BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet 2014;15:307-20. [DOI: 10.1038/nrg3664] [Cited by in Crossref: 133] [Cited by in F6Publishing: 112] [Article Influence: 16.6] [Reference Citation Analysis]
Number Citing Articles
1 Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends Microbiol 2018;26:555-6. [PMID: 29580884 DOI: 10.1016/j.tim.2018.02.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
2 Rivera-Pérez JI, González AA, Toranzos GA. From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity. Microbiol Spectr 2017;5. [PMID: 28155809 DOI: 10.1128/microbiolspec.EMF-0009-2016] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
3 Guthrie JL, Gardy JL. Accelerating tuberculosis elimination in low-incidence settings: the role of genomics. Eur Respir J 2015;46:1840-1. [DOI: 10.1183/13993003.00788-2015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
4 Mashabela GT, de Wet TJ, Warner DF, Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019;7. [DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
5 Donoghue HD. Paleomicrobiology of Human Tuberculosis. Microbiol Spectr 2016;4. [PMID: 27726782 DOI: 10.1128/microbiolspec.PoH-0003-2014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019;113:336-51. [PMID: 31903874 DOI: 10.1080/20477724.2019.1710066] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Chisholm RH, Trauer JM, Curnoe D, Tanaka MM. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc Natl Acad Sci U S A 2016;113:9051-6. [PMID: 27457933 DOI: 10.1073/pnas.1603224113] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
8 Spekker O, Hunt DR, Berthon W, Paja L, Molnár E, Pálfi G, Schultz M. Tracking down the White Plague. Chapter three: Revision of endocranial abnormally pronounced digital impressions as paleopathological diagnostic criteria for tuberculous meningitis. PLoS One 2021;16:e0249020. [PMID: 33740029 DOI: 10.1371/journal.pone.0249020] [Reference Citation Analysis]
9 Bjorn-Mortensen K, Zallet J, Lillebaek T, Andersen AB, Niemann S, Rasmussen EM, Kohl TA. Direct DNA Extraction from Mycobacterium tuberculosis Frozen Stocks as a Reculture-Independent Approach to Whole-Genome Sequencing. J Clin Microbiol 2015;53:2716-9. [PMID: 26019203 DOI: 10.1128/JCM.00662-15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
10 Donoghue HD. Insights gained from ancient biomolecules into past and present tuberculosis—a personal perspective. International Journal of Infectious Diseases 2017;56:176-80. [DOI: 10.1016/j.ijid.2016.11.413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
11 Mekonnen E, Bekele E, Stein CM. Novel polymorphisms in TICAM2 and NOD1 associated with tuberculosis progression phenotypes in Ethiopian populations. Glob Health Epidemiol Genom 2018;3:e1. [PMID: 29868226 DOI: 10.1017/gheg.2017.17] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
12 Wu Y, Guo Z, Liu F, Yao K, Gao M, Luo Y, Zhang Y. Sp110 enhances macrophage resistance to Mycobacterium tuberculosis via inducing endoplasmic reticulum stress and inhibiting anti-apoptotic factors. Oncotarget 2017;8:64050-65. [PMID: 28969051 DOI: 10.18632/oncotarget.19300] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
13 Cervantes JL, Oak E, Garcia J, Liu H, Lorenzini PA, Batra D, Chhabra A, Salazar JC, Roca X. Vitamin D modulates human macrophage response to Mycobacterium tuberculosis DNA. Tuberculosis (Edinb) 2019;116S:S131-7. [PMID: 31085128 DOI: 10.1016/j.tube.2019.04.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021:elab037. [PMID: 34402498 DOI: 10.1093/bfgp/elab037] [Reference Citation Analysis]
15 Kodaman N, Sobota RS, Mera R, Schneider BG, Williams SM. Disrupted human-pathogen co-evolution: a model for disease. Front Genet 2014;5:290. [PMID: 25202324 DOI: 10.3389/fgene.2014.00290] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
16 Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res 2021;246:126674. [PMID: 33549960 DOI: 10.1016/j.micres.2020.126674] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Barbier M, Wirth T, Jacobs Jr. WR, Mcshane H, Mizrahi V, Orme IM. The Evolutionary History, Demography, and Spread of the Mycobacterium tuberculosis Complex. Microbiol Spectr 2016;4. [DOI: 10.1128/microbiolspec.tbtb2-0008-2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
18 Phelan J, Coll F, McNerney R, Ascher DB, Pires DE, Furnham N, Coeck N, Hill-Cawthorne GA, Nair MB, Mallard K, Ramsay A, Campino S, Hibberd ML, Pain A, Rigouts L, Clark TG. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med 2016;14:31. [PMID: 27005572 DOI: 10.1186/s12916-016-0575-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 70] [Article Influence: 12.2] [Reference Citation Analysis]
19 Sayavedra L, Kleiner M, Ponnudurai R, Wetzel S, Pelletier E, Barbe V, Satoh N, Shoguchi E, Fink D, Breusing C, Reusch TB, Rosenstiel P, Schilhabel MB, Becher D, Schweder T, Markert S, Dubilier N, Petersen JM. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. Elife 2015;4:e07966. [PMID: 26371554 DOI: 10.7554/eLife.07966] [Cited by in Crossref: 36] [Cited by in F6Publishing: 17] [Article Influence: 5.1] [Reference Citation Analysis]
20 Phelan JE, Coll F, Bergval I, Anthony RM, Warren R, Sampson SL, Gey van Pittius NC, Glynn JR, Crampin AC, Alves A, Bessa TB, Campino S, Dheda K, Grandjean L, Hasan R, Hasan Z, Miranda A, Moore D, Panaiotov S, Perdigao J, Portugal I, Sheen P, de Oliveira Sousa E, Streicher EM, van Helden PD, Viveiros M, Hibberd ML, Pain A, McNerney R, Clark TG. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics 2016;17:151. [PMID: 26923687 DOI: 10.1186/s12864-016-2467-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
21 Mahmud HA, Seo H, Kim S, Islam MI, Nam KW, Cho HD, Song HY. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production. BMC Complement Altern Med 2017;17:279. [PMID: 28545436 DOI: 10.1186/s12906-017-1786-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
22 Sichewo PR, Michel AL, Musoke J, Etter EMC. Risk Factors for Zoonotic Tuberculosis at the Wildlife-Livestock-Human Interface in South Africa. Pathogens 2019;8:E101. [PMID: 31337117 DOI: 10.3390/pathogens8030101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
23 Figueira MBA, de Lima DS, Boechat AL, Filho MGDN, Antunes IA, Matsuda JDS, Ribeiro TRA, Felix LS, Gonçalves ASF, da Costa AG, Ramasawmy R, Pontillo A, Ogusku MM, Sadahiro A. Single-Nucleotide Variants in the AIM2 - Absent in Melanoma 2 Gene (rs1103577) Associated With Protection for Tuberculosis. Front Immunol 2021;12:604975. [PMID: 33868225 DOI: 10.3389/fimmu.2021.604975] [Reference Citation Analysis]
24 Warner DF, Koch A, Mizrahi V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends in Microbiology 2015;23:14-21. [DOI: 10.1016/j.tim.2014.10.005] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 6.6] [Reference Citation Analysis]
25 Wu Y, Guo Z, Yao K, Miao Y, Liang S, Liu F, Wang Y, Zhang Y. The Transcriptional Foundations of Sp110-mediated Macrophage (RAW264.7) Resistance to Mycobacterium tuberculosis H37Ra. Sci Rep 2016;6:22041. [PMID: 26912204 DOI: 10.1038/srep22041] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
26 Gan M, Liu Q, Yang C, Gao Q, Luo T. Deep Whole-Genome Sequencing to Detect Mixed Infection of Mycobacterium tuberculosis. PLoS One 2016;11:e0159029. [PMID: 27391214 DOI: 10.1371/journal.pone.0159029] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
27 Modlin SJ, Robinhold C, Morrissey C, Mitchell SN, Ramirez-Busby SM, Shmaya T, Valafar F. Exact mapping of Illumina blind spots in the Mycobacterium tuberculosis genome reveals platform-wide and workflow-specific biases. Microb Genom 2021;7. [PMID: 33502304 DOI: 10.1099/mgen.0.000465] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Memari B, Bouttier M, Dimitrov V, Ouellette M, Behr MA, Fritz JH, White JH. Engagement of the Aryl Hydrocarbon Receptor in Mycobacterium tuberculosis-Infected Macrophages Has Pleiotropic Effects on Innate Immune Signaling. J Immunol 2015;195:4479-91. [PMID: 26416282 DOI: 10.4049/jimmunol.1501141] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
29 Blundell JR, Levy SF. Beyond genome sequencing: Lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer. Genomics 2014;104:417-30. [DOI: 10.1016/j.ygeno.2014.09.005] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 6.9] [Reference Citation Analysis]
30 Tulyaprawat O, Chaiprasert A, Chongtrakool P, Suwannakarn K, Ngamskulrungroj P. Association of ubiA mutations and high-level of ethambutol resistance among Mycobacterium tuberculosis Thai clinical isolates. Tuberculosis (Edinb) 2019;114:42-6. [PMID: 30711156 DOI: 10.1016/j.tube.2018.11.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
31 Poeta P, Silva V, Guedes A, Eduardo Pereira J, Cláudia Coelho A, Igrejas G. Tuberculosis in the 21th century: Current status of diagnostic methods. Exp Lung Res 2018;44:352-60. [PMID: 30663432 DOI: 10.1080/01902148.2018.1545880] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
32 Spekker O, Hunt DR, Paja L, Molnár E, Pálfi G, Schultz M. Tracking down the White Plague: The skeletal evidence of tuberculous meningitis in the Robert J. Terry Anatomical Skeletal Collection. PLoS One 2020;15:e0230418. [PMID: 32187217 DOI: 10.1371/journal.pone.0230418] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
33 Hajian B, Scocchera E, Keshipeddy S, G-Dayanandan N, Shoen C, Krucinska J, Reeve S, Cynamon M, Anderson AC, Wright DL. Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis. PLoS One 2016;11:e0161740. [PMID: 27580226 DOI: 10.1371/journal.pone.0161740] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
34 Tientcheu LD, Koch A, Ndengane M, Andoseh G, Kampmann B, Wilkinson RJ. Immunological consequences of strain variation within the Mycobacterium tuberculosis complex. Eur J Immunol 2017;47:432-45. [PMID: 28150302 DOI: 10.1002/eji.201646562] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 6.4] [Reference Citation Analysis]
35 Sobkowiak B, Glynn JR, Houben RMGJ, Mallard K, Phelan JE, Guerra-Assunção JA, Banda L, Mzembe T, Viveiros M, McNerney R, Parkhill J, Crampin AC, Clark TG. Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics 2018;19:613. [PMID: 30107785 DOI: 10.1186/s12864-018-4988-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
36 Zimpel CK, Patané JSL, Guedes ACP, de Souza RF, Silva-Pereira TT, Camargo NCS, de Souza Filho AF, Ikuta CY, Neto JSF, Setubal JC, Heinemann MB, Guimaraes AMS. Global Distribution and Evolution of Mycobacterium bovis Lineages. Front Microbiol 2020;11:843. [PMID: 32477295 DOI: 10.3389/fmicb.2020.00843] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
37 Rens C, Chao JD, Sexton DL, Tocheva EI, Av-Gay Y. Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. Microbiology (Reading) 2021;167. [PMID: 33629944 DOI: 10.1099/mic.0.001042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Rienksma RA, Suarez-Diez M, Spina L, Schaap PJ, Martins dos Santos VA. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin Immunol 2014;26:610-22. [PMID: 25453232 DOI: 10.1016/j.smim.2014.09.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
39 Otchere ID, Asante-Poku A, Osei-Wusu S, Aboagye SY, Yeboah-Manu D. Isolation and characterization of nontuberculous mycobacteria from patients with pulmonary tuberculosis in Ghana. Int J Mycobacteriol 2017;6:70-5. [PMID: 28317808 DOI: 10.4103/2212-5531.201895] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
40 Hendy J, Collins M, Teoh KY, Ashford DA, Thomas-oates J, Donoghue HD, Pap I, Minnikin DE, Spigelman M, Buckley M. The challenge of identifying tuberculosis proteins in archaeological tissues. Journal of Archaeological Science 2016;66:146-53. [DOI: 10.1016/j.jas.2016.01.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
41 Baddam R, Kumar N, Wieler LH, Lankapalli AK, Ahmed N, Peacock SJ, Semmler T. Analysis of mutations in pncA reveals non-overlapping patterns among various lineages of Mycobacterium tuberculosis. Sci Rep 2018;8:4628. [PMID: 29545614 DOI: 10.1038/s41598-018-22883-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
42 Dhanda SK, Vir P, Singla D, Gupta S, Kumar S, Raghava GP. A Web-Based Platform for Designing Vaccines against Existing and Emerging Strains of Mycobacterium tuberculosis. PLoS One 2016;11:e0153771. [PMID: 27096425 DOI: 10.1371/journal.pone.0153771] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
43 Senghore M, Otu J, Witney A, Gehre F, Doughty EL, Kay GL, Butcher P, Salako K, Kehinde A, Onyejepu N, Idigbe E, Corrah T, de Jong B, Pallen MJ, Antonio M. Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria. PLoS One 2017;12:e0184510. [PMID: 28926571 DOI: 10.1371/journal.pone.0184510] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
44 Zhdanova SN, Ogarkov OB, Alekseeva GI, Vinokurova MK, Sinkov VV, Astaf'ev VA, Savilov ED, Kravchenko AF. Genetic diversity of the mycobacterium tuberculosis isolates in the Republic Sakha (Yakutia), Russia. Mol genet mikrobiol virusol 2016;34:43. [DOI: 10.18821/0208-0613-2016-34-2-43-48] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
45 de la Fuente J, Díez-Delgado I, Contreras M, Vicente J, Cabezas-Cruz A, Tobes R, Manrique M, López V, Romero B, Bezos J, Dominguez L, Sevilla IA, Garrido JM, Juste R, Madico G, Jones-López E, Gortazar C. Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence. PLoS Negl Trop Dis 2015;9:e0004232. [PMID: 26583774 DOI: 10.1371/journal.pntd.0004232] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
46 Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020;8:E667. [PMID: 32375210 DOI: 10.3390/microorganisms8050667] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
47 Franco MMJ, Ribeiro MG, Pavan FR, Miyata M, Heinemann MB, de Souza Filho AF, Cardoso RF, de Almeida AL, Sakate RI, Paes AC. Genotyping and rifampicin and isoniazid resistance in Mycobacterium bovis strains isolated from the lymph nodes of slaughtered cattle. Tuberculosis 2017;104:30-7. [DOI: 10.1016/j.tube.2017.02.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
48 Adami AJ, Cervantes JL. The microbiome at the pulmonary alveolar niche and its role in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2015;95:651-8. [PMID: 26455529 DOI: 10.1016/j.tube.2015.07.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
49 Inlamea OF, Soares P, Ikuta CY, Heinemann MB, Achá SJ, Machado A, Ferreira Neto JS, Correia-Neves M, Rito T. Evolutionary analysis of Mycobacterium bovis genotypes across Africa suggests co-evolution with livestock and humans. PLoS Negl Trop Dis 2020;14:e0008081. [PMID: 32119671 DOI: 10.1371/journal.pntd.0008081] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Alarico S, Nunes-Costa D, Silva A, Costa M, Macedo-Ribeiro S, Empadinhas N. A genuine mycobacterial thermophile: Mycobacterium hassiacum growth, survival and GpgS stability at near-pasteurization temperatures. Microbiology (Reading) 2020;166:474-83. [PMID: 32100712 DOI: 10.1099/mic.0.000898] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
51 Guthrie JL, Strudwick L, Roberts B, Allen M, McFadzen J, Roth D, Jorgensen D, Rodrigues M, Tang P, Hanley B, Johnston J, Cook VJ, Gardy JL. Comparison of routine field epidemiology and whole genome sequencing to identify tuberculosis transmission in a remote setting. Epidemiol Infect 2020;148:e15. [PMID: 32014080 DOI: 10.1017/S0950268820000072] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
52 Chae H, Shin SJ. Importance of differential identification of Mycobacterium tuberculosis strains for understanding differences in their prevalence, treatment efficacy, and vaccine development. J Microbiol 2018;56:300-11. [PMID: 29721826 DOI: 10.1007/s12275-018-8041-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
53 Chae H, Han SJ, Kim SY, Ki CS, Huh HJ, Yong D, Koh WJ, Shin SJ. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species. J Clin Microbiol 2017;55:2736-51. [PMID: 28659320 DOI: 10.1128/JCM.00549-17] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
54 Pérez-González J, Carranza J, Martínez R, Benítez-Medina JM. Host Genetic Diversity and Infectious Diseases. Focus on Wild Boar, Red Deer and Tuberculosis. Animals (Basel) 2021;11:1630. [PMID: 34072907 DOI: 10.3390/ani11061630] [Reference Citation Analysis]
55 Umare MD, Khedekar PB, Chikhale RV. Mycobacterial Membrane Protein Large 3 (MmpL3) Inhibitors: A Promising Approach to Combat Tuberculosis. ChemMedChem 2021. [PMID: 34288519 DOI: 10.1002/cmdc.202100359] [Reference Citation Analysis]
56 Dai Z, Iqbal M, Lawrence ND, Rattray M. Efficient inference for sparse latent variable models of transcriptional regulation. Bioinformatics 2017;33:3776-83. [PMID: 28961802 DOI: 10.1093/bioinformatics/btx508] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
57 Usui T, Meng X, Saide K, Farrell J, Thomson P, Whitaker P, Watson J, French NS, Kevin Park B, Naisbitt DJ. From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicol Sci 2017;155:420-31. [DOI: 10.1093/toxsci/kfw218] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
58 Warner DF, Rock JM, Fortune SM, Mizrahi V. DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. Adv Exp Med Biol 2017;1019:247-62. [PMID: 29116639 DOI: 10.1007/978-3-319-64371-7_13] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
59 Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR, Abubakar I. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 2016;14:21. [PMID: 27005433 DOI: 10.1186/s12916-016-0566-x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 74] [Article Influence: 14.2] [Reference Citation Analysis]
60 Holl AFC. Dark Side Archaeology: Climate Change and Mid-Holocene Saharan Pastoral Adaptation. Afr Archaeol Rev 2020;:1-5. [PMID: 32863519 DOI: 10.1007/s10437-020-09406-6] [Reference Citation Analysis]
61 Del Portillo P, García-Morales L, Menéndez MC, Anzola JM, Rodríguez JG, Helguera-Repetto AC, Ares MA, Prados-Rosales R, Gonzalez-Y-Merchand JA, García MJ. Hypoxia Is Not a Main Stress When Mycobacterium tuberculosis Is in a Dormancy-Like Long-Chain Fatty Acid Environment. Front Cell Infect Microbiol 2018;8:449. [PMID: 30687646 DOI: 10.3389/fcimb.2018.00449] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
62 Mason PH, Lyttleton C, Marks GB, Fox GJ. The technological imperative in tuberculosis care and prevention in Vietnam. Glob Public Health 2020;15:307-20. [PMID: 31422743 DOI: 10.1080/17441692.2019.1650950] [Reference Citation Analysis]
63 Liu Q, Zhang Y, Jing W, Liu S, Zhang D, Sui G. First airborne pathogen direct analysis system. Analyst 2016;141:1637-40. [DOI: 10.1039/c5an02367j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 3.2] [Reference Citation Analysis]
64 Nirmal CR, Rao R, Hopper W. Inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis: in silico screening and in vitro validation. Eur J Med Chem 2015;105:182-93. [PMID: 26491981 DOI: 10.1016/j.ejmech.2015.10.014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
65 Rook GAW, Ishaq SL. Evolution, the Immune System, and the Health Consequences of Socioeconomic Inequality. mSystems. [DOI: 10.1128/msystems.01438-21] [Reference Citation Analysis]
66 van Zyl L, du Plessis J, Viljoen J. Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis (Edinb). 2015;95:629-638. [PMID: 26616847 DOI: 10.1016/j.tube.2014.12.006] [Cited by in Crossref: 93] [Cited by in F6Publishing: 69] [Article Influence: 11.6] [Reference Citation Analysis]
67 Jia X, Yang L, Dong M, Chen S, Lv L, Cao D, Fu J, Yang T, Zhang J, Zhang X, Shang Y, Wang G, Sheng Y, Huang H, Chen F. The Bioinformatics Analysis of Comparative Genomics of Mycobacterium tuberculosis Complex (MTBC) Provides Insight into Dissimilarities between Intraspecific Groups Differing in Host Association, Virulence, and Epitope Diversity. Front Cell Infect Microbiol 2017;7:88. [PMID: 28377903 DOI: 10.3389/fcimb.2017.00088] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
68 Cannas A, Mazzarelli A, Di Caro A, Delogu G, Girardi E. Molecular Typing of Mycobacterium Tuberculosis Strains: A Fundamental Tool for Tuberculosis Control and Elimination. Infect Dis Rep 2016;8:6567. [PMID: 27403266 DOI: 10.4081/idr.2016.6567] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
69 Broset E, Gonzalo-asensio J. Adaptive Evolution of the Mycobacterium tuberculosis Complex to Different Hosts. Genetics and Evolution of Infectious Diseases. Elsevier; 2017. pp. 529-52. [DOI: 10.1016/b978-0-12-799942-5.00023-8] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
70 Queirós J, Alves PC, Vicente J, Gortázar C, de la Fuente J. Genome-wide associations identify novel candidate loci associated with genetic susceptibility to tuberculosis in wild boar. Sci Rep 2018;8:1980. [PMID: 29386541 DOI: 10.1038/s41598-018-20158-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
71 Spekker O, Hunt D, Váradi O, Berthon W, Molnár E, Pálfi G. Rare manifestations of spinal tuberculosis in the Robert J. Terry Anatomical Skeletal Collection (National Museum of Natural History, Smithsonian Institution, Washington, DC, USA). Int J Osteoarchaeol 2018;28:343-53. [DOI: 10.1002/oa.2658] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
72 Wu Y, Liu F, Zhang Y, Wang Y, Guo Z, Zhang Y. Characterization of promoter of the tuberculosis-resistant gene intracellular pathogen resistance 1. Immunol Res 2016;64:143-54. [PMID: 26590945 DOI: 10.1007/s12026-015-8732-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
73 Donoghue HD. Paleomicrobiology of Human Tuberculosis. In: Drancourt M, Raoult D, editors. Paleomicrobiology of Humans. Washington: ASM Press; 2016. pp. 113-30. [DOI: 10.1128/9781555819170.ch12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Dohal M, Porvaznik I, Kusnir P, Mokry J. Whole-Genome Sequencing in Relation to Resistance of Mycobacterium Tuberculosis. Acta Medica Martiniana 2019;19:12-21. [DOI: 10.2478/acm-2019-0002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
75 Wan X, Koster K, Qian L, Desmond E, Brostrom R, Hou S, Douglas JT. Genomic analyses of the ancestral Manila family of Mycobacterium tuberculosis. PLoS One 2017;12:e0175330. [PMID: 28394899 DOI: 10.1371/journal.pone.0175330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
76 Zimpel CK, Brandão PE, de Souza Filho AF, de Souza RF, Ikuta CY, Ferreira Neto JS, Camargo NCS, Heinemann MB, Guimarães AMS. Complete Genome Sequencing of Mycobacterium bovis SP38 and Comparative Genomics of Mycobacterium bovis and M. tuberculosis Strains. Front Microbiol 2017;8:2389. [PMID: 29259589 DOI: 10.3389/fmicb.2017.02389] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
77 Dixit A, Freschi L, Vargas R, Calderon R, Sacchettini J, Drobniewski F, Galea JT, Contreras C, Yataco R, Zhang Z, Lecca L, Kolokotronis SO, Mathema B, Farhat MR. Whole genome sequencing identifies bacterial factors affecting transmission of multidrug-resistant tuberculosis in a high-prevalence setting. Sci Rep 2019;9:5602. [PMID: 30944370 DOI: 10.1038/s41598-019-41967-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
78 Pérez-lago L, Martínez Lirola M, Herranz M, Comas I, Bouza E, García-de-viedma D. Fast and low-cost decentralized surveillance of transmission of tuberculosis based on strain-specific PCRs tailored from whole genome sequencing data: a pilot study. Clinical Microbiology and Infection 2015;21:249.e1-9. [DOI: 10.1016/j.cmi.2014.10.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
79 He W, Tan Y, Liu C, Wang Y, He P, Song Z, Liu D, Zheng H, Ma A, Zhao B, Ou X, Xia H, Wang S, Zhao Y. Drug-Resistant Characteristics, Genetic Diversity, and Transmission Dynamics of Rifampicin-Resistant Mycobacterium tuberculosis in Hunan, China, Revealed by Whole-Genome Sequencing. Microbiol Spectr 2022;:e0154321. [PMID: 35171016 DOI: 10.1128/spectrum.01543-21] [Reference Citation Analysis]
80 Sales ÉB, Fonseca AA Jr, Gonçalves CM, Lage AP, Andrade GI, Suffys PN, Gomes HM, Dias NL, Ferreira Neto JS, Guimarães AMS, Heinemann MB. Multispacer Sequence Typing for Mycobacterium bovis Genotyping. Front Vet Sci 2021;8:666283. [PMID: 33981748 DOI: 10.3389/fvets.2021.666283] [Reference Citation Analysis]
81 Pfeiffer S. Disease as a Factor in the African Archaeological Record. Afr Archaeol Rev 2020;:1-4. [PMID: 32863518 DOI: 10.1007/s10437-020-09405-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Oppong YEA, Phelan J, Perdigão J, Machado D, Miranda A, Portugal I, Viveiros M, Clark TG, Hibberd ML. Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance. BMC Genomics 2019;20:252. [PMID: 30922221 DOI: 10.1186/s12864-019-5615-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
83 Korniienko LY, Pyskun AV, Ukhovskyi VV, Karpulenko MS, Moroz OA, Pyskun OO, Tsarenko TM, Aliekseieva GB. Retrospective analysis of the control and prevention of tuberculosis among cattle in Ukraine in the period 1994–2020. Regul Mech Biosyst 2021;12:301-6. [DOI: 10.15421/022140] [Reference Citation Analysis]
84 Yang T, Zhong J, Zhang J, Li C, Yu X, Xiao J, Jia X, Ding N, Ma G, Wang G, Yue L, Liang Q, Sheng Y, Sun Y, Huang H, Chen F. Pan-Genomic Study of Mycobacterium tuberculosis Reflecting the Primary/Secondary Genes, Generality/Individuality, and the Interconversion Through Copy Number Variations. Front Microbiol 2018;9:1886. [PMID: 30177918 DOI: 10.3389/fmicb.2018.01886] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
85 Spekker O, Schultz M, Paja L, Váradi OA, Molnár E, Pálfi G, Hunt DR. Tracking down the White Plague. Chapter two: The role of endocranial abnormal blood vessel impressions and periosteal appositions in the paleopathological diagnosis of tuberculous meningitis. PLoS One 2020;15:e0238444. [PMID: 32870917 DOI: 10.1371/journal.pone.0238444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Tulu B, Ameni G. Spoligotyping based genetic diversity of Mycobacterium tuberculosis in Ethiopia: a systematic review. BMC Infect Dis 2018;18:140. [PMID: 29587640 DOI: 10.1186/s12879-018-3046-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
87 Pečerska J, Wood J, Tanaka MM, Stadler T. Mathematical Models for the Epidemiology and Evolution of Mycobacterium tuberculosis. Adv Exp Med Biol 2017;1019:281-307. [PMID: 29116641 DOI: 10.1007/978-3-319-64371-7_15] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
88 Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017;4:75. [PMID: 29184888 DOI: 10.3389/fmolb.2017.00075] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
89 Li F, Guo X, Xiang D, Pitt ME, Bainomugisa A, Coin LJ. Computational analysis and prediction of PE_PGRS proteins using machine learning. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.01.019] [Reference Citation Analysis]
90 Gonzalo-Asensio J, Pérez I, Aguiló N, Uranga S, Picó A, Lampreave C, Cebollada A, Otal I, Samper S, Martín C. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis Complex lineages. PLoS Genet 2018;14:e1007282. [PMID: 29649213 DOI: 10.1371/journal.pgen.1007282] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
91 Lingaraju S, Rigouts L, Gupta A, Lee J, Umubyeyi AN, Davidow AL, German S, Cho E, Lee JI, Cho SN, Kim CT, Alland D, Safi H. Geographic Differences in the Contribution of ubiA Mutations to High-Level Ethambutol Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016;60:4101-5. [PMID: 27139478 DOI: 10.1128/AAC.03002-15] [Cited by in Crossref: 17] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
92 Montoya JC, Malabad JCM, Ang CF, Reyes LT, Basilio RP, Lim DR, Amarillo MLE, Ama MCG, Phelan JE, Hibberd ML, Clark TG. Molecular characterization of drug-resistant Mycobacterium tuberculosis among Filipino patients derived from the national tuberculosis prevalence survey Philippines 2016. Tuberculosis 2022. [DOI: 10.1016/j.tube.2022.102211] [Reference Citation Analysis]
93 Srinivasan L, Gurses SA, Hurley BE, Miller JL, Karakousis PC, Briken V. Identification of a Transcription Factor That Regulates Host Cell Exit and Virulence of Mycobacterium tuberculosis. PLoS Pathog 2016;12:e1005652. [PMID: 27191591 DOI: 10.1371/journal.ppat.1005652] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
94 Rook G, Bäckhed F, Levin BR, McFall-Ngai MJ, McLean AR. Evolution, human-microbe interactions, and life history plasticity. Lancet 2017;390:521-30. [PMID: 28792414 DOI: 10.1016/S0140-6736(17)30566-4] [Cited by in Crossref: 92] [Cited by in F6Publishing: 36] [Article Influence: 18.4] [Reference Citation Analysis]
95 Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
96 Nunes-Costa D, Alarico S, Dalcolmo MP, Correia-Neves M, Empadinhas N. The looming tide of nontuberculous mycobacterial infections in Portugal and Brazil. Tuberculosis (Edinb) 2016;96:107-19. [PMID: 26560840 DOI: 10.1016/j.tube.2015.09.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
97 Usman MM, Ismail S, Teoh TC. Vaccine research and development: tuberculosis as a global health threat. Cent Eur J Immunol 2017;42:196-204. [PMID: 28867962 DOI: 10.5114/ceji.2017.69362] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
98 Wlodarska M, Johnston JC, Gardy JL, Tang P. A microbiological revolution meets an ancient disease: improving the management of tuberculosis with genomics. Clin Microbiol Rev 2015;28:523-39. [PMID: 25810419 DOI: 10.1128/CMR.00124-14] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
99 Zhao M, Wang T, Adamson KJ, Storey KB, Cummins SF. Multi-tissue transcriptomics for construction of a comprehensive gene resource for the terrestrial snail Theba pisana. Sci Rep 2016;6:20685. [PMID: 26852673 DOI: 10.1038/srep20685] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
100 Mekonnen D, Derbie A, Chanie A, Shumet A, Biadglegne F, Kassahun Y, Bobosha K, Mihret A, Wassie L, Munshea A, Nibret E, Yimer SA, Tønjum T, Aseffa A. Molecular epidemiology of M. tuberculosis in Ethiopia: A systematic review and meta-analysis. Tuberculosis (Edinb) 2019;118:101858. [PMID: 31430694 DOI: 10.1016/j.tube.2019.101858] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
101 Chisholm RH, Tanaka MM. The emergence of latent infection in the early evolution of Mycobacterium tuberculosis. Proc Biol Sci 2016;283:20160499. [PMID: 27194699 DOI: 10.1098/rspb.2016.0499] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
102 Deffert C, Cachat J, Krause KH. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections. Cell Microbiol 2014;16:1168-78. [PMID: 24916152 DOI: 10.1111/cmi.12322] [Cited by in Crossref: 75] [Cited by in F6Publishing: 65] [Article Influence: 9.4] [Reference Citation Analysis]
103 Warner DF, Mizrahi V. Translating genomics research into control of tuberculosis: lessons learned and future prospects. Genome Biol 2014;15:514. [PMID: 25408168 DOI: 10.1186/s13059-014-0514-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
104 Garcia MJ, Lopez MR. Editorial Commentary: Do We Have Strategies to Improve the Preventive Treatment of Latent Tuberculosis Infection? Clin Infect Dis 2016;62:1401-2. [PMID: 26951570 DOI: 10.1093/cid/ciw132] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
105 Witas HW, Donoghue HD, Kubiak D, Lewandowska M, Gładykowska-Rzeczycka JJ. Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. Eur J Clin Microbiol Infect Dis 2015;34:1733-49. [PMID: 26210385 DOI: 10.1007/s10096-015-2427-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
106 Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G, Köser CU, MacGowan A, Mevius D, Mulvey M, Naas T, Peto T, Rolain JM, Samuelsen Ø, Woodford N. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 2017;23:2-22. [PMID: 27890457 DOI: 10.1016/j.cmi.2016.11.012] [Cited by in Crossref: 228] [Cited by in F6Publishing: 200] [Article Influence: 38.0] [Reference Citation Analysis]
107 Yimer SA, Namouchi A, Zegeye ED, Holm-Hansen C, Norheim G, Abebe M, Aseffa A, Tønjum T. Deciphering the recent phylogenetic expansion of the originally deeply rooted Mycobacterium tuberculosis lineage 7. BMC Evol Biol 2016;16:146. [PMID: 27363525 DOI: 10.1186/s12862-016-0715-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
108 Méndez-Samperio P. Diagnosis of Tuberculosis in HIV Co-infected Individuals: Current Status, Challenges and Opportunities for the Future. Scand J Immunol 2017;86:76-82. [PMID: 28513865 DOI: 10.1111/sji.12567] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.6] [Reference Citation Analysis]
109 Nunes-costa D, Maranha A, Costa M, Alarico S, Empadinhas N. Glucosylglycerate metabolism, bioversatility and mycobacterial survival. Glycobiology. [DOI: 10.1093/glycob/cww132] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
110 Libiseller-Egger J, Phelan J, Campino S, Mohareb F, Clark TG. Robust detection of point mutations involved in multidrug-resistant Mycobacterium tuberculosis in the presence of co-occurrent resistance markers. PLoS Comput Biol 2020;16:e1008518. [PMID: 33347430 DOI: 10.1371/journal.pcbi.1008518] [Reference Citation Analysis]
111 Jankute M, Nataraj V, Lee OY, Wu HHT, Ridell M, Garton NJ, Barer MR, Minnikin DE, Bhatt A, Besra GS. The role of hydrophobicity in tuberculosis evolution and pathogenicity. Sci Rep 2017;7:1315. [PMID: 28465507 DOI: 10.1038/s41598-017-01501-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 7.4] [Reference Citation Analysis]
112 Sichewo PR, Hlokwe TM, Etter EMC, Michel AL. Tracing cross species transmission of Mycobacterium bovis at the wildlife/livestock interface in South Africa. BMC Microbiol 2020;20:49. [PMID: 32131736 DOI: 10.1186/s12866-020-01736-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
113 Pokam BDT, Yeboah-Manu D, Lawson L, Guemdjom PW, Okonu R, Madukaji L, Yhiler NY, Asuquo AE. Molecular Analysis of Mycobacterium tuberculosis Isolated in the North Central Zone of Nigeria. J Epidemiol Glob Health 2019;9:259-65. [PMID: 31854167 DOI: 10.2991/jegh.k.191015.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
114 Wang H, Wan L, Shi J, Zhang T, Zhu H, Jiang S, Meng S, Wu S, Sun J, Chang L, Zhang L, Wan K, Yang J, Zhao X, Liu H, Zhang Y, Dai E, Xu P. Quantitative proteomics reveals that dormancy-related proteins mediate the attenuation in mycobacterium strains. Virulence 2021;12:2228-46. [PMID: 34634997 DOI: 10.1080/21505594.2021.1965703] [Reference Citation Analysis]
115 Santucci P, Bouzid F, Smichi N, Poncin I, Kremer L, De Chastellier C, Drancourt M, Canaan S. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Front Cell Infect Microbiol 2016;6:122. [PMID: 27774438 DOI: 10.3389/fcimb.2016.00122] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
116 Mittal P, Sinha R, Kumar A, Singh P, Ngasainao MR, Singh A, Singh IK. Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme. Curr Top Med Chem 2020;20:390-408. [PMID: 31924156 DOI: 10.2174/1568026620666200110114322] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
117 Juste RA, Alonso-Hearn M, Garrido JM, Abendaño N, Sevilla IA, Gortazar C, de la Fuente J, Dominguez L. Increased Lytic Efficiency of Bovine Macrophages Trained with Killed Mycobacteria. PLoS One 2016;11:e0165607. [PMID: 27820836 DOI: 10.1371/journal.pone.0165607] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
118 Koch AS, Brites D, Stucki D, Evans JC, Seldon R, Heekes A, Mulder N, Nicol M, Oni T, Mizrahi V, Warner DF, Parkhill J, Gagneux S, Martin DP, Wilkinson RJ. The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Mol Biol Evol 2017;34:1654-68. [PMID: 28369607 DOI: 10.1093/molbev/msx107] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
119 Santos-Pereira A, Magalhães C, Araújo PMM, S Osório N. Evolutionary Genetics of Mycobacterium tuberculosis and HIV-1: "The Tortoise and the Hare". Microorganisms 2021;9:147. [PMID: 33440808 DOI: 10.3390/microorganisms9010147] [Reference Citation Analysis]
120 Carinelli S, Martí M, Alegret S, Pividori MI. Biomarker detection of global infectious diseases based on magnetic particles. N Biotechnol 2015;32:521-32. [PMID: 25917978 DOI: 10.1016/j.nbt.2015.04.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]