Using Machine Learning. Advances in Intelligent Systems and Computing 2023. [DOI: 10.1007/978-981-19-4676-9_38] [Reference Citation Analysis]
3 Habiba SU, Islam MK, Nahar L, Tasnim F, Hossain MS, Andersson K. Brain-DeepNet: A Deep Learning Based Classifier for Brain Tumor Detection and Classification. Intelligent Computing & Optimization 2023. [DOI: 10.1007/978-3-031-19958-5_52] [Reference Citation Analysis]
4 Zhu Y, Wang M, Yin X, Zhang J, Meijering E, Hu J. Deep Learning in Diverse Intelligent Sensor Based Systems. Sensors (Basel) 2022;23. [PMID: 36616657 DOI: 10.3390/s23010062] [Reference Citation Analysis]
5 Kronberg RM, Meskelevicius D, Sabel M, Kollmann M, Rubbert C, Fischer I. Optimal acquisition sequence for AI-assisted brain tumor segmentation under the constraint of largest information gain per additional MRI sequence. Neuroscience Informatics 2022;2:100053. [DOI: 10.1016/j.neuri.2022.100053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kaothanthong N, Atsavasirilert K, Sarampakhul S, Chantangphol P, Songsaeng D, Makhanov S. Artificial intelligence for localization of the acute ischemic stroke by non-contrast computed tomography. PLoS One 2022;17:e0277573. [PMID: 36454916 DOI: 10.1371/journal.pone.0277573] [Reference Citation Analysis]
7 Raja M, Vijayachitra S. A Hybrid Approach to Segment and Detect Brain Abnormalities fron MRI Scan. Expert Systems with Applications 2022. [DOI: 10.1016/j.eswa.2022.119435] [Reference Citation Analysis]
8 Balamurugan T, Gnanamanoharan E. Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Comput & Applic 2022. [DOI: 10.1007/s00521-022-07934-7] [Reference Citation Analysis]
9 Zhang L, Xu F, Li Y, Zhang H, Xi Z, Xiang J, Wang B. A lightweight convolutional neural network model with receptive field block for C-shaped root canal detection in mandibular second molars. Sci Rep 2022;12:17373. [PMID: 36253430 DOI: 10.1038/s41598-022-20411-4] [Reference Citation Analysis]
10 Shahid A, Khan MS, Habib U, Mukhtar S, Ahmed A, Shahid S. Detection of Brain Tumour in 3D MRI. 2022 International Conference on IT and Industrial Technologies (ICIT) 2022. [DOI: 10.1109/icit56493.2022.9989020] [Reference Citation Analysis]
11 Humayun M, Khalil MI, Alwakid G, Jhanjhi NZ. Superlative Feature Selection Based Image Classification Using Deep Learning in Medical Imaging. Journal of Healthcare Engineering 2022;2022:1-11. [DOI: 10.1155/2022/7028717] [Reference Citation Analysis]
12 Nadeem MW, Goh HG, Hussain M, Liew S, Andonovic I, Khan MA. Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions. Sensors 2022;22:6780. [DOI: 10.3390/s22186780] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Dweik M, Ferretti R. Integrating anisotropic filtering, level set methods and convolutional neural networks for fully automatic segmentation of brain tumors in magnetic resonance imaging. Neuroscience Informatics 2022;2:100095. [DOI: 10.1016/j.neuri.2022.100095] [Reference Citation Analysis]
14 Alnaggar OAMF, Jagadale BN, Narayan SH, Saif MAN. Brain tumor detection from 3D MRI using Hyper‐Layer Convolutional Neural Networks and Hyper‐Heuristic Extreme Learning Machine. Concurrency and Computation. [DOI: 10.1002/cpe.7215] [Reference Citation Analysis]
15 Khodadadi Shoushtari F, Sina S, Dehkordi ANV. Automatic segmentation of glioblastoma multiform brain tumor in MRI images: Using Deeplabv3+ with pre-trained Resnet18 weights. Phys Med 2022;100:51-63. [PMID: 35732092 DOI: 10.1016/j.ejmp.2022.06.007] [Reference Citation Analysis]
16 Battalapalli D, Rao BVVSNP, Yogeeswari P, Kesavadas C, Rajagopalan V. An optimal brain tumor segmentation algorithm for clinical MRI dataset with low resolution and non-contiguous slices. BMC Med Imaging 2022;22:89. [PMID: 35568820 DOI: 10.1186/s12880-022-00812-7] [Reference Citation Analysis]
17 Ali S, Li J, Pei Y, Khurram R, Rehman KU, Mahmood T. A Comprehensive Survey on Brain Tumor Diagnosis Using Deep Learning and Emerging Hybrid Techniques with Multi-modal MR Image. Arch Computat Methods Eng. [DOI: 10.1007/s11831-022-09758-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Saleem M, Abbas S, Ghazal TM, Adnan Khan M, Sahawneh N, Ahmad M. Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egyptian Informatics Journal 2022. [DOI: 10.1016/j.eij.2022.03.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Lima AA, Mridha MF, Das SC, Kabir MM, Islam MR, Watanobe Y. A Comprehensive Survey on the Detection, Classification, and Challenges of Neurological Disorders. Biology 2022;11:469. [DOI: 10.3390/biology11030469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Akatsuka J, Numata Y, Morikawa H, Sekine T, Kayama S, Mikami H, Yanagi M, Endo Y, Takeda H, Toyama Y, Yamaguchi R, Kimura G, Kondo Y, Yamamoto Y. A data-driven ultrasound approach discriminates pathological high grade prostate cancer. Sci Rep 2022;12:860. [PMID: 35039648 DOI: 10.1038/s41598-022-04951-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Mandle AK, Sahu SP, Gupta GP. CNN-Based Deep Learning Technique for the Brain Tumor Identification and Classification in MRI Images. International Journal of Software Science and Computational Intelligence 2022;14:1-20. [DOI: 10.4018/ijssci.304438] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Deepa B, Murugappan M, Sumithra MG, Mahmud M, Al-rakhami MS. Pattern Descriptors Orientation and MAP Firefly Algorithm Based Brain Pathology Classification Using Hybridized Machine Learning Algorithm. IEEE Access 2022;10:3848-63. [DOI: 10.1109/access.2021.3100549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Das D, Mahanta LB. AIM in Neurology. Artificial Intelligence in Medicine 2022. [DOI: 10.1007/978-3-030-64573-1_189] [Reference Citation Analysis]
24 Shirwaikar RD, Ramesh K, Hiremath A. A survey on Brain Tumor Detection using Machine Learning. 2021 International Conference on Forensics, Analytics, Big Data, Security (FABS) 2021. [DOI: 10.1109/fabs52071.2021.9702583] [Reference Citation Analysis]
25 Hussain M, Javed W, Hakeem O, Yousafzai A, Younas A, Awan MJ, Nobanee H, Zain AM. Blockchain-Based IoT Devices in Supply Chain Management: A Systematic Literature Review. Sustainability 2021;13:13646. [DOI: 10.3390/su132413646] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 21.5] [Reference Citation Analysis]
26 Kavi D. Brain Tumor Diagnosis with Transfer Learning and Data Augmentation. 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI) 2021. [DOI: 10.1109/iscmi53840.2021.9654939] [Reference Citation Analysis]
27 Jabbar J, Malik H, Khan AH, Ahmad MU, Ali A. A Study of Image Processing Methods for Investigation of Radiographs. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9693006] [Reference Citation Analysis]
28 Arshad K. Intelligent Analytical String Search Algorithm. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692974] [Reference Citation Analysis]
29 [DOI: 10.1109/icic53490.2021.9693071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Sana A, Khawaja SA, Farooq M. Rheumatoid Arthritis Genes Classification Using ML Classifiers. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9693009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Ubaid MT, Kiran A, Raja MT, Asim UA, Darboe A, Arshed MA. Automatic Helmet Detection using EfficientDet. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9693093] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Zahra SB, Moaen S, Munir S, Hassan A, Nadeem A, Farooq MS. Optical Handwritten with Character Recognition. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692927] [Reference Citation Analysis]
33 Javed W, Parveen G, Aabid F, Rubab SUE, Ikram S, Rehman KUU, Danish M. A Review on Fog Computing for the Internet of Things. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692966] [Reference Citation Analysis]
34 [DOI: 10.1109/icic53490.2021.9693026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Wajid A, Awan MJ, Ferooz F, Shoukat S, Anwar M, Mazhar M. Facebook Marketing Analytics. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9693023] [Reference Citation Analysis]
36 [DOI: 10.1109/icic53490.2021.9691512] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Abdullah M, Khawaja SA, Farooq M. HIV-1 Protease Cleavages. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692978] [Reference Citation Analysis]
38 Javed W, Danish M, Tahir H, Bashir H. Vehicle Tracking System and Speed Estimation Utilizing Optimal Technique. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692933] [Reference Citation Analysis]
39 Javed W, Aabid F, Danish M, Tahir H, Zainab R. Role of Blockchain Technology in Healthcare: A Systematic Review. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692981] [Reference Citation Analysis]
40 Razzaq A, Raza M, Saif F, Sajid MS, Bano N, Khan AH. IoT Based Fish Stress Factor Monitoring System. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692935] [Reference Citation Analysis]
41 Talat M, Asim H, Asmat A. Classification of Sentiments of the Roman Urdu Reviews of Daraz Products using Natural Language Processing Approach. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692987] [Reference Citation Analysis]
42 Ahmad UB, Javed F, Aftab MO, Nasir A, Hassan A, Farooq MS. FLOSSC: A Computer-Aided Tool for Detecting Corona Virus Infections through Chest X-Ray Images. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9693044] [Reference Citation Analysis]
43 Nabeel M, Awan MJ, Raza M, Muslih-ud-din H, Majeed S. Heart Attack Disease Data Analytics and Machine Learning. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692977] [Reference Citation Analysis]
44 Khan MSS, Akbar MO, Malik H, Khan AH, Akbar Z. Variable Generalization Evaluation of Supervised Learning Models for Detection of Spam Messages. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9692957] [Reference Citation Analysis]
45 Hassan T, Ahmad A, Anwar M, Ali MN, Saher F, Farooq MS. Basic Structure of Natural Language Processing Applied on Multiple Domains: Review. 2021 International Conference on Innovative Computing (ICIC) 2021. [DOI: 10.1109/icic53490.2021.9693014] [Reference Citation Analysis]
46 Sravanthi Peddinti A, Maloji S, Manepalli K. Evolution in diagnosis and detection of brain tumor – review. J Phys : Conf Ser 2021;2115:012039. [DOI: 10.1088/1742-6596/2115/1/012039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Nadeem MW, Goh HG, Ponnusamy V, Andonovic I, Khan MA, Hussain M. A Fusion-Based Machine Learning Approach for the Prediction of the Onset of Diabetes. Healthcare (Basel) 2021;9:1393. [PMID: 34683073 DOI: 10.3390/healthcare9101393] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 21.5] [Reference Citation Analysis]
48 Nawaz M, Nazir T, Masood M, Mehmood A, Mahum R, Khan MA, Kadry S, Thinnukool O. Analysis of Brain MRI Images Using Improved CornerNet Approach. Diagnostics (Basel) 2021;11:1856. [PMID: 34679554 DOI: 10.3390/diagnostics11101856] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
49 Sethy PK, Behera SK. A data constrained approach for brain tumour detection using fused deep features and SVM. Multimed Tools Appl 2021;80:28745-60. [DOI: 10.1007/s11042-021-11098-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
50 Aghalari M, Aghagolzadeh A, Ezoji M. Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomedical Signal Processing and Control 2021;69:102841. [DOI: 10.1016/j.bspc.2021.102841] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
51 Hau P, Frappaz D, Hovey E, McCabe MG, Pajtler KW, Wiestler B, Seidel C, Combs SE, Dirven L, Klein M, Anazodo A, Hattingen E, Hofer S, Pfister SM, Zimmer C, Kortmann RD, Sunyach MP, Tanguy R, Effeney R, von Deimling A, Sahm F, Rutkowski S, Berghoff AS, Franceschi E, Pineda E, Beier D, Peeters E, Gorlia T, Vanlancker M, Bromberg JEC, Gautier J, Ziegler DS, Preusser M, Wick W, Weller M. Development of Randomized Trials in Adults with Medulloblastoma-The Example of EORTC 1634-BTG/NOA-23. Cancers (Basel) 2021;13:3451. [PMID: 34298664 DOI: 10.3390/cancers13143451] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
52 Mbugua SN, Njenga LW, Odhiambo RA, Wandiga SO, Onani MO. Beyond DNA-targeting in Cancer Chemotherapy. Emerging Frontiers - A Review. Curr Top Med Chem 2021;21:28-47. [PMID: 32814532 DOI: 10.2174/1568026620666200819160213] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Baştuğ Koç A, Akgün D. U-net Mimarileri ile Glioma Tümör Segmentasyonu Üzerine Bir Literatür Çalışması. European Journal of Science and Technology 2021. [DOI: 10.31590/ejosat.959590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Jiang H, Diao Z, Yao Y. Deep learning techniques for tumor segmentation: a review. J Supercomput 2022;78:1807-51. [DOI: 10.1007/s11227-021-03901-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
55 Emara HM, Shoaib MR, Elwekeil M, El-Shafai W, Taha TE, El-Fishawy AS, El-Rabaie EM, Alshebeili SA, Dessouky MI, Abd El-Samie FE. Deep convolutional neural networks for COVID-19 automatic diagnosis. Microsc Res Tech 2021. [PMID: 34121273 DOI: 10.1002/jemt.23713] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
56 Nazir M, Shakil S, Khurshid K. Role of deep learning in brain tumor detection and classification (2015 to 2020): A review. Comput Med Imaging Graph 2021;91:101940. [PMID: 34293621 DOI: 10.1016/j.compmedimag.2021.101940] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
57 Shen M, Zhang JY, Chen L, Yan W, Jani N, Sutton B, Koyejo O. Labeling Cost Sensitive Batch Active Learning For Brain Tumor Segmentation. 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) 2021. [DOI: 10.1109/isbi48211.2021.9434098] [Reference Citation Analysis]
58 Gunasekara SR, Kaldera HNTK, Dissanayake MB. A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring. J Healthc Eng 2021;2021:6695108. [PMID: 33777346 DOI: 10.1155/2021/6695108] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
59 Castillo D, Lakshminarayanan V, Rodríguez-álvarez MJ. MR Images, Brain Lesions, and Deep Learning. Applied Sciences 2021;11:1675. [DOI: 10.3390/app11041675] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
60 Sharma A, Rani R. A Systematic Review of Applications of Machine Learning in Cancer Prediction and Diagnosis. Arch Computat Methods Eng. [DOI: 10.1007/s11831-021-09556-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
61 Lin D, Rajinikanth V, Lin H. Hybrid Image Processing-Based Examination of 2D Brain MRI Slices to Detect Brain Tumor/Stroke Section: A Study. Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems 2021. [DOI: 10.1007/978-981-15-6141-2_2] [Reference Citation Analysis]
62 Lamba D, Hsu WH, Alsadhan M. Predictive analytics and machine learning for medical informatics: A survey of tasks and techniques. Machine Learning, Big Data, and IoT for Medical Informatics 2021. [DOI: 10.1016/b978-0-12-821777-1.00023-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Huang P, Tan X, Chen C, Lv X, Li Y. AF-SENet: Classification of Cancer in Cervical Tissue Pathological Images Based on Fusing Deep Convolution Features. Sensors (Basel) 2020;21:E122. [PMID: 33375508 DOI: 10.3390/s21010122] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
64 Ali T, Masood K, Irfan M, Draz U, Nagra AA, Asif M, Alshehri BM, Glowacz A, Tadeusiewicz R, Mahnashi MH, Yasin S. Multistage Segmentation of Prostate Cancer Tissues Using Sample Entropy Texture Analysis. Entropy (Basel) 2020;22:E1370. [PMID: 33279915 DOI: 10.3390/e22121370] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
65 Jany Shabu SL, Jayakumar C. Brain Tumor Classification with MRI Brain Images Using 2-Level GLCM Features and Sparse Representation based Segmentation. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) 2020. [DOI: 10.1109/iciss49785.2020.9315971] [Reference Citation Analysis]
66 Li Z, Wang Y, Zhang N, Li X. An Accurate and Robust Method for Spike Sorting Based on Convolutional Neural Networks. Brain Sci 2020;10:E835. [PMID: 33187098 DOI: 10.3390/brainsci10110835] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
67 Debelee TG, Kebede SR, Schwenker F, Shewarega ZM. Deep Learning in Selected Cancers' Image Analysis-A Survey. J Imaging 2020;6:121. [PMID: 34460565 DOI: 10.3390/jimaging6110121] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
68 Lin Q, Man Z, Cao Y, Deng T, Han C, Cao C, Zhang L, Zeng S, Gao R, Wang W, Ji J, Huang X. Classifying functional nuclear images with convolutional neural networks: a survey. IET image process 2020;14:3300-13. [DOI: 10.1049/iet-ipr.2019.1690] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
69 Nadeem MW, Goh HG, Ali A, Hussain M, Khan MA, Ponnusamy VA. Bone Age Assessment Empowered with Deep Learning: A Survey, Open Research Challenges and Future Directions. Diagnostics (Basel) 2020;10:E781. [PMID: 33022947 DOI: 10.3390/diagnostics10100781] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
70 Huang Y, Vadloori S, Chu H, Kang EY, Wu W, Kusaka S, Fukushima Y. Deep Learning Models for Automated Diagnosis of Retinopathy of Prematurity in Preterm Infants. Electronics 2020;9:1444. [DOI: 10.3390/electronics9091444] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
71 Meijering E. A bird's-eye view of deep learning in bioimage analysis. Comput Struct Biotechnol J 2020;18:2312-25. [PMID: 32994890 DOI: 10.1016/j.csbj.2020.08.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 16.0] [Reference Citation Analysis]
72 Khalid H, Hussain M, Al Ghamdi MA, Khalid T, Khalid K, Khan MA, Fatima K, Masood K, Almotiri SH, Farooq MS, Ahmed A. A Comparative Systematic Literature Review on Knee Bone Reports from MRI, X-rays and CT Scans Using Deep Learning and Machine Learning Methodologies. Diagnostics (Basel) 2020;10:E518. [PMID: 32722605 DOI: 10.3390/diagnostics10080518] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
73 Ali MB, Gu IY, Berger MS, Pallud J, Southwell D, Widhalm G, Roux A, Vecchio TG, Jakola AS. Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas. Brain Sci 2020;10:E463. [PMID: 32708419 DOI: 10.3390/brainsci10070463] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
74 [DOI: 10.1109/it-ela50150.2020.9253111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
75 Rajinikanth V, Joseph Raj AN, Thanaraj KP, Naik GR. A Customized VGG19 Network with Concatenation of Deep and Handcrafted Features for Brain Tumor Detection. Applied Sciences 2020;10:3429. [DOI: 10.3390/app10103429] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
76 Latif J, Xiao C, Tu S, Rehman SU, Imran A, Bilal A. Implementation and Use of Disease Diagnosis Systems for Electronic Medical Records Based on Machine Learning: A Complete Review. IEEE Access 2020;8:150489-513. [DOI: 10.1109/access.2020.3016782] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]