BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, Chow J, Manel N, Ciofani M, Kim SV. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature. 2011;472:486-490. [PMID: 21441909 DOI: 10.1038/nature09978] [Cited by in Crossref: 365] [Cited by in F6Publishing: 320] [Article Influence: 36.5] [Reference Citation Analysis]
Number Citing Articles
1 Gudas LJ. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta 2012;1821:213-21. [PMID: 21855651 DOI: 10.1016/j.bbalip.2011.08.002] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 8.7] [Reference Citation Analysis]
2 Shi H, Mao X, Zhong Y, Liu Y, Zhao X, Yu K, Zhu R, Wei Y, Zhu J, Sun H, Mao Y, Zeng Q. Digoxin reduces atherosclerosis in apolipoprotein E-deficient mice. Br J Pharmacol 2016;173:1517-28. [PMID: 26879387 DOI: 10.1111/bph.13453] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
3 Huang Y, Yu M, Sun N, Tang T, Yu F, Song X, Xie Q, Fu W, Shao L, Wang Y. Discovery of carbazole carboxamides as novel RORγt inverse agonists. Eur J Med Chem 2018;148:465-76. [PMID: 29477887 DOI: 10.1016/j.ejmech.2018.02.050] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
4 Wang Y, Billon C, Walker JK, Burris TP. Therapeutic Effect of a Synthetic RORα/γ Agonist in an Animal Model of Autism. ACS Chem Neurosci 2016;7:143-8. [PMID: 26625251 DOI: 10.1021/acschemneuro.5b00159] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
5 Pitsillou E, Liang J, Hung A, Karagiannis TC. The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sci 2021;265:118809. [PMID: 33249097 DOI: 10.1016/j.lfs.2020.118809] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Matsuoka H, Shima A, Kuramoto D, Kikumoto D, Matsui T, Michihara A. Phosphoenolpyruvate Carboxykinase, a Key Enzyme That Controls Blood Glucose, Is a Target of Retinoic Acid Receptor-Related Orphan Receptor α. PLoS One 2015;10:e0137955. [PMID: 26383638 DOI: 10.1371/journal.pone.0137955] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
7 Saito Y, Kagami S, Sanayama Y, Ikeda K, Suto A, Kashiwakuma D, Furuta S, Iwamoto I, Nonaka K, Ohara O, Nakajima H. AT-Rich-Interactive Domain-Containing Protein 5A Functions as a Negative Regulator of Retinoic Acid Receptor-Related Orphan Nuclear Receptor γt-Induced Th17 Cell Differentiation: ARID-5A Inhibits Th17 Cell Differentiation. Arthritis & Rheumatology 2014;66:1185-94. [DOI: 10.1002/art.38324] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.9] [Reference Citation Analysis]
8 Canaria DA, Yan B, Clare MG, Zhang Z, Taylor GA, Boone DL, Kazemian M, Olson MR. STAT5 Represses a STAT3-Independent Th17-like Program during Th9 Cell Differentiation. J Immunol 2021;207:1265-74. [PMID: 34348976 DOI: 10.4049/jimmunol.2100165] [Reference Citation Analysis]
9 Han B, Zhang YY, Ye ZQ, Xiao Y, Rasouli J, Wu WC, Ye SM, Guo XY, Zhu L, Rostami A, Wang LB, Zhang Y, Li X. Montelukast alleviates inflammation in experimental autoimmune encephalomyelitis by altering Th17 differentiation in a mouse model. Immunology 2021;163:185-200. [PMID: 33480040 DOI: 10.1111/imm.13308] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Takaishi M, Ishizaki M, Suzuki K, Isobe T, Shimozato T, Sano S. Oral administration of a novel RORγt antagonist attenuates psoriasis-like skin lesion of two independent mouse models through neutralization of IL-17. J Dermatol Sci 2017;85:12-9. [PMID: 27726924 DOI: 10.1016/j.jdermsci.2016.10.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
11 Bassolas-Molina H, Raymond E, Labadia M, Wahle J, Ferrer-Picón E, Panzenbeck M, Zheng J, Harcken C, Hughes R, Turner M, Smith D, Calderón-Gómez E, Esteller M, Carrasco A, Esteve M, Dotti I, Corraliza AM, Masamunt MC, Arajol C, Guardiola J, Ricart E, Nabozny G, Salas A. An RORγt Oral Inhibitor Modulates IL-17 Responses in Peripheral Blood and Intestinal Mucosa of Crohn's Disease Patients. Front Immunol 2018;9:2307. [PMID: 30405600 DOI: 10.3389/fimmu.2018.02307] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
12 Škubník J, Pavlíčková V, Rimpelová S. Cardiac Glycosides as Immune System Modulators. Biomolecules 2021;11:659. [PMID: 33947098 DOI: 10.3390/biom11050659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang Y, Yang T, Liu Q, Ma Y, Yang L, Zhou L, Xiang Z, Cheng Z, Lu S, Orband-miller LA, Zhang W, Wu Q, Zhang K, Li Y, Xiang J, Elliott JD, Leung S, Ren F, Lin X. Discovery of N -(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists. Bioorganic & Medicinal Chemistry 2015;23:5293-302. [DOI: 10.1016/j.bmc.2015.07.068] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
14 Yang T, Liu Q, Cheng Y, Cai W, Ma Y, Yang L, Wu Q, Orband-Miller LA, Zhou L, Xiang Z, Huxdorf M, Zhang W, Zhang J, Xiang JN, Leung S, Qiu Y, Zhong Z, Elliott JD, Lin X, Wang Y. Discovery of Tertiary Amine and Indole Derivatives as Potent RORγt Inverse Agonists. ACS Med Chem Lett 2014;5:65-8. [PMID: 24900774 DOI: 10.1021/ml4003875] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 6.3] [Reference Citation Analysis]
15 Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet 2015;6:236. [PMID: 26236331 DOI: 10.3389/fgene.2015.00236] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
16 Wu J, Zhou C, Chen W, Xie A, Li J, Wang S, Ye P, Wang W, Xia J. Digoxin Attenuates Acute Cardiac Allograft Rejection by Antagonizing RORγt Activity. Transplantation 2013;95:434-41. [DOI: 10.1097/tp.0b013e31827a48f5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
17 Krausgruber T, Schiering C, Adelmann K, Harrison OJ, Chomka A, Pearson C, Ahern PP, Shale M, Oukka M, Powrie F. T-bet is a key modulator of IL-23-driven pathogenic CD4(+) T cell responses in the intestine. Nat Commun. 2016;7:11627. [PMID: 27193261 DOI: 10.1038/ncomms11627] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 10.2] [Reference Citation Analysis]
18 Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, Hoeffer CA, Littman DR, Huh JR. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 2016;351:933-9. [PMID: 26822608 DOI: 10.1126/science.aad0314] [Cited by in Crossref: 475] [Cited by in F6Publishing: 394] [Article Influence: 95.0] [Reference Citation Analysis]
19 Burris TP, Busby SA, Griffin PR. Targeting orphan nuclear receptors for treatment of metabolic diseases and autoimmunity. Chem Biol. 2012;19:51-59. [PMID: 22284354 DOI: 10.1016/j.chembiol.2011.12.011] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 8.3] [Reference Citation Analysis]
20 Zhang S. The role of transforming growth factor β in T helper 17 differentiation. Immunology 2018;155:24-35. [PMID: 29682722 DOI: 10.1111/imm.12938] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 17.7] [Reference Citation Analysis]
21 Orellana AM, Kinoshita PF, Leite JA, Kawamoto EM, Scavone C. Cardiotonic Steroids as Modulators of Neuroinflammation. Front Endocrinol (Lausanne) 2016;7:10. [PMID: 26909067 DOI: 10.3389/fendo.2016.00010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
22 Kim KD, Srikanth S, Tan YV, Yee MK, Jew M, Damoiseaux R, Jung ME, Shimizu S, An DS, Ribalet B, Waschek JA, Gwack Y. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. J Immunol 2014;192:110-22. [PMID: 24307733 DOI: 10.4049/jimmunol.1302586] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 6.0] [Reference Citation Analysis]
23 Gege C, Cummings MD, Albers M, Kinzel O, Kleymann G, Schlüter T, Steeneck C, Nelen MI, Milligan C, Spurlino J, Xue X, Leonard K, Edwards JP, Fourie A, Goldberg SD, Hoffmann T. Identification and biological evaluation of thiazole-based inverse agonists of RORγt. Bioorganic & Medicinal Chemistry Letters 2018;28:1446-55. [DOI: 10.1016/j.bmcl.2018.03.093] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
24 Wang F, Yang W, Shi Y, Le G. 3D-QSAR, molecular docking and molecular dynamics studies of a series of RORγt inhibitors. J Biomol Struct Dyn 2015;33:1929-40. [PMID: 25341687 DOI: 10.1080/07391102.2014.980321] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
25 Yan JW, Wang YJ, Peng WJ, Tao JH, Wan YN, Li BZ, Mei B, Chen B, Yao H, Yang GJ, Li XP, Ye DQ, Wang J. Therapeutic potential of interleukin-17 in inflammation and autoimmune diseases. Expert Opin Ther Targets 2014;18:29-41. [PMID: 24147601 DOI: 10.1517/14728222.2013.843669] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
26 Xia L, Zhang S, Cao Z, Hu Y, Yang H, Wang D. Interleukin-17 enhanced immunoinflammatory lesions in a mouse model of recurrent herpetic keratitis. Microbes Infect 2013;15:126-39. [PMID: 23159245 DOI: 10.1016/j.micinf.2012.10.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
27 Park BV, Pan F. The role of nuclear receptors in regulation of Th17/Treg biology and its implications for diseases. Cell Mol Immunol 2015;12:533-42. [PMID: 25958843 DOI: 10.1038/cmi.2015.21] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
28 Yu CR, Lee YS, Mahdi RM, Surendran N, Egwuagu CE. Therapeutic targeting of STAT3 (signal transducers and activators of transcription 3) pathway inhibits experimental autoimmune uveitis. PLoS One 2012;7:e29742. [PMID: 22238646 DOI: 10.1371/journal.pone.0029742] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
29 Cascão R, Vidal B, Raquel H, Neves-Costa A, Figueiredo N, Gupta V, Fonseca JE, Moita LF. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun Rev 2012;11:856-62. [PMID: 22415021 DOI: 10.1016/j.autrev.2012.02.022] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 8.9] [Reference Citation Analysis]
30 Matsui K, Sano H. T Helper 17 Cells in Primary Sjögren's Syndrome. J Clin Med 2017;6:E65. [PMID: 28678161 DOI: 10.3390/jcm6070065] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
31 Wu XS, Wang R, Xing YL, Xue XQ, Zhang Y, Lu YZ, Song Y, Luo XY, Wu C, Zhou YL, Jiang JQ, Xu Y. Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists. Acta Pharmacol Sin 2016;37:1516-24. [PMID: 27374490 DOI: 10.1038/aps.2016.32] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
32 Singh MV, Cicha MZ, Kumar S, Meyerholz DK, Irani K, Chapleau MW, Abboud FM. Abnormal CD161+ immune cells and retinoic acid receptor-related orphan receptor γt-mediate enhanced IL-17F expression in the setting of genetic hypertension. J Allergy Clin Immunol 2017;140:809-821.e3. [PMID: 28093217 DOI: 10.1016/j.jaci.2016.11.039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
33 Vieira L, Saldanha AA, Moraes AM, Oliveira FMD, Lopes DO, Barbosa LADO, Ribeiro RIMDA, Thomé RG, Santos HBD, Villar JAFP, Soares AC. 21‑Benzylidene digoxin, a novel digoxin hemi-synthetic derivative, presents an anti-inflammatory activity through inhibition of edema, tumour necrosis factor alpha production, inducible nitric oxide synthase expression and leucocyte migration. International Immunopharmacology 2018;65:174-81. [DOI: 10.1016/j.intimp.2018.10.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
34 Sun N, Xie Q, Dang Y, Wang Y. Agonist Lock Touched and Untouched Retinoic Acid Receptor-Related Orphan Receptor-γt (RORγt) Inverse Agonists: Classification Based on the Molecular Mechanisms of Action. J Med Chem 2021;64:10519-36. [PMID: 34264059 DOI: 10.1021/acs.jmedchem.0c02178] [Reference Citation Analysis]
35 Santori FR. Nuclear hormone receptors put immunity on sterols. Eur J Immunol 2015;45:2730-41. [PMID: 26222181 DOI: 10.1002/eji.201545712] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
36 Skepner J, Trocha M, Ramesh R, Qu XA, Schmidt D, Baloglu E, Lobera M, Davis S, Nolan MA, Carlson TJ, Hill J, Ghosh S, Sundrud MS, Yang J. In vivo regulation of gene expression and T helper type 17 differentiation by RORγt inverse agonists. Immunology 2015;145:347-56. [PMID: 25604624 DOI: 10.1111/imm.12444] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
37 Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ, Lee JY, Ziel JW, Miraldi ER, Domingos AI, Bonneau R, Littman DR. An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses. Cell. 2015;163:381-393. [PMID: 26411290 DOI: 10.1016/j.cell.2015.08.061] [Cited by in Crossref: 305] [Cited by in F6Publishing: 258] [Article Influence: 50.8] [Reference Citation Analysis]
38 Ulivieri C, Baldari CT. T-cell-based immunotherapy of autoimmune diseases. Expert Review of Vaccines 2014;12:297-310. [DOI: 10.1586/erv.12.146] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
39 Tang L, Yang X, Liang Y, Xie H, Dai Z, Zheng G. Transcription Factor Retinoid-Related Orphan Receptor γt: A Promising Target for the Treatment of Psoriasis. Front Immunol 2018;9:1210. [PMID: 29899748 DOI: 10.3389/fimmu.2018.01210] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
40 Baba N, Rubio M, Kenins L, Regairaz C, Woisetschlager M, Carballido JM, Sarfati M. The aryl hydrocarbon receptor (AhR) ligand VAF347 selectively acts on monocytes and naïve CD4+ Th cells to promote the development of IL-22-secreting Th cells. Human Immunology 2012;73:795-800. [DOI: 10.1016/j.humimm.2012.05.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
41 Khan MM, Ullah U, Khan MH, Kong L, Moulder R, Välikangas T, Bhosale SD, Komsi E, Rasool O, Chen Z, Elo LL, Westermarck J, Lahesmaa R. CIP2A Constrains Th17 Differentiation by Modulating STAT3 Signaling. iScience 2020;23:100947. [PMID: 32171124 DOI: 10.1016/j.isci.2020.100947] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
42 Billon C, Murray MH, Avdagic A, Burris TP. RORγ regulates the NLRP3 inflammasome. J Biol Chem 2019;294:10-9. [PMID: 30455347 DOI: 10.1074/jbc.AC118.002127] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
43 de Wit J, Al-Mossawi MH, Hühn MH, Arancibia-Cárcamo CV, Doig K, Kendrick B, Gundle R, Taylor P, Mcclanahan T, Murphy E, Zhang H, Barr K, Miller JR, Hu X, Aicher TD, Morgan RW, Glick GD, Zaller D, Correll C, Powrie F, Bowness P. RORγt inhibitors suppress T(H)17 responses in inflammatory arthritis and inflammatory bowel disease. J Allergy Clin Immunol 2016;137:960-3. [PMID: 26611672 DOI: 10.1016/j.jaci.2015.09.048] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
44 Zhou X, Chen H, Wei F, Zhao Q, Su Q, Liang J, Yin M, Tian X, Liu Z, Yu B, Bai C, He X, Huang Z. 3β-Acetyloxy-oleanolic Acid Attenuates Pristane-Induced Lupus Nephritis by Regulating Th17 Differentiation. J Immunol Res 2019;2019:2431617. [PMID: 31240232 DOI: 10.1155/2019/2431617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Pan F, Barbi J, Pardoll DM. Hypoxia-inducible factor 1: A link between metabolism and T cell differentiation and a potential therapeutic target. Oncoimmunology 2012;1:510-5. [PMID: 22754770 DOI: 10.4161/onci.19457] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
46 Kim B, Park Y, Chung Y. Targeting IL-17 in autoimmunity and inflammation. Arch Pharm Res 2016;39:1537-47. [DOI: 10.1007/s12272-016-0823-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
47 Gege C, Schlüter T, Hoffmann T. Identification of the first inverse agonist of retinoid-related orphan receptor (ROR) with dual selectivity for RORβ and RORγt. Bioorganic & Medicinal Chemistry Letters 2014;24:5265-7. [DOI: 10.1016/j.bmcl.2014.09.053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
48 Shaikh NS, Iyer JP, Munot YS, Mukhopadhyay PP, Raje AA, Nagaraj R, Jamdar V, Gavhane R, Lohote M, Sherkar P, Bala M, Petla R, Meru A, Umrani D, Rouduri S, Joshi S, Reddy S, Kandikere V, Bhuniya D, Kulkarni B, Mookhtiar KA. Discovery and pharmacological evaluation of indole derivatives as potent and selective RORγt inverse agonist for multiple autoimmune conditions. Bioorg Med Chem Lett 2019;29:2208-17. [PMID: 31272795 DOI: 10.1016/j.bmcl.2019.06.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
49 Boniface K. Role of Th17 cells in the pathogenesis of rheumatoid arthritis. WJR 2013;3:25. [DOI: 10.5499/wjr.v3.i3.25] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
50 Jetten AM, Kang HS, Takeda Y. Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity. Front Endocrinol (Lausanne) 2013;4:1. [PMID: 23355833 DOI: 10.3389/fendo.2013.00001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 6.3] [Reference Citation Analysis]
51 Kepp O, Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Sukkurwala AQ, Michaud M, Galluzzi L, Zitvogel L, Kroemer G. Anticancer activity of cardiac glycosides: At the frontier between cell-autonomous and immunological effects. Oncoimmunology 2012;1:1640-2. [PMID: 23264921 DOI: 10.4161/onci.21684] [Cited by in Crossref: 73] [Cited by in F6Publishing: 59] [Article Influence: 73.0] [Reference Citation Analysis]
52 Wei F, Zhou X, Chen H, Tian X, Liu Z, Yu B, He X, Bai C, Huang Z. 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivative attenuates lupus nephritis with less effect to thymocyte development. Immunol Res 2021;69:378-90. [PMID: 34219199 DOI: 10.1007/s12026-021-09204-5] [Reference Citation Analysis]
53 Sulli G, Manoogian ENC, Taub PR, Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 2018;39:812-27. [PMID: 30060890 DOI: 10.1016/j.tips.2018.07.003] [Cited by in Crossref: 73] [Cited by in F6Publishing: 56] [Article Influence: 24.3] [Reference Citation Analysis]
54 Volpe E, Battistini L, Borsellino G. Advances in T Helper 17 Cell Biology: Pathogenic Role and Potential Therapy in Multiple Sclerosis. Mediators Inflamm 2015;2015:475158. [PMID: 26770017 DOI: 10.1155/2015/475158] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
55 Toyama H, Nakamura M, Nakamura M, Matsumoto Y, Nakagomi M, Hashimoto Y. Development of novel silicon-containing inverse agonists of retinoic acid receptor-related orphan receptors. Bioorganic & Medicinal Chemistry 2014;22:1948-59. [DOI: 10.1016/j.bmc.2014.01.023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
56 Singh SP, Zhang HH, Tsang H, Gardina PJ, Myers TG, Nagarajan V, Lee CH, Farber JM. PLZF regulates CCR6 and is critical for the acquisition and maintenance of the Th17 phenotype in human cells. J Immunol 2015;194:4350-61. [PMID: 25833398 DOI: 10.4049/jimmunol.1401093] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
57 Jetten AM, Cook DN. (Inverse) Agonists of Retinoic Acid-Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Annu Rev Pharmacol Toxicol 2020;60:371-90. [PMID: 31386594 DOI: 10.1146/annurev-pharmtox-010919-023711] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
58 Grammer AC, Lipsky PE. Drug Repositioning Strategies for the Identification of Novel Therapies for Rheumatic Autoimmune Inflammatory Diseases. Rheumatic Disease Clinics of North America 2017;43:467-80. [DOI: 10.1016/j.rdc.2017.04.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
59 Slyepchenko A, Maes M, Köhler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS, Carvalho AF. T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model. Neurosci Biobehav Rev 2016;64:83-100. [PMID: 26898639 DOI: 10.1016/j.neubiorev.2016.02.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
60 Whitehead GS, Kang HS, Thomas SY, Medvedev A, Karcz TP, Izumi G, Nakano K, Makarov SS, Nakano H, Jetten AM, Cook DN. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORγt inverse agonist. JCI Insight 2019;5:125528. [PMID: 31184998 DOI: 10.1172/jci.insight.125528] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
61 Pluskal T, Weng JK. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev 2018;47:1592-637. [PMID: 28933478 DOI: 10.1039/c7cs00411g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
62 Kojima H, Takeda Y, Muromoto R, Takahashi M, Hirao T, Takeuchi S, Jetten AM, Matsuda T. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ. Toxicology 2015;329:32-9. [PMID: 25583575 DOI: 10.1016/j.tox.2015.01.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
63 Iman M, Rezaei R, Azimzadeh Jamalkandi S, Shariati P, Kheradmand F, Salimian J. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases. Expert Rev Clin Immunol 2017;13:1173-88. [PMID: 28994328 DOI: 10.1080/1744666X.2017.1389646] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
64 Zhyvoloup A, Melamed A, Anderson I, Planas D, Lee CH, Kriston-Vizi J, Ketteler R, Merritt A, Routy JP, Ancuta P, Bangham CRM, Fassati A. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation. PLoS Pathog 2017;13:e1006460. [PMID: 28727807 DOI: 10.1371/journal.ppat.1006460] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
65 Deng YN, Bellanti JA, Zheng SG. Essential Kinases and Transcriptional Regulators and Their Roles in Autoimmunity. Biomolecules 2019;9:E145. [PMID: 30974919 DOI: 10.3390/biom9040145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
66 Yadav K, Singh D, Singh MR. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int J Biol Macromol 2018;118:1796-810. [PMID: 30017989 DOI: 10.1016/j.ijbiomac.2018.07.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
67 Quintana FJ. The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology. 2013;138:183-189. [PMID: 23190340 DOI: 10.1111/imm.12046] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 9.6] [Reference Citation Analysis]
68 Yang T, Li X, Yu J, Deng X, Shen PX, Jiang YB, Zhu L, Wang ZZ, Zhang Y. Eriodictyol suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis. Food Funct 2020;11:6875-88. [PMID: 32686813 DOI: 10.1039/c9fo03019k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
69 Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. Nucl Receptor Res 2015;2:101185. [PMID: 26878025 DOI: 10.11131/2015/101185] [Cited by in Crossref: 82] [Cited by in F6Publishing: 76] [Article Influence: 13.7] [Reference Citation Analysis]
70 Song P, Chou YK, Zhang X, Meza-Romero R, Yomogida K, Benedek G, Chu CQ. CD4 aptamer-RORγt shRNA chimera inhibits IL-17 synthesis by human CD4(+) T cells. Biochem Biophys Res Commun 2014;452:1040-5. [PMID: 25241192 DOI: 10.1016/j.bbrc.2014.09.037] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
71 Kumar N, Lyda B, Chang MR, Lauer JL, Solt LA, Burris TP, Kamenecka TM, Griffin PR. Identification of SR2211: a potent synthetic RORγ-selective modulator. ACS Chem Biol 2012;7:672-7. [PMID: 22292739 DOI: 10.1021/cb200496y] [Cited by in Crossref: 102] [Cited by in F6Publishing: 88] [Article Influence: 11.3] [Reference Citation Analysis]
72 Fauber BP, Magnuson S. Modulators of the Nuclear Receptor Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc). J Med Chem 2014;57:5871-92. [DOI: 10.1021/jm401901d] [Cited by in Crossref: 121] [Cited by in F6Publishing: 110] [Article Influence: 17.3] [Reference Citation Analysis]
73 Guo Y, MacIsaac KD, Chen Y, Miller RJ, Jain R, Joyce-Shaikh B, Ferguson H, Wang IM, Cristescu R, Mudgett J, Engstrom L, Piers KJ, Baltus GA, Barr K, Zhang H, Mehmet H, Hegde LG, Hu X, Carter LL, Aicher TD, Glick G, Zaller D, Hawwari A, Correll CC, Jones DC, Cua DJ. Inhibition of RORγT Skews TCRα Gene Rearrangement and Limits T Cell Repertoire Diversity. Cell Rep 2016;17:3206-18. [PMID: 28009290 DOI: 10.1016/j.celrep.2016.11.073] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
74 Capone A, Volpe E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front Immunol 2020;11:348. [PMID: 32226427 DOI: 10.3389/fimmu.2020.00348] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 23.0] [Reference Citation Analysis]
75 Teijeiro A, Garrido A, Ferre A, Perna C, Djouder N. Inhibition of the IL-17A axis in adipocytes suppresses diet-induced obesity and metabolic disorders in mice. Nat Metab 2021;3:496-512. [PMID: 33859430 DOI: 10.1038/s42255-021-00371-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
76 Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181:8-18. [PMID: 22640807 DOI: 10.1016/j.ajpath.2012.03.044] [Cited by in Crossref: 352] [Cited by in F6Publishing: 320] [Article Influence: 39.1] [Reference Citation Analysis]
77 Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond) 2012;122:487-511. [PMID: 22324470 DOI: 10.1042/CS20110496] [Cited by in Crossref: 167] [Cited by in F6Publishing: 72] [Article Influence: 18.6] [Reference Citation Analysis]
78 Koenders MI, van den Berg WB. Novel therapeutic targets in rheumatoid arthritis. Trends in Pharmacological Sciences 2015;36:189-95. [DOI: 10.1016/j.tips.2015.02.001] [Cited by in Crossref: 91] [Cited by in F6Publishing: 79] [Article Influence: 15.2] [Reference Citation Analysis]
79 Flores-Borja F, Irshad S, Gordon P, Wong F, Sheriff I, Tutt A, Ng T. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment. J Immunol Res 2016;2016:7803091. [PMID: 27882334 DOI: 10.1155/2016/7803091] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
80 Hou L, Yuki K. SerpinB1 expression in Th17 cells depends on hypoxia-inducible factor 1-alpha. Int Immunopharmacol 2020;87:106826. [PMID: 32717567 DOI: 10.1016/j.intimp.2020.106826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Rutz S, Eidenschenk C, Kiefer JR, Ouyang W. Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine & Growth Factor Reviews 2016;30:1-17. [DOI: 10.1016/j.cytogfr.2016.07.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
82 Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol 2013;51:T1-T21. [PMID: 24103914 DOI: 10.1530/JME-13-0173] [Cited by in Crossref: 115] [Cited by in F6Publishing: 43] [Article Influence: 14.4] [Reference Citation Analysis]
83 Liss M, Radke MH, Eckhard J, Neuenschwander M, Dauksaite V, von Kries JP, Gotthardt M. Drug discovery with an RBM20 dependent titin splice reporter identifies cardenolides as lead structures to improve cardiac filling. PLoS One 2018;13:e0198492. [PMID: 29889873 DOI: 10.1371/journal.pone.0198492] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
84 Chen Z, Yoo SH, Takahashi JS. Development and Therapeutic Potential of Small-Molecule Modulators of Circadian Systems. Annu Rev Pharmacol Toxicol 2018;58:231-52. [PMID: 28968186 DOI: 10.1146/annurev-pharmtox-010617-052645] [Cited by in Crossref: 73] [Cited by in F6Publishing: 52] [Article Influence: 18.3] [Reference Citation Analysis]
85 Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev 2013;252:164-82. [PMID: 23405904 DOI: 10.1111/imr.12039] [Cited by in Crossref: 122] [Cited by in F6Publishing: 103] [Article Influence: 15.3] [Reference Citation Analysis]
86 Astry B, Venkatesha SH, Moudgil KD. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 2015;74:54-61. [PMID: 25595306 DOI: 10.1016/j.cyto.2014.11.020] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 9.0] [Reference Citation Analysis]
87 Jetten AM. Immunology: A helping hand against autoimmunity. Nature 2011;472:421-2. [PMID: 21525918 DOI: 10.1038/472421a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
88 Worth C, Bowness P, Hussein Al-Mossawi M. Novel Therapeutic Targets in Axial Spondyloarthritis. Curr Treatm Opt Rheumatol 2018;4:174-82. [PMID: 29938195 DOI: 10.1007/s40674-018-0095-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
89 Wang Y, Balvers MG, Hendriks HF, Wilpshaar T, van Heek T, Witkamp RF, Meijerink J. Docosahexaenoyl serotonin emerges as most potent inhibitor of IL-17 and CCL-20 released by blood mononuclear cells from a series of N -acyl serotonins identified in human intestinal tissue. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017;1862:823-31. [DOI: 10.1016/j.bbalip.2017.05.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
90 Laird GM, Eisele EE, Rabi SA, Nikolaeva D, Siliciano RF. A novel cell-based high-throughput screen for inhibitors of HIV-1 gene expression and budding identifies the cardiac glycosides. J Antimicrob Chemother 2014;69:988-94. [PMID: 24275119 DOI: 10.1093/jac/dkt471] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
91 Madsen M, Pedersen TX, Nielsen LB, Johansen C, Hansen PR. Differential Effects of Digoxin on Imiquimod-Induced Psoriasis-Like Skin Inflammation on the Ear and Back. Ann Dermatol 2018;30:485-8. [PMID: 30065596 DOI: 10.5021/ad.2018.30.4.485] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
92 Sanos SL, Diefenbach A. Innate lymphoid cells: from border protection to the initiation of inflammatory diseases. Immunol Cell Biol 2013;91:215-24. [PMID: 23357882 DOI: 10.1038/icb.2013.3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
93 Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev 2013;93:481-523. [PMID: 23589826 DOI: 10.1152/physrev.00008.2012] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
94 Gomes RS, Silva MVT, Dos Santos JC, van Linge C, Reis JM, Teixeira MM, Pinto SA, Dorta ML, Bai X, Chan ED, Dinarello CA, Oliveira MAP, Joosten LAB, Ribeiro-Dias F. Human Interleukin-32γ Plays a Protective Role in an Experimental Model of Visceral Leishmaniasis in Mice. Infect Immun 2018;86:e00796-17. [PMID: 29483288 DOI: 10.1128/IAI.00796-17] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
95 Abboud FM, Singh MV. Autonomic regulation of the immune system in cardiovascular diseases. Adv Physiol Educ 2017;41:578-93. [PMID: 29138216 DOI: 10.1152/advan.00061.2017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
96 Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood 2013;121:2402-14. [PMID: 23325835 DOI: 10.1182/blood-2012-09-378653] [Cited by in Crossref: 229] [Cited by in F6Publishing: 213] [Article Influence: 28.6] [Reference Citation Analysis]
97 Kojima H, Muromoto R, Takahashi M, Takeuchi S, Takeda Y, Jetten AM, Matsuda T. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ. Toxicol Appl Pharmacol 2012;259:338-45. [PMID: 22289359 DOI: 10.1016/j.taap.2012.01.011] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
98 Wang H, Zhang H, Fan K, Zhang D, Hu A, Zeng X, Liu YL, Tan G, Wang H. Frugoside delays osteoarthritis progression via inhibiting miR-155-modulated synovial macrophage M1 polarization. Rheumatology (Oxford) 2021;60:4899-909. [PMID: 33493345 DOI: 10.1093/rheumatology/keab018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
99 He B, Chen Z. Molecular Targets for Small-Molecule Modulators of Circadian Clocks. Curr Drug Metab 2016;17:503-12. [PMID: 26750111 DOI: 10.2174/1389200217666160111124439] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 6.6] [Reference Citation Analysis]
100 Guillot A, Hamdaoui N, Bizy A, Zoltani K, Souktani R, Zafrani ES, Mallat A, Lotersztajn S, Lafdil F. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology. 2014;59:296-306. [PMID: 23813495 DOI: 10.1002/hep.26598] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 9.5] [Reference Citation Analysis]
101 Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12:860-875. [PMID: 23151605 DOI: 10.1038/nrc3380] [Cited by in Crossref: 902] [Cited by in F6Publishing: 796] [Article Influence: 100.2] [Reference Citation Analysis]
102 Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, Wu C, Baloglu E, Schmidt D, Ramesh R, Lobera M, Sundrud MS, Tsai PY, Xiang Z, Wang J, Xu Y, Lin X, Kretschmer K, Rahl PB, Young RA, Zhong Z, Hafler DA, Regev A, Ghosh S, Marson A, Kuchroo VK. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 2014;40:477-89. [PMID: 24745332 DOI: 10.1016/j.immuni.2014.04.004] [Cited by in Crossref: 192] [Cited by in F6Publishing: 168] [Article Influence: 27.4] [Reference Citation Analysis]
103 He B, Nohara K, Park N, Park YS, Guillory B, Zhao Z, Garcia JM, Koike N, Lee CC, Takahashi JS, Yoo SH, Chen Z. The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metab 2016;23:610-21. [PMID: 27076076 DOI: 10.1016/j.cmet.2016.03.007] [Cited by in Crossref: 215] [Cited by in F6Publishing: 172] [Article Influence: 43.0] [Reference Citation Analysis]
104 Eberl G. Development and evolution of RORγt+ cells in a microbe's world. Immunol Rev 2012;245:177-88. [PMID: 22168420 DOI: 10.1111/j.1600-065X.2011.01071.x] [Cited by in Crossref: 50] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
105 van de Pavert SA, Vivier E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. INTIMM. [DOI: 10.1093/intimm/dxv052] [Cited by in Crossref: 12] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
106 Khan PM, El-Gendy Bel-D, Kumar N, Garcia-Ordonez R, Lin L, Ruiz CH, Cameron MD, Griffin PR, Kamenecka TM. Small molecule amides as potent ROR-γ selective modulators. Bioorg Med Chem Lett 2013;23:532-6. [PMID: 23232056 DOI: 10.1016/j.bmcl.2012.11.025] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
107 Eberl G. RORγt, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol 2017;10:27-34. [DOI: 10.1038/mi.2016.86] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
108 Eberl G, Colonna M, Di Santo JP, McKenzie AN. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348:aaa6566. [PMID: 25999512 DOI: 10.1126/science.aaa6566] [Cited by in Crossref: 441] [Cited by in F6Publishing: 396] [Article Influence: 73.5] [Reference Citation Analysis]
109 Sun N, Ma X, Zhou K, Zhu C, Cao Z, Wang Y, Xu J, Fu W. Discovery of novel N-sulfonamide-tetrahydroquinolines as potent retinoic acid receptor-related orphan receptor γt inverse agonists for the treatment of autoimmune diseases. European Journal of Medicinal Chemistry 2020;187:111984. [DOI: 10.1016/j.ejmech.2019.111984] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
110 Kono M, Oda T, Tawada M, Imada T, Banno Y, Taya N, Kawamoto T, Tokuhara H, Tomata Y, Ishii N, Ochida A, Fukase Y, Yukawa T, Fukumoto S, Watanabe H, Uga K, Shibata A, Nakagawa H, Shirasaki M, Fujitani Y, Yamasaki M, Shirai J, Yamamoto S. Discovery of orally efficacious RORγt inverse agonists. Part 2: Design, synthesis, and biological evaluation of novel tetrahydroisoquinoline derivatives. Bioorganic & Medicinal Chemistry 2018;26:470-82. [DOI: 10.1016/j.bmc.2017.12.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
111 Hartley MA, Bourreau E, Rossi M, Castiglioni P, Eren RO, Prevel F, Couppié P, Hickerson SM, Launois P, Beverley SM, Ronet C, Fasel N. Leishmaniavirus-Dependent Metastatic Leishmaniasis Is Prevented by Blocking IL-17A. PLoS Pathog 2016;12:e1005852. [PMID: 27658195 DOI: 10.1371/journal.ppat.1005852] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
112 Banerjee D, Zhao L, Wu L, Palanichamy A, Ergun A, Peng L, Quigley C, Hamann S, Dunstan R, Cullen P, Allaire N, Guertin K, Wang T, Chao J, Loh C, Fontenot JD. Small molecule mediated inhibition of RORγ-dependent gene expression and autoimmune disease pathology in vivo. Immunology 2016;147:399-413. [PMID: 26694902 DOI: 10.1111/imm.12570] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 8.2] [Reference Citation Analysis]
113 Martin F, Apetoh L, Ghiringhelli F. Controversies on the role of Th17 in cancer: a TGF-β-dependent immunosuppressive activity. Trends Mol Med. 2012;18:742-749. [PMID: 23083809 DOI: 10.1016/j.molmed.2012.09.007] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 6.4] [Reference Citation Analysis]
114 Roeleveld DM, van Nieuwenhuijze AE, van den Berg WB, Koenders MI. The Th17 pathway as a therapeutic target in rheumatoid arthritis and other autoimmune and inflammatory disorders. BioDrugs 2013;27:439-52. [PMID: 23620106 DOI: 10.1007/s40259-013-0035-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
115 de Vries RMJM, Meijer FA, Doveston RG, Leijten-van de Gevel IA, Brunsveld L. Cooperativity between the orthosteric and allosteric ligand binding sites of RORγt. Proc Natl Acad Sci U S A 2021;118:e2021287118. [PMID: 33536342 DOI: 10.1073/pnas.2021287118] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
116 Fujita-Sato S, Ito S, Isobe T, Ohyama T, Wakabayashi K, Morishita K, Ando O, Isono F. Structural basis of digoxin that antagonizes RORgamma t receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production. J Biol Chem 2011;286:31409-17. [PMID: 21733845 DOI: 10.1074/jbc.M111.254003] [Cited by in Crossref: 94] [Cited by in F6Publishing: 39] [Article Influence: 9.4] [Reference Citation Analysis]
117 Khor B, Gagnon JD, Goel G, Roche MI, Conway KL, Tran K, Aldrich LN, Sundberg TB, Paterson AM, Mordecai S, Dombkowski D, Schirmer M, Tan PH, Bhan AK, Roychoudhuri R, Restifo NP, O'Shea JJ, Medoff BD, Shamji AF, Schreiber SL, Sharpe AH, Shaw SY, Xavier RJ. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. Elife 2015;4. [PMID: 25998054 DOI: 10.7554/eLife.05920] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
118 Koppel N, Bisanz JE, Pandelia ME, Turnbaugh PJ, Balskus EP. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. Elife 2018;7:e33953. [PMID: 29761785 DOI: 10.7554/eLife.33953] [Cited by in Crossref: 50] [Cited by in F6Publishing: 27] [Article Influence: 16.7] [Reference Citation Analysis]
119 Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020;9:E2044. [PMID: 32906785 DOI: 10.3390/cells9092044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
120 Fridman E, Lichtstein D, Rosen H. Formation of new high density glycogen-microtubule structures is induced by cardiac steroids. J Biol Chem 2012;287:6518-29. [PMID: 22228762 DOI: 10.1074/jbc.M111.273698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
121 Narjes F, Xue Y, von Berg S, Malmberg J, Llinas A, Olsson RI, Jirholt J, Grindebacke H, Leffler A, Hossain N, Lepistö M, Thunberg L, Leek H, Aagaard A, Mcpheat J, Hansson EL, Bäck E, Tångefjord S, Chen R, Xiong Y, Hongbin G, Hansson TG. Potent and Orally Bioavailable Inverse Agonists of RORγt Resulting from Structure-Based Design. J Med Chem 2018;61:7796-813. [DOI: 10.1021/acs.jmedchem.8b00783] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
122 Soroosh P, Wu J, Xue X, Song J, Sutton SW, Sablad M, Yu J, Nelen MI, Liu X, Castro G. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. Proc Natl Acad Sci USA. 2014;111:12163-12168. [PMID: 25092323 DOI: 10.1073/pnas.1322807111] [Cited by in Crossref: 145] [Cited by in F6Publishing: 136] [Article Influence: 20.7] [Reference Citation Analysis]
123 Yang J, Sundrud MS, Skepner J, Yamagata T. Targeting Th17 cells in autoimmune diseases. Trends in Pharmacological Sciences 2014;35:493-500. [DOI: 10.1016/j.tips.2014.07.006] [Cited by in Crossref: 178] [Cited by in F6Publishing: 168] [Article Influence: 25.4] [Reference Citation Analysis]
124 Endo Y, Asou H, Matsugae N, Hirahara K, Shinoda K, Tumes D, Tokuyama H, Yokote K, Nakayama T. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1. Cell Reports 2015;12:1042-55. [DOI: 10.1016/j.celrep.2015.07.014] [Cited by in Crossref: 101] [Cited by in F6Publishing: 90] [Article Influence: 16.8] [Reference Citation Analysis]
125 Lee JS, Cua DJ. The emerging landscape of RORγt biology. Immunity 2014;40:451-2. [PMID: 24745326 DOI: 10.1016/j.immuni.2014.04.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
126 Kimura Y, Fujimura C, Ito Y, Takahashi T, Aiba S. Evaluation of the Multi-ImmunoTox Assay composed of 3 human cytokine reporter cells by examining immunological effects of drugs. Toxicol In Vitro 2014;28:759-68. [PMID: 24603311 DOI: 10.1016/j.tiv.2014.02.013] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
127 Basu R, Hatton RD, Weaver CT. The Th17 family: flexibility follows function. Immunol Rev. 2013;252:89-103. [PMID: 23405897 DOI: 10.1111/imr.12035] [Cited by in Crossref: 166] [Cited by in F6Publishing: 153] [Article Influence: 20.8] [Reference Citation Analysis]
128 Crezee T, Tesselaar MH, Nagarajah J, Corver WE, Morreau J, Pritchard C, Kimura S, Kuiper JG, van Engen-van Grunsven I, Smit JWA, Netea-Maier RT, Plantinga TS. Digoxin treatment reactivates in vivo radioactive iodide uptake and correlates with favorable clinical outcome in non-medullary thyroid cancer. Cell Oncol (Dordr) 2021;44:611-25. [PMID: 33534128 DOI: 10.1007/s13402-021-00588-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Eggenhofer E, Rovira J, Sabet-baktach M, Groell A, Scherer MN, Dahlke M, Farkas SA, Loss M, Koehl GE, Lang SA, Melter M, Schlitt HJ, Geissler EK, Kroemer A. Unconventional RORγt + T Cells Drive Hepatic Ischemia Reperfusion Injury. J I 2013;191:480-7. [DOI: 10.4049/jimmunol.1202975] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
130 Xiao F, Lin X, Tian J, Wang X, Chen Q, Rui K, Ma J, Wang S, Wang Q, Wang X, Liu D, Sun L, Lu L. Proteasome inhibition suppresses Th17 cell generation and ameliorates autoimmune development in experimental Sjögren's syndrome. Cell Mol Immunol 2017. [PMID: 28690324 DOI: 10.1038/cmi.2017.8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
131 Endo Y, Yokote K, Nakayama T. The obesity-related pathology and Th17 cells. Cell Mol Life Sci 2017;74:1231-45. [PMID: 27757507 DOI: 10.1007/s00018-016-2399-3] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
132 Griffett K, Burris TP. The mammalian clock and chronopharmacology. Bioorg Med Chem Lett 2013;23:1929-34. [PMID: 23481644 DOI: 10.1016/j.bmcl.2013.02.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
133 Lo Presti E, Di Mitri R, Pizzolato G, Mocciaro F, Dieli F, Meraviglia S. γδ cells and tumor microenvironment: A helpful or a dangerous liason? J Leukoc Biol 2018;103:485-92. [PMID: 29345336 DOI: 10.1002/JLB.5MR0717-275RR] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
134 van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, Almeida FF, Ibiza S, Barbosa I, Goverse G, Labão-Almeida C, Godinho-Silva C, Konijn T, Schooneman D, O'Toole T, Mizee MR, Habani Y, Haak E, Santori FR, Littman DR, Schulte-Merker S, Dzierzak E, Simas JP, Mebius RE, Veiga-Fernandes H. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 2014;508:123-7. [PMID: 24670648 DOI: 10.1038/nature13158] [Cited by in Crossref: 251] [Cited by in F6Publishing: 224] [Article Influence: 35.9] [Reference Citation Analysis]
135 Lee Y, Collins M, Kuchroo VK. Unexpected targets and triggers of autoimmunity. J Clin Immunol 2014;34 Suppl 1:S56-60. [PMID: 24789684 DOI: 10.1007/s10875-014-0040-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
136 Ashbrook AW, Lentscher AJ, Zamora PF, Silva LA, May NA, Bauer JA, Morrison TE, Dermody TS. Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection. mBio 2016;7:e00693-16. [PMID: 27222471 DOI: 10.1128/mBio.00693-16] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
137 Li G, Ma S, Yang L, Ji S, Fang Z, Zhang G, Wang L, Zhong J, Xiong Y, Wang J, Huang S, Li L, Xiang R, Niu D, Chen Y, Yang S. Drug Discovery against Psoriasis: Identification of a New Potent FMS-like Tyrosine Kinase 3 (FLT3) Inhibitor, 1-(4-((1 H -Pyrazolo[3,4- d ]pyrimidin-4-yl)oxy)-3-fluorophenyl)-3-(5-( tert -butyl)isoxazol-3-yl)urea, That Showed Potent Activity in a Psoriatic Animal Model. J Med Chem 2016;59:8293-305. [DOI: 10.1021/acs.jmedchem.6b00604] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 4.4] [Reference Citation Analysis]
138 Silva-Santos B. γδ cells making IL-17. Blood 2011;118:3-5. [PMID: 21737606 DOI: 10.1182/blood-2011-05-351726] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
139 Shen R, Deng W, Li C, Zeng G. A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Int Immunopharmacol 2015;24:224-31. [PMID: 25528476 DOI: 10.1016/j.intimp.2014.12.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
140 Zhou X, Chen H, Wei F, Zhao Q, Su Q, Lei Y, Yin M, Tian X, Liu Z, Yu B, Bai C, He X, Huang Z. The Inhibitory Effects of Pentacyclic Triterpenes from Loquat Leaf against Th17 Differentiation. Immunol Invest 2020;49:632-47. [PMID: 31795780 DOI: 10.1080/08820139.2019.1698599] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Sun N, Huang Y, Yu M, Zhao Y, Chen JA, Zhu C, Song M, Guo H, Xie Q, Wang Y. Discovery of carboxyl-containing biaryl ureas as potent RORγt inverse agonists. Eur J Med Chem 2020;202:112536. [PMID: 32698100 DOI: 10.1016/j.ejmech.2020.112536] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
142 Talia DM, Deliyanti D, Agrotis A, Wilkinson-Berka JL. Inhibition of the Nuclear Receptor RORγ and Interleukin-17A Suppresses Neovascular Retinopathy: Involvement of Immunocompetent Microglia. Arterioscler Thromb Vasc Biol 2016;36:1186-96. [PMID: 27055905 DOI: 10.1161/ATVBAHA.115.307080] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
143 Xu T, Zhang M, Laurent T, Xie M, Ding S. Concise review: chemical approaches for modulating lineage-specific stem cells and progenitors. Stem Cells Transl Med 2013;2:355-61. [PMID: 23580542 DOI: 10.5966/sctm.2012-0172] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
144 Borrmann H, McKeating JA, Zhuang X. The Circadian Clock and Viral Infections. J Biol Rhythms 2021;36:9-22. [PMID: 33161818 DOI: 10.1177/0748730420967768] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
145 Sato A, Fukase Y, Kono M, Ochida A, Oda T, Sasaki Y, Ishii N, Tomata Y, Fukumoto S, Imai YN, Uga K, Shibata A, Yamasaki M, Nakagawa H, Shirasaki M, Skene R, Hoffman I, Sang B, Snell G, Shirai J, Yamamoto S. Design and Synthesis of Conformationally Constrained RORγt Inverse Agonists. ChemMedChem 2019;14:1917-32. [DOI: 10.1002/cmdc.201900416] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
146 Gao W, Wu Y, Tian Y, Ni B. Yin–Yang Regulation of RORγt Protein Complex in Th17 Differentiation. International Reviews of Immunology 2015;34:295-304. [DOI: 10.3109/08830185.2014.969423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
147 Alberdi M, Iglesias M, Tejedor S, Merino R, López-Rodríguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFNγ expression by the transcription factor NFAT5. Immunol Cell Biol 2017;95:56-67. [PMID: 27479742 DOI: 10.1038/icb.2016.69] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
148 Wang T, Banerjee D, Bohnert T, Chao J, Enyedy I, Fontenot J, Guertin K, Jones H, Lin EY, Marcotte D, Talreja T, Van Vloten K. Discovery of novel pyrazole-containing benzamides as potent RORγ inverse agonists. Bioorganic & Medicinal Chemistry Letters 2015;25:2985-90. [DOI: 10.1016/j.bmcl.2015.05.028] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
149 Waite JC, Skokos D. Th17 response and inflammatory autoimmune diseases. Int J Inflam 2012;2012:819467. [PMID: 22229105 DOI: 10.1155/2012/819467] [Cited by in Crossref: 125] [Cited by in F6Publishing: 107] [Article Influence: 12.5] [Reference Citation Analysis]
150 Zhang D, Ciciriello F, Anjos SM, Carissimo A, Liao J, Carlile GW, Balghi H, Robert R, Luini A, Hanrahan JW, Thomas DY. Ouabain Mimics Low Temperature Rescue of F508del-CFTR in Cystic Fibrosis Epithelial Cells. Front Pharmacol 2012;3:176. [PMID: 23060796 DOI: 10.3389/fphar.2012.00176] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
151 Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, Lee SH, Codding CE, Kellner H, Ikawa T. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41:414-421. [PMID: 24429175 DOI: 10.3899/jrheum.130637] [Cited by in Crossref: 73] [Cited by in F6Publishing: 65] [Article Influence: 10.4] [Reference Citation Analysis]
152 Reynolds G, Cooles FA, Isaacs JD, Hilkens CM. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014;10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
153 García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res 2019;264:22-31. [PMID: 30794895 DOI: 10.1016/j.virusres.2019.02.011] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 16.5] [Reference Citation Analysis]
154 Solt LA, Kumar N, He Y, Kamenecka TM, Griffin PR, Burris TP. Identification of a selective RORγ ligand that suppresses T(H)17 cells and stimulates T regulatory cells. ACS Chem Biol 2012;7:1515-9. [PMID: 22769242 DOI: 10.1021/cb3002649] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 6.1] [Reference Citation Analysis]
155 Vigne S, Chalmin F, Duc D, Clottu AS, Apetoh L, Lobaccaro JA, Christen I, Zhang J, Pot C. IL-27-Induced Type 1 Regulatory T-Cells Produce Oxysterols that Constrain IL-10 Production. Front Immunol 2017;8:1184. [PMID: 28993775 DOI: 10.3389/fimmu.2017.01184] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
156 Meijer FA, Doveston RG, de Vries RMJM, Vos GM, Vos AAA, Leysen S, Scheepstra M, Ottmann C, Milroy LG, Brunsveld L. Ligand-Based Design of Allosteric Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists. J Med Chem 2020;63:241-59. [PMID: 31821760 DOI: 10.1021/acs.jmedchem.9b01372] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
157 Sanati G, Aryan Z, Barbadi M, Rezaei N. Innate lymphoid cells are pivotal actors in allergic, inflammatory and autoimmune diseases. Expert Review of Clinical Immunology 2015;11:885-95. [DOI: 10.1586/1744666x.2015.1050382] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
158 Ren J, Li B. The Functional Stability of FOXP3 and RORγt in Treg and Th17 and Their Therapeutic Applications. Adv Protein Chem Struct Biol 2017;107:155-89. [PMID: 28215223 DOI: 10.1016/bs.apcsb.2016.10.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
159 Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA. TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol. 2012;129:1438-149; 1438-149;. [PMID: 22657405 DOI: 10.1016/j.jaci.2012.05.003] [Cited by in Crossref: 120] [Cited by in F6Publishing: 103] [Article Influence: 15.0] [Reference Citation Analysis]
160 Wang R, Solt LA. Metabolism of murine TH 17 cells: Impact on cell fate and function. Eur J Immunol 2016;46:807-16. [PMID: 26893133 DOI: 10.1002/eji.201545788] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
161 Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: Inhibition of cytokine signaling in immune-mediated diseases. J Autoimmun 2017;85:20-31. [PMID: 28676205 DOI: 10.1016/j.jaut.2017.06.006] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
162 Wu X, Wang J, Liu K, Zhu J, Zhang H. Are Th17 cells and their cytokines a therapeutic target in Guillain–Barré syndrome? Expert Opinion on Therapeutic Targets 2015;20:209-22. [DOI: 10.1517/14728222.2016.1086751] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
163 Roedder S, Kimura N, Okamura H, Hsieh SC, Gong Y, Sarwal MM. Significance and suppression of redundant IL17 responses in acute allograft rejection by bioinformatics based drug repositioning of fenofibrate. PLoS One 2013;8:e56657. [PMID: 23437201 DOI: 10.1371/journal.pone.0056657] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
164 Chang MR, He Y, Khan TM, Kuruvilla DS, Garcia-Ordonez R, Corzo CA, Unger TJ, White DW, Khan S, Lin L, Cameron MD, Kamenecka TM, Griffin PR. Antiobesity Effect of a Small Molecule Repressor of RORγ. Mol Pharmacol 2015;88:48-56. [PMID: 25904554 DOI: 10.1124/mol.114.097485] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
165 Allam G, Abdel-Moneim A, Gaber AM. The pleiotropic role of interleukin-17 in atherosclerosis. Biomed Pharmacother 2018;106:1412-8. [PMID: 30119214 DOI: 10.1016/j.biopha.2018.07.110] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
166 Razi S, Baradaran Noveiry B, Keshavarz-Fathi M, Rezaei N. IL-17 and colorectal cancer: From carcinogenesis to treatment. Cytokine 2019;116:7-12. [PMID: 30684916 DOI: 10.1016/j.cyto.2018.12.021] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
167 Nikolajczyk BS, Jagannathan-Bogdan M, Denis GV. The outliers become a stampede as immunometabolism reaches a tipping point. Immunol Rev 2012;249:253-75. [PMID: 22889227 DOI: 10.1111/j.1600-065X.2012.01142.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
168 Schafflick D, Kieseier BC, Wiendl H, Meyer Zu Horste G. Novel pathomechanisms in inflammatory neuropathies. J Neuroinflammation 2017;14:232. [PMID: 29179723 DOI: 10.1186/s12974-017-1001-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
169 Nakamura Y, Igaki K, Uga K, Shibata A, Yamauchi H, Yamasaki M, Tsuchimori N. Pharmacological evaluation of TAK-828F, a novel orally available RORγt inverse agonist, on murine chronic experimental autoimmune encephalomyelitis model. Journal of Neuroimmunology 2019;335:577016. [DOI: 10.1016/j.jneuroim.2019.577016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
170 Dhar TGM, Zhao Q, Markby DW. Targeting the Nuclear Hormone Receptor RORγt for the Treatment of Autoimmune and Inflammatory Disorders. Elsevier; 2013. pp. 169-82. [DOI: 10.1016/b978-0-12-417150-3.00012-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 2.1] [Reference Citation Analysis]
171 Benned-Jensen T, Norn C, Laurent S, Madsen CM, Larsen HM, Arfelt KN, Wolf RM, Frimurer T, Sailer AW, Rosenkilde MM. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). J Biol Chem 2012;287:35470-83. [PMID: 22875855 DOI: 10.1074/jbc.M112.387894] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
172 Ding Q, Zhao M, Yu B, Bai C, Huang Z. Identification of Tetraazacyclic Compounds as Novel Potent Inhibitors Antagonizing RORγt Activity and Suppressing Th17 Cell Differentiation. PLoS One 2015;10:e0137711. [PMID: 26368822 DOI: 10.1371/journal.pone.0137711] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
173 Peters A, Lee Y, Kuchroo VK. The many faces of Th17 cells. Curr Opin Immunol 2011;23:702-6. [PMID: 21899997 DOI: 10.1016/j.coi.2011.08.007] [Cited by in Crossref: 169] [Cited by in F6Publishing: 147] [Article Influence: 16.9] [Reference Citation Analysis]
174 Meijer FA, van den Oetelaar MCM, Doveston RG, Sampers ENR, Brunsveld L. Covalent Occlusion of the RORγt Ligand Binding Pocket Allows Unambiguous Targeting of an Allosteric Site. ACS Med Chem Lett 2021;12:631-9. [PMID: 33854703 DOI: 10.1021/acsmedchemlett.1c00029] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
175 Gill KS, Fernandes P, O'Donovan TR, McKenna SL, Doddakula KK, Power DG, Soden DM, Forde PF. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochim Biophys Acta 2016;1866:87-105. [PMID: 27373814 DOI: 10.1016/j.bbcan.2016.06.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
176 Skepner J, Ramesh R, Trocha M, Schmidt D, Baloglu E, Lobera M, Carlson T, Hill J, Orband-miller LA, Barnes A, Boudjelal M, Sundrud M, Ghosh S, Yang J. Pharmacologic Inhibition of RORγt Regulates Th17 Signature Gene Expression and Suppresses Cutaneous Inflammation In Vivo. J I 2014;192:2564-75. [DOI: 10.4049/jimmunol.1302190] [Cited by in Crossref: 104] [Cited by in F6Publishing: 95] [Article Influence: 14.9] [Reference Citation Analysis]
177 Reboldi A, Dang E. Cholesterol metabolism in innate and adaptive response. F1000Res 2018;7:F1000 Faculty Rev-1647. [PMID: 30364153 DOI: 10.12688/f1000research.15500.1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
178 Roeleveld DM, Koenders MI. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine 2015;74:101-7. [DOI: 10.1016/j.cyto.2014.10.006] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 12.2] [Reference Citation Analysis]
179 Xu T, Wang X, Zhong B, Nurieva RI, Ding S, Dong C. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORgamma t protein. J Biol Chem. 2011;286:22707-22710. [PMID: 21566134 DOI: 10.1074/jbc.c111.250407] [Cited by in Crossref: 143] [Cited by in F6Publishing: 68] [Article Influence: 14.3] [Reference Citation Analysis]
180 Lee J, Choi J, Lee W, Ko K, Kim S. Dehydrodiconiferyl alcohol (DHCA) modulates the differentiation of Th17 and Th1 cells and suppresses experimental autoimmune encephalomyelitis. Mol Immunol 2015;68:434-44. [PMID: 26477735 DOI: 10.1016/j.molimm.2015.09.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
181 Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585-600. [PMID: 25145755 DOI: 10.1038/nri3707] [Cited by in Crossref: 829] [Cited by in F6Publishing: 733] [Article Influence: 118.4] [Reference Citation Analysis]
182 Eberl G. Immunity by equilibrium. Nat Rev Immunol 2016;16:524-32. [PMID: 27396446 DOI: 10.1038/nri.2016.75] [Cited by in Crossref: 81] [Cited by in F6Publishing: 66] [Article Influence: 16.2] [Reference Citation Analysis]
183 Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, Marriott CL, Brucklacher-Waldert V, Veldhoen M, Kelsen J, Baldassano RN, Sonnenberg GF. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med 2016;22:319-23. [PMID: 26878233 DOI: 10.1038/nm.4046] [Cited by in Crossref: 136] [Cited by in F6Publishing: 129] [Article Influence: 27.2] [Reference Citation Analysis]
184 Guendisch U, Weiss J, Ecoeur F, Riker JC, Kaupmann K, Kallen J, Hintermann S, Orain D, Dawson J, Billich A, Guntermann C. Pharmacological inhibition of RORγt suppresses the Th17 pathway and alleviates arthritis in vivo. PLoS One 2017;12:e0188391. [PMID: 29155882 DOI: 10.1371/journal.pone.0188391] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
185 Takeda Y, Kang HS, Jetten AM. Analysis of the Transcriptional Activity of Retinoic Acid-Related Orphan Receptors (RORs) and Inhibition by Inverse Agonists. Methods Mol Biol 2019;1966:193-202. [PMID: 31041748 DOI: 10.1007/978-1-4939-9195-2_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
186 Li J, Wei B, Guo A, Liu C, Huang S, Du F, Fan W, Bao C, Pei G. Deficiency of β-arrestin1 ameliorates collagen-induced arthritis with impaired TH17 cell differentiation. Proc Natl Acad Sci U S A 2013;110:7395-400. [PMID: 23589893 DOI: 10.1073/pnas.1221608110] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
187 Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol Rev. 2013;252:52-77. [PMID: 23405895 DOI: 10.1111/imr.12029] [Cited by in Crossref: 129] [Cited by in F6Publishing: 118] [Article Influence: 16.1] [Reference Citation Analysis]
188 Komatsu N, Takayanagi H. Arthritogenic T cells in autoimmune arthritis. The International Journal of Biochemistry & Cell Biology 2015;58:92-6. [DOI: 10.1016/j.biocel.2014.11.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
189 Tian J, Sun N, Yu M, Gu X, Xie Q, Shao L, Liu J, Liu L, Wang Y. Discovery of N-indanyl benzamides as potent RORγt inverse agonists. European Journal of Medicinal Chemistry 2019;167:37-48. [DOI: 10.1016/j.ejmech.2019.01.082] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
190 Lin H, Song P, Zhao Y, Xue LJ, Liu Y, Chu CQ. Targeting Th17 Cells with Small Molecules and Small Interference RNA. Mediators Inflamm 2015;2015:290657. [PMID: 26792955 DOI: 10.1155/2015/290657] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
191 Shao S, Yu X, Shen L. Autoimmune thyroid diseases and Th17/Treg lymphocytes. Life Sci 2018;192:160-5. [PMID: 29158050 DOI: 10.1016/j.lfs.2017.11.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
192 Solt LA, Burris TP. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab 2012;23:619-27. [PMID: 22789990 DOI: 10.1016/j.tem.2012.05.012] [Cited by in Crossref: 125] [Cited by in F6Publishing: 106] [Article Influence: 13.9] [Reference Citation Analysis]
193 Heasley B. Chemical synthesis of the cardiotonic steroid glycosides and related natural products. Chemistry 2012;18:3092-120. [PMID: 22354477 DOI: 10.1002/chem.201103733] [Cited by in Crossref: 65] [Cited by in F6Publishing: 34] [Article Influence: 7.2] [Reference Citation Analysis]
194 Zhang Y, Jin Y, Lin Y, Lin L, Cao Y, Wang D, Zheng C. Adipose-Derived Mesenchymal Stem Cells Ameliorate Ulcerative Colitis Through miR-1236 Negatively Regulating the Expression of Retinoid-Related Orphan Receptor Gamma. DNA and Cell Biology 2015;34:618-25. [DOI: 10.1089/dna.2015.2961] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
195 Huh JR, Englund EE, Wang H, Huang R, Huang P, Rastinejad F, Inglese J, Austin CP, Johnson RL, Huang W, Littman DR. Identification of Potent and Selective Diphenylpropanamide RORγ Inhibitors. ACS Med Chem Lett 2013;4:79-84. [PMID: 24040486 DOI: 10.1021/ml300286h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 4.7] [Reference Citation Analysis]
196 Wang Y, Cai W, Cheng Y, Yang T, Liu Q, Zhang G, Meng Q, Han F, Huang Y, Zhou L, Xiang Z, Zhao YG, Xu Y, Cheng Z, Lu S, Wu Q, Xiang JN, Elliott JD, Leung S, Ren F, Lin X. Discovery of Biaryl Amides as Potent, Orally Bioavailable, and CNS Penetrant RORγt Inhibitors. ACS Med Chem Lett 2015;6:787-92. [PMID: 26191367 DOI: 10.1021/acsmedchemlett.5b00122] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
197 Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine & Growth Factor Reviews 2013;24:319-33. [DOI: 10.1016/j.cytogfr.2013.01.005] [Cited by in Crossref: 134] [Cited by in F6Publishing: 116] [Article Influence: 16.8] [Reference Citation Analysis]
198 Chang H, Wang Y, Li G, Zhang L, Zhang GW, Liao YC, Hanawa H, Zou J. Effect of hydrodynamics-based delivery of IL-18BP fusion gene on rat experimental autoimmune myocarditis. Clin Exp Med 2014;14:397-408. [PMID: 24122347 DOI: 10.1007/s10238-013-0260-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
199 van der Waart AB, van der Velden WJ, Blijlevens NM, Dolstra H. Targeting the IL17 Pathway for the Prevention of Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation 2014;20:752-9. [DOI: 10.1016/j.bbmt.2014.02.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
200 Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021;20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Reference Citation Analysis]
201 Song X, Chen J, Zhao M, Zhang C, Yu Y, Lonard DM, Chow DC, Palzkill T, Xu J, O'Malley BW, Wang J. Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc Natl Acad Sci U S A 2016;113:4970-5. [PMID: 27084884 DOI: 10.1073/pnas.1604274113] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 9.4] [Reference Citation Analysis]
202 Yang MG, Beaudoin-Bertrand M, Xiao Z, Marcoux D, Weigelt CA, Yip S, Wu DR, Ruzanov M, Sack JS, Wang J, Yarde M, Li S, Shuster DJ, Xie JH, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Khandelwal P, Karmakar A, Basha M, Babu V, Gupta AK, Mathur A, Salter-Cid L, Denton R, Zhao Q, Dhar TGM. Tricyclic-Carbocyclic RORγt Inverse Agonists-Discovery of BMS-986313. J Med Chem 2021;64:2714-24. [PMID: 33591748 DOI: 10.1021/acs.jmedchem.0c01992] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
203 Karaś K, Sałkowska A, Sobalska-Kwapis M, Walczak-Drzewiecka A, Strapagiel D, Dastych J, Bachorz RA, Ratajewski M. Digoxin, an Overlooked Agonist of RORγ/RORγT. Front Pharmacol 2018;9:1460. [PMID: 30666196 DOI: 10.3389/fphar.2018.01460] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
204 Huang P, Chandra V, Rastinejad F. Retinoic acid actions through mammalian nuclear receptors. Chem Rev 2014;114:233-54. [PMID: 24308533 DOI: 10.1021/cr400161b] [Cited by in Crossref: 75] [Cited by in F6Publishing: 54] [Article Influence: 9.4] [Reference Citation Analysis]
205 Huh JR, Littman DR. Small molecule inhibitors of RORγt: targeting Th17 cells and other applications. Eur J Immunol 2012;42:2232-7. [PMID: 22949321 DOI: 10.1002/eji.201242740] [Cited by in Crossref: 137] [Cited by in F6Publishing: 127] [Article Influence: 17.1] [Reference Citation Analysis]
206 Shaw SY, Tran K, Castoreno AB, Peloquin JM, Lassen KG, Khor B, Aldrich LN, Tan PH, Graham DB, Kuballa P, Goel G, Daly MJ, Shamji AF, Schreiber SL, Xavier RJ. Selective modulation of autophagy, innate immunity, and adaptive immunity by small molecules. ACS Chem Biol 2013;8:2724-33. [PMID: 24168452 DOI: 10.1021/cb400352d] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
207 Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol 2014;14:435-46. [PMID: 24962260 DOI: 10.1038/nri3701] [Cited by in Crossref: 246] [Cited by in F6Publishing: 219] [Article Influence: 35.1] [Reference Citation Analysis]
208 Ribeiro RFN, Cavadas C, Silva MMC. Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discov Today 2021;26:1620-41. [PMID: 33781946 DOI: 10.1016/j.drudis.2021.03.015] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
209 Xue X, Soroosh P, De Leon-Tabaldo A, Luna-Roman R, Sablad M, Rozenkrants N, Yu J, Castro G, Banie H, Fung-Leung WP, Santamaria-Babi L, Schlueter T, Albers M, Leonard K, Budelsky AL, Fourie AM. Pharmacologic modulation of RORγt translates to efficacy in preclinical and translational models of psoriasis and inflammatory arthritis. Sci Rep 2016;6:37977. [PMID: 27905482 DOI: 10.1038/srep37977] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 10.2] [Reference Citation Analysis]
210 Lee J, Baek S, Lee J, Lee J, Lee DG, Park MK, Cho ML, Park SH, Kwok SK. Digoxin ameliorates autoimmune arthritis via suppression of Th17 differentiation. Int Immunopharmacol 2015;26:103-11. [PMID: 25819229 DOI: 10.1016/j.intimp.2015.03.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
211 Mjösberg J, Bernink J, Peters C, Spits H. Transcriptional control of innate lymphoid cells: HIGHLIGHTS. Eur J Immunol 2012;42:1916-23. [DOI: 10.1002/eji.201242639] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 5.2] [Reference Citation Analysis]
212 Kummer DA, Cummings MD, Abad M, Barbay J, Castro G, Wolin R, Kreutter KD, Maharoof U, Milligan C, Nishimura R, Pierce J, Schalk-hihi C, Spurlino J, Urbanski M, Venkatesan H, Wang A, Woods C, Xue X, Edwards JP, Fourie AM, Leonard K. Identification and structure activity relationships of quinoline tertiary alcohol modulators of RORγt. Bioorganic & Medicinal Chemistry Letters 2017;27:2047-57. [DOI: 10.1016/j.bmcl.2017.02.044] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
213 Fan H, Wang A, Wang Y, Sun Y, Han J, Chen W, Wang S, Wu Y, Lu Y. Innate Lymphoid Cells: Regulators of Gut Barrier Function and Immune Homeostasis. J Immunol Res 2019;2019:2525984. [PMID: 31930146 DOI: 10.1155/2019/2525984] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
214 Takahashi M, Muromoto R, Kojima H, Takeuchi S, Kitai Y, Kashiwakura JI, Matsuda T. Biochanin A enhances RORγ activity through STAT3-mediated recruitment of NCOA1. Biochem Biophys Res Commun 2017;489:503-8. [PMID: 28579428 DOI: 10.1016/j.bbrc.2017.05.181] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
215 Wei Z, Wang Y, Zhang K, Liao Y, Ye P, Wu J, Wang Y, Li F, Yao Y, Zhou Y, Liu J. Inhibiting the Th17/IL-17A–Related Inflammatory Responses With Digoxin Confers Protection Against Experimental Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2014;34:2429-38. [DOI: 10.1161/atvbaha.114.304435] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
216 Park TY, Jang Y, Kim W, Shin J, Toh HT, Kim CH, Yoon HS, Leblanc P, Kim KS. Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep 2019;9:15559. [PMID: 31664129 DOI: 10.1038/s41598-019-52085-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
217 Ding Q, Zhao M, Bai C, Yu B, Huang Z. Inhibition of RORγt activity and Th17 differentiation by a set of novel compounds. BMC Immunol 2015;16:32. [PMID: 26021566 DOI: 10.1186/s12865-015-0097-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
218 Hirota K, Ahlfors H, Duarte JH, Stockinger B. Regulation and function of innate and adaptive interleukin-17-producing cells. EMBO Rep 2012;13:113-20. [PMID: 22193778 DOI: 10.1038/embor.2011.248] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 5.6] [Reference Citation Analysis]
219 Komatsu N, Takayanagi H. Inflammation and bone destruction in arthritis: synergistic activity of immune and mesenchymal cells in joints. Front Immunol 2012;3:77. [PMID: 22566958 DOI: 10.3389/fimmu.2012.00077] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
220 Chellappa S, Hugenschmidt H, Hagness M, Line PD, Labori KJ, Wiedswang G, Taskén K, Aandahl EM. Regulatory T cells that co-express RORγt and FOXP3 are pro-inflammatory and immunosuppressive and expand in human pancreatic cancer. Oncoimmunology 2016;5:e1102828. [PMID: 27141387 DOI: 10.1080/2162402X.2015.1102828] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
221 Mullican SE, Dispirito JR, Lazar MA. The orphan nuclear receptors at their 25-year reunion. J Mol Endocrinol 2013;51:T115-40. [PMID: 24096517 DOI: 10.1530/JME-13-0212] [Cited by in Crossref: 59] [Cited by in F6Publishing: 17] [Article Influence: 7.4] [Reference Citation Analysis]
222 Penny HA, Hodge SH, Hepworth MR. Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol 2018;40:357-70. [PMID: 29737384 DOI: 10.1007/s00281-018-0687-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
223 Quintana FJ. Regulation of central nervous system autoimmunity by the aryl hydrocarbon receptor. Semin Immunopathol 2013;35:627-35. [PMID: 23999753 DOI: 10.1007/s00281-013-0397-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
224 Isono F, Fujita-Sato S, Ito S. Inhibiting RORγt/Th17 axis for autoimmune disorders. Drug Discov Today. 2014;19:1205-1211. [PMID: 24792721 DOI: 10.1016/j.drudis.2014.04.012] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 7.6] [Reference Citation Analysis]
225 Huang W, Littman DR. Regulation of RORγt in Inflammatory Lymphoid Cell Differentiation. Cold Spring Harb Symp Quant Biol 2015;80:257-63. [PMID: 26968628 DOI: 10.1101/sqb.2015.80.027615] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
226 Baschant U, Frappart L, Rauchhaus U, Bruns L, Reichardt HM, Kamradt T, Bräuer R, Tuckermann JP. Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc Natl Acad Sci U S A 2011;108:19317-22. [PMID: 22084093 DOI: 10.1073/pnas.1105857108] [Cited by in Crossref: 75] [Cited by in F6Publishing: 64] [Article Influence: 7.5] [Reference Citation Analysis]
227 Sun L, He C, Nair L, Yeung J, Egwuagu CE. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 2015;75:249-55. [PMID: 25796985 DOI: 10.1016/j.cyto.2015.01.030] [Cited by in Crossref: 89] [Cited by in F6Publishing: 82] [Article Influence: 14.8] [Reference Citation Analysis]
228 Solt LA, Kamenecka TM, Burris TP. LXR-mediated inhibition of CD4+ T helper cells. PLoS One 2012;7:e46615. [PMID: 23029557 DOI: 10.1371/journal.pone.0046615] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
229 Grabrijan K, Strašek N, Gobec S. Monocyclic beta-lactams for therapeutic uses: a patent overview (2010-2020). Expert Opin Ther Pat 2021;31:247-66. [PMID: 33327805 DOI: 10.1080/13543776.2021.1865919] [Reference Citation Analysis]
230 Bystrom J, Taher TE, Muhyaddin MS, Clanchy FI, Mangat P, Jawad AS, Williams RO, Mageed RA. Harnessing the Therapeutic Potential of Th17 Cells. Mediators Inflamm 2015;2015:205156. [PMID: 26101460 DOI: 10.1155/2015/205156] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
231 Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, Wu C, Karwacz K, Xiao S, Jorgolli M, Gennert D, Satija R, Shakya A, Lu DY, Trombetta JJ, Pillai MR, Ratcliffe PJ, Coleman ML, Bix M, Tantin D, Park H, Kuchroo VK, Regev A. Dynamic regulatory network controlling TH17 cell differentiation. Nature 2013;496:461-8. [PMID: 23467089 DOI: 10.1038/nature11981] [Cited by in Crossref: 463] [Cited by in F6Publishing: 392] [Article Influence: 57.9] [Reference Citation Analysis]
232 Chang C, Loo CS, Zhao X, Solt LA, Liang Y, Bapat SP, Cho H, Kamenecka TM, Leblanc M, Atkins AR, Yu RT, Downes M, Burris TP, Evans RM, Zheng Y. The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proc Natl Acad Sci U S A 2019;116:18528-36. [PMID: 31455731 DOI: 10.1073/pnas.1907563116] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
233 Sun P, Feng LX, Zhang DM, Liu M, Liu W, Mi T, Wu WY, Jiang BH, Yang M, Hu LH, Guo DA, Liu X. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly. Acta Pharmacol Sin 2016;37:908-18. [PMID: 27238210 DOI: 10.1038/aps.2016.30] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
234 Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic Potential of Targeting the Th17/Treg Axis in Autoimmune Disorders. Molecules 2017;22:E134. [PMID: 28098832 DOI: 10.3390/molecules22010134] [Cited by in Crossref: 88] [Cited by in F6Publishing: 71] [Article Influence: 22.0] [Reference Citation Analysis]
235 Sandler N, Kaczmarek E, Itagaki K, Zheng Y, Otterbein L, Khabbaz K, Liu D, Senthilnathan V, Gruen RL, Hauser CJ. Mitochondrial DAMPs Are Released During Cardiopulmonary Bypass Surgery and Are Associated With Postoperative Atrial Fibrillation. Heart Lung Circ 2018;27:122-9. [PMID: 28487062 DOI: 10.1016/j.hlc.2017.02.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 8.5] [Reference Citation Analysis]
236 van Niel MB, Fauber BP, Cartwright M, Gaines S, Killen JC, René O, Ward SI, de Leon Boenig G, Deng Y, Eidenschenk C, Everett C, Gancia E, Ganguli A, Gobbi A, Hawkins J, Johnson AR, Kiefer JR, La H, Lockey P, Norman M, Ouyang W, Qin A, Wakes N, Waszkowycz B, Wong H. A reversed sulfonamide series of selective RORc inverse agonists. Bioorg Med Chem Lett 2014;24:5769-76. [PMID: 25453817 DOI: 10.1016/j.bmcl.2014.10.037] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
237 Zhang W, Zhang J, Fang L, Zhou L, Wang S, Xiang Z, Li Y, Wisely B, Zhang G, An G, Wang Y, Leung S, Zhong Z. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds. Mol Pharmacol 2012;82:583-90. [PMID: 22700697 DOI: 10.1124/mol.112.078667] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
238 Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The Role of IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases. Mediators Inflamm 2017;2017:3908061. [PMID: 28316374 DOI: 10.1155/2017/3908061] [Cited by in Crossref: 179] [Cited by in F6Publishing: 142] [Article Influence: 44.8] [Reference Citation Analysis]
239 Coban N, Gulec C, Ozsait-selcuk B, Erginel-unaltuna N. CYP19A1 , MIF and ABCA1 genes are targets of the RORα in monocyte and endothelial cells: RORα regulates ABCA1 , CYP19A1 and MIF genes. Cell Biol Int 2017;41:163-76. [DOI: 10.1002/cbin.10712] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
240 Schleussner N, Merkel O, Costanza M, Liang HC, Hummel F, Romagnani C, Durek P, Anagnostopoulos I, Hummel M, Jöhrens K, Niedobitek A, Griffin PR, Piva R, Sczakiel HL, Woessmann W, Damm-Welk C, Hinze C, Stoiber D, Gillissen B, Turner SD, Kaergel E, von Hoff L, Grau M, Lenz G, Dörken B, Scheidereit C, Kenner L, Janz M, Mathas S. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 2018;32:1994-2007. [PMID: 29588546 DOI: 10.1038/s41375-018-0045-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
241 Besnard AG, Togbe D, Couillin I, Tan Z, Zheng SG, Erard F, Le Bert M, Quesniaux V, Ryffel B. Inflammasome-IL-1-Th17 response in allergic lung inflammation. J Mol Cell Biol 2012;4:3-10. [PMID: 22147847 DOI: 10.1093/jmcb/mjr042] [Cited by in Crossref: 99] [Cited by in F6Publishing: 92] [Article Influence: 9.9] [Reference Citation Analysis]
242 Truchetet ME, Mossalayi MD, Boniface K. IL-17 in the rheumatologist's line of sight. Biomed Res Int 2013;2013:295132. [PMID: 23984335 DOI: 10.1155/2013/295132] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
243 Elloso MM, Gomez-angelats M, Fourie AM. Targeting the Th17 pathway in psoriasis. Journal of Leukocyte Biology 2012;92:1187-97. [DOI: 10.1189/jlb.0212101] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 7.0] [Reference Citation Analysis]
244 Takeda Y, Jothi R, Birault V, Jetten AM. RORγ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res 2012;40:8519-35. [PMID: 22753030 DOI: 10.1093/nar/gks630] [Cited by in Crossref: 84] [Cited by in F6Publishing: 76] [Article Influence: 9.3] [Reference Citation Analysis]
245 Jin HS, Kim TS, Jo EK. Emerging roles of orphan nuclear receptors in regulation of innate immunity. Arch Pharm Res 2016;39:1491-502. [PMID: 27699647 DOI: 10.1007/s12272-016-0841-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
246 Fukase Y, Sato A, Tomata Y, Ochida A, Kono M, Yonemori K, Koga K, Okui T, Yamasaki M, Fujitani Y, Nakagawa H, Koyama R, Nakayama M, Skene R, Sang BC, Hoffman I, Shirai J, Yamamoto S. Identification of novel quinazolinedione derivatives as RORγt inverse agonist. Bioorg Med Chem 2018;26:721-36. [PMID: 29342416 DOI: 10.1016/j.bmc.2017.12.039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
247 Li H, Zhou H, Wang D, Qiu J, Zhou Y, Li X, Rosenfeld MG, Ding S, Fu XD. Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery. Proc Natl Acad Sci U S A 2012;109:4609-14. [PMID: 22396588 DOI: 10.1073/pnas.1200305109] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
248 Venken K, Jacques P, Mortier C, Labadia ME, Decruy T, Coudenys J, Hoyt K, Wayne AL, Hughes R, Turner M, Van Gassen S, Martens L, Smith D, Harcken C, Wahle J, Wang CT, Verheugen E, Schryvers N, Varkas G, Cypers H, Wittoek R, Piette Y, Gyselbrecht L, Van Calenbergh S, Van den Bosch F, Saeys Y, Nabozny G, Elewaut D. RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in Spondyloarthritis patients. Nat Commun 2019;10:9. [PMID: 30602780 DOI: 10.1038/s41467-018-07911-6] [Cited by in Crossref: 110] [Cited by in F6Publishing: 77] [Article Influence: 55.0] [Reference Citation Analysis]
249 Saigusa K, Hisamatsu T, Handa T, Sujino T, Mikami Y, Hayashi A, Mizuno S, Takeshita K, Sato T, Matsuoka K, Kanai T. Classical Th1 cells obtain colitogenicity by co-existence of RORγt-expressing T cells in experimental colitis. Inflamm Bowel Dis 2014;20:1820-7. [PMID: 25167215 DOI: 10.1097/MIB.0000000000000149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
250 Dal Prà M, Carta D, Szabadkai G, Suman M, Frión-herrera Y, Paccagnella N, Castellani G, De Martin S, Ferlin MG. Targeting RORs nuclear receptors by novel synthetic steroidal inverse agonists for autoimmune disorders. Bioorganic & Medicinal Chemistry 2018;26:1686-704. [DOI: 10.1016/j.bmc.2018.02.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
251 Le Moan N, Baeten KM, Rafalski VA, Ryu JK, Rios Coronado PE, Bedard C, Syme C, Davalos D, Akassoglou K. Hypoxia Inducible Factor-1α in Astrocytes and/or Myeloid Cells Is Not Required for the Development of Autoimmune Demyelinating Disease. eNeuro 2015;2:e0050. [PMID: 26213713 DOI: 10.1523/ENEURO.0050-14.2015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
252 O'Shea JJ, Kanno Y, Chan AC. In search of magic bullets: the golden age of immunotherapeutics. Cell. 2014;157:227-240. [PMID: 24679538 DOI: 10.1016/j.cell.2014.03.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
253 Ren Y, Ribas HT, Heath K, Wu S, Ren J, Shriwas P, Chen X, Johnson ME, Cheng X, Burdette JE, Kinghorn AD. Na+/K+-ATPase-Targeted Cytotoxicity of (+)-Digoxin and Several Semisynthetic Derivatives. J Nat Prod 2020;83:638-48. [PMID: 32096998 DOI: 10.1021/acs.jnatprod.9b01060] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
254 Jiang Y, Wang X, Dong C. Molecular mechanisms of T helper 17 cell differentiation: Emerging roles for transcription cofactors. Adv Immunol 2019;144:121-53. [PMID: 31699215 DOI: 10.1016/bs.ai.2019.09.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
255 Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, Pelletier OB, He Y, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV-ERBα Regulates TH17 Cell Development and Autoimmunity. Cell Rep 2018;25:3733-3749.e8. [PMID: 30590045 DOI: 10.1016/j.celrep.2018.11.101] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
256 Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-t (RORγt) inhibitors in clinical development for the treatment of autoimmune diseases: a patent review (2016-present). Expert Opinion on Therapeutic Patents 2019;29:663-74. [DOI: 10.1080/13543776.2019.1655541] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 16.5] [Reference Citation Analysis]
257 Wang Y, Cai W, Tang T, Liu Q, Yang T, Yang L, Ma Y, Zhang G, Huang Y, Song X, Orband-Miller LA, Wu Q, Zhou L, Xiang Z, Xiang JN, Leung S, Shao L, Lin X, Lobera M, Ren F. From RORγt Agonist to Two Types of RORγt Inverse Agonists. ACS Med Chem Lett 2018;9:120-4. [PMID: 29456799 DOI: 10.1021/acsmedchemlett.7b00476] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
258 Park TY, Park SD, Cho JY, Moon JS, Kim NY, Park K, Seong RH, Lee SW, Morio T, Bothwell AL, Lee SK. RORγt-specific transcriptional interactomic inhibition suppresses autoimmunity associated with TH17 cells. Proc Natl Acad Sci U S A 2014;111:18673-8. [PMID: 25527718 DOI: 10.1073/pnas.1413687112] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
259 Pot C, Apetoh L, Awasthi A, Kuchroo VK. Induction of regulatory Tr1 cells and inhibition of T(H)17 cells by IL-27. Semin Immunol. 2011;23:438-445. [PMID: 21893418 DOI: 10.1016/j.smim.2011.08.003] [Cited by in Crossref: 107] [Cited by in F6Publishing: 95] [Article Influence: 10.7] [Reference Citation Analysis]
260 Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov 2014;13:197-216. [PMID: 24577401 DOI: 10.1038/nrd4100] [Cited by in Crossref: 287] [Cited by in F6Publishing: 249] [Article Influence: 41.0] [Reference Citation Analysis]
261 Chen VL, Kasper DL. Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes. 2014;5:129-140. [PMID: 24418741 DOI: 10.4161/gmic.27289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
262 Rocha SC, Pessoa MT, Neves LD, Alves SL, Silva LM, Santos HL, Oliveira SM, Taranto AG, Comar M, Gomes IV, Santos FV, Paixão N, Quintas LE, Noël F, Pereira AF, Tessis AC, Gomes NL, Moreira OC, Rincon-Heredia R, Varotti FP, Blanco G, Villar JA, Contreras RG, Barbosa LA. 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions. PLoS One 2014;9:e108776. [PMID: 25290152 DOI: 10.1371/journal.pone.0108776] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
263 Lainé A, Martin B, Luka M, Mir L, Auffray C, Lucas B, Bismuth G, Charvet C. Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORγt-Th17 Program. J Immunol 2015;195:1791-803. [PMID: 26170390 DOI: 10.4049/jimmunol.1500849] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
264 Yoshida H, Kimura A, Fukaya T, Sekiya T, Morita R, Shichita T, Inoue H, Yoshimura A. Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation. Biochem Biophys Res Commun. 2012;418:234-240. [PMID: 22252297 DOI: 10.1016/j.bbrc.2011.12.156] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
265 Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, Libby P, Hansson GK, Shortman K, Dong C, Gabrilovich D, Gabryšová L, Howes A, O'Garra A. Highlights of 10 years of immunology in Nature Reviews Immunology. Nat Rev Immunol 2011;11:693-702. [PMID: 21941295 DOI: 10.1038/nri3063] [Cited by in Crossref: 70] [Cited by in F6Publishing: 60] [Article Influence: 7.0] [Reference Citation Analysis]
266 Hu X, Wang Y, Hao LY, Liu X, Lesch CA, Sanchez BM, Wendling JM, Morgan RW, Aicher TD, Carter LL, Toogood PL, Glick GD. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORγ agonists. Nat Chem Biol 2015;11:141-7. [PMID: 25558972 DOI: 10.1038/nchembio.1714] [Cited by in Crossref: 131] [Cited by in F6Publishing: 122] [Article Influence: 21.8] [Reference Citation Analysis]
267 McGill JL, Guerra-Maupome M, Schneider S. Prophylactic digoxin treatment reduces IL-17 production in vivo in the neonatal calf and moderates RSV-associated disease. PLoS One 2019;14:e0214407. [PMID: 30908540 DOI: 10.1371/journal.pone.0214407] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
268 Finkielsztein A, Schlinker AC, Zhang L, Miller WM, Datta SK. Human megakaryocyte progenitors derived from hematopoietic stem cells of normal individuals are MHC class II-expressing professional APC that enhance Th17 and Th1/Th17 responses. Immunol Lett 2015;163:84-95. [PMID: 25454068 DOI: 10.1016/j.imlet.2014.11.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
269 Kurebayashi Y, Nagai S, Ikejiri A, Koyasu S. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells 2013;18:247-65. [PMID: 23383714 DOI: 10.1111/gtc.12039] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 7.5] [Reference Citation Analysis]
270 Saeed H, Mateen S, Moin S, Khan AQ, Owais M. Cardiac glycoside digoxin ameliorates pro-inflammatory cytokines in PBMCs of rheumatoid arthritis patients in vitro. Int Immunopharmacol 2020;82:106331. [PMID: 32106058 DOI: 10.1016/j.intimp.2020.106331] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
271 Huang W, Thomas B, Flynn RA, Gavzy SJ, Wu L, Kim SV, Hall JA, Miraldi ER, Ng CP, Rigo F, Meadows S, Montoya NR, Herrera NG, Domingos AI, Rastinejad F, Myers RM, Fuller-Pace FV, Bonneau R, Chang HY, Acuto O, Littman DR. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature. 2015;528:517-522. [PMID: 26675721 DOI: 10.1038/nature16193] [Cited by in Crossref: 122] [Cited by in F6Publishing: 106] [Article Influence: 20.3] [Reference Citation Analysis]
272 Korn T. Disentangling the manifold functions of RORγt. Nat Immunol 2017;18:1059-60. [PMID: 28926531 DOI: 10.1038/ni.3831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
273 Wang Y, Cai W, Zhang G, Yang T, Liu Q, Cheng Y, Zhou L, Ma Y, Cheng Z, Lu S, Zhao Y, Zhang W, Xiang Z, Wang S, Yang L, Wu Q, Orband-miller LA, Xu Y, Zhang J, Gao R, Huxdorf M, Xiang J, Zhong Z, Elliott JD, Leung S, Lin X. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent RORγt inhibitors. Bioorganic & Medicinal Chemistry 2014;22:692-702. [DOI: 10.1016/j.bmc.2013.12.021] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 7.7] [Reference Citation Analysis]
274 Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763-776. [PMID: 23023676 DOI: 10.1038/nrd3794] [Cited by in Crossref: 725] [Cited by in F6Publishing: 650] [Article Influence: 80.6] [Reference Citation Analysis]
275 Fauber BP, René O, de Leon Boenig G, Burton B, Deng Y, Eidenschenk C, Everett C, Gobbi A, Hymowitz SG, Johnson AR, La H, Liimatta M, Lockey P, Norman M, Ouyang W, Wang W, Wong H. Reduction in lipophilicity improved the solubility, plasma–protein binding, and permeability of tertiary sulfonamide RORc inverse agonists. Bioorganic & Medicinal Chemistry Letters 2014;24:3891-7. [DOI: 10.1016/j.bmcl.2014.06.048] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
276 Park D, Kim HG, Kim M, Park T, Ha HH, Lee DH, Park KS, Park SJ, Lim HJ, Lee CH. Differences in the molecular signatures of mucosal-associated invariant T cells and conventional T cells. Sci Rep 2019;9:7094. [PMID: 31068647 DOI: 10.1038/s41598-019-43578-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
277 Lai Y, Dong C. Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int Immunol 2016;28:181-8. [PMID: 26545932 DOI: 10.1093/intimm/dxv063] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
278 Ning L, Lou X, Zhang F, Xu G. Nuclear Receptors in the Pathogenesis and Management of Inflammatory Bowel Disease. Mediators Inflamm 2019;2019:2624941. [PMID: 30804707 DOI: 10.1155/2019/2624941] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
279 Gomes A, Teijeiro A, Burén S, Tummala K, Yilmaz M, Waisman A, Theurillat J, Perna C, Djouder N. Metabolic Inflammation-Associated IL-17A Causes Non-alcoholic Steatohepatitis and Hepatocellular Carcinoma. Cancer Cell 2016;30:161-75. [DOI: 10.1016/j.ccell.2016.05.020] [Cited by in Crossref: 137] [Cited by in F6Publishing: 129] [Article Influence: 27.4] [Reference Citation Analysis]
280 Fauber BP, Gobbi A, Savy P, Burton B, Deng Y, Everett C, La H, Johnson AR, Lockey P, Norman M, Wong H. Identification of N-sulfonyl-tetrahydroquinolines as RORc inverse agonists. Bioorganic & Medicinal Chemistry Letters 2015;25:4109-13. [DOI: 10.1016/j.bmcl.2015.08.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
281 Kant R, Pasi S, Surolia A. Auto-Reactive Th17-Cells Trigger Obsessive-Compulsive-Disorder Like Behavior in Mice With Experimental Autoimmune Encephalomyelitis. Front Immunol 2018;9:2508. [PMID: 30429853 DOI: 10.3389/fimmu.2018.02508] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
282 LaRock DL, Sands JS, Ettouati E, Richard M, Bushway PJ, Adler ED, Nizet V, LaRock CN. Inflammasome inhibition blocks cardiac glycoside cell toxicity. J Biol Chem 2019;294:12846-54. [PMID: 31300552 DOI: 10.1074/jbc.RA119.008330] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
283 Peters A, Yosef N. Understanding Th17 cells through systematic genomic analyses. Curr Opin Immunol 2014;28:42-8. [PMID: 24594517 DOI: 10.1016/j.coi.2014.01.017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
284 Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:759-795. [PMID: 22224764 DOI: 10.1146/annurev-immunol-020711-074937] [Cited by in Crossref: 491] [Cited by in F6Publishing: 410] [Article Influence: 54.6] [Reference Citation Analysis]
285 Shi X, Song P, Tao S, Zhang X, Chu CQ. Silencing RORγt in Human CD4+ T cells with CD30 aptamer-RORγt shRNA Chimera. Sci Rep 2019;9:10375. [PMID: 31316164 DOI: 10.1038/s41598-019-46855-9] [Reference Citation Analysis]
286 Karaś K, Sałkowska A, Walczak-drzewiecka A, Ryba K, Dastych J, Bachorz RA, Ratajewski M. The cardenolides strophanthidin, digoxigenin and dihydroouabain act as activators of the human RORγ/RORγT receptors. Toxicology Letters 2018;295:314-24. [DOI: 10.1016/j.toxlet.2018.07.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
287 Zhang Y, Luo XY, Wu DH, Xu Y. ROR nuclear receptors: structures, related diseases, and drug discovery. Acta Pharmacol Sin 2015;36:71-87. [PMID: 25500868 DOI: 10.1038/aps.2014.120] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 9.4] [Reference Citation Analysis]
288 Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, Zheng Y, Longman RS, Rastinejad F, Devlin AS, Krout MR, Fischbach MA, Littman DR, Huh JR. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148. [PMID: 31776512 DOI: 10.1038/s41586-019-1785-z] [Cited by in Crossref: 191] [Cited by in F6Publishing: 152] [Article Influence: 95.5] [Reference Citation Analysis]
289 Carbo A, Hontecillas R, Kronsteiner B, Viladomiu M, Pedragosa M, Lu P, Philipson CW, Hoops S, Marathe M, Eubank S, Bisset K, Wendelsdorf K, Jarrah A, Mei Y, Bassaganya-Riera J. Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity. PLoS Comput Biol 2013;9:e1003027. [PMID: 23592971 DOI: 10.1371/journal.pcbi.1003027] [Cited by in Crossref: 79] [Cited by in F6Publishing: 55] [Article Influence: 9.9] [Reference Citation Analysis]
290 Remedios KA, Zirak B, Sandoval PM, Lowe MM, Boda D, Henley E, Bhattrai S, Scharschmidt TC, Liao W, Naik HB, Rosenblum MD. The TNFRSF members CD27 and OX40 coordinately limit TH17 differentiation in regulatory T cells. Sci Immunol 2018;3:eaau2042. [PMID: 30578350 DOI: 10.1126/sciimmunol.aau2042] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
291 Shibata A, Uga K, Sato T, Sagara M, Igaki K, Nakamura Y, Ochida A, Kono M, Shirai J, Yamamoto S, Yamasaki M, Tsuchimori N. Pharmacological inhibitory profile of TAK-828F, a potent and selective orally available RORγt inverse agonist. Biochemical Pharmacology 2018;150:35-45. [DOI: 10.1016/j.bcp.2018.01.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
292 Zhao M, Sun D, Guan Y, Wang Z, Sang D, Liu M, Pu Y, Fang X, Wang D, Huang A, Bi X, Cao L, He C. Disulfiram and Diphenhydramine Hydrochloride Upregulate miR-30a to Suppress IL-17-Associated Autoimmune Inflammation. J Neurosci 2016;36:9253-66. [PMID: 27581464 DOI: 10.1523/JNEUROSCI.4587-15.2016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
293 Cyster JG, Dang EV, Reboldi A, Yi T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat Rev Immunol 2014;14:731-43. [PMID: 25324126 DOI: 10.1038/nri3755] [Cited by in Crossref: 177] [Cited by in F6Publishing: 156] [Article Influence: 25.3] [Reference Citation Analysis]
294 Han L, Yang J, Wang X, Li D, Lv L, Li B. Th17 cells in autoimmune diseases. Front Med. 2015;9:10-19. [PMID: 25652649 DOI: 10.1007/s11684-015-0388-9] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
295 Heller JJ, Schjerven H, Li S, Lee A, Qiu J, Chen ZM, Smale ST, Zhou L. Restriction of IL-22-producing T cell responses and differential regulation of regulatory T cell compartments by zinc finger transcription factor Ikaros. J Immunol 2014;193:3934-46. [PMID: 25194055 DOI: 10.4049/jimmunol.1401234] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
296 Smith SH, Peredo CE, Takeda Y, Bui T, Neil J, Rickard D, Millerman E, Therrien JP, Nicodeme E, Brusq JM, Birault V, Viviani F, Hofland H, Jetten AM, Cote-Sierra J. Development of a Topical Treatment for Psoriasis Targeting RORγ: From Bench to Skin. PLoS One 2016;11:e0147979. [PMID: 26870941 DOI: 10.1371/journal.pone.0147979] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 9.4] [Reference Citation Analysis]
297 Tani S, Takano R, Tamura S, Oishi S, Iwaizumi M, Hamaya Y, Takagaki K, Nagata T, Seto S, Horii T, Kosugi I, Iwashita T, Osawa S, Furuta T, Miyajima H, Sugimoto K. Digoxin Attenuates Murine Experimental Colitis by Downregulating Th17-related Cytokines. Inflamm Bowel Dis 2017;23:728-38. [PMID: 28426455 DOI: 10.1097/MIB.0000000000001096] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
298 Lee Y, Kuchroo V. Defining the functional states of Th17 cells. F1000Res 2015;4:132. [PMID: 27006754 DOI: 10.12688/f1000research.6116.1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
299 Hinshaw SJ, Ogbeifun O, Wandu WS, Lyu C, Shi G, Li Y, Qian H, Gery I. Digoxin Inhibits Induction of Experimental Autoimmune Uveitis in Mice, but Causes Severe Retinal Degeneration. Invest Ophthalmol Vis Sci 2016;57:1441-7. [PMID: 27028065 DOI: 10.1167/iovs.15-19040] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
300 Wang K, Karin M. Tumor-Elicited Inflammation and Colorectal Cancer. Adv Cancer Res. 2015;128:173-196. [PMID: 26216633 DOI: 10.1016/bs.acr.2015.04.014] [Cited by in Crossref: 85] [Cited by in F6Publishing: 71] [Article Influence: 14.2] [Reference Citation Analysis]
301 Alves SLG, Paixão N, Ferreira LGR, Santos FRS, Neves LDR, Oliveira GC, Cortes VF, Salomé KS, Barison A, Santos FV, Cenzi G, Varotti FP, Oliveira SMF, Taranto AG, Comar M, Silva LM, Noël F, Quintas LEM, Barbosa LA, Villar JAFP. γ-Benzylidene digoxin derivatives synthesis and molecular modeling: Evaluation of anticancer and the Na,K-ATPase activity effect. Bioorg Med Chem 2015;23:4397-404. [PMID: 26122772 DOI: 10.1016/j.bmc.2015.06.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
302 Ryota H, Ishida M, Satoi S, Yanagimoto H, Yamamoto T, Kosaka H, Hirooka S, Yamaki S, Kotsuka M, Matsui Y, Ikeura T, Uchida K, Takaoka M, Okazaki K, Tsuta K. Clinicopathological and immunological features of follicular pancreatitis - a distinct disease entity characterised by Th17 activation. Histopathology 2019;74:709-17. [PMID: 30515871 DOI: 10.1111/his.13802] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
303 Liu J, Bai L, Yang F, Yao X, Lei K, Kei Lam CW, Wu Q, Zhuang Y, Xiao R, Liao K, Kuok H, Li T, Liu L. Potent Antagonists of RORγt, Cardenolides from Calotropis gigantea , Exhibit Discrepant Effects on the Differentiation of T Lymphocyte Subsets. Mol Pharmaceutics 2019;16:798-807. [DOI: 10.1021/acs.molpharmaceut.8b01063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
304 Haiser HJ, Seim KL, Balskus EP, Turnbaugh PJ. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 2014;5:233-8. [PMID: 24637603 DOI: 10.4161/gmic.27915] [Cited by in Crossref: 85] [Cited by in F6Publishing: 60] [Article Influence: 12.1] [Reference Citation Analysis]
305 Santori FR, Huang P, van de Pavert SA, Douglass EF Jr, Leaver DJ, Haubrich BA, Keber R, Lorbek G, Konijn T, Rosales BN, Rozman D, Horvat S, Rahier A, Mebius RE, Rastinejad F, Nes WD, Littman DR. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab 2015;21:286-98. [PMID: 25651181 DOI: 10.1016/j.cmet.2015.01.004] [Cited by in Crossref: 126] [Cited by in F6Publishing: 119] [Article Influence: 25.2] [Reference Citation Analysis]
306 Noguchi M, Nomura A, Murase K, Doi S, Yamaguchi K, Hirata K, Shiozaki M, Hirashima S, Kotoku M, Yamaguchi T, Katsuda Y, Steensma R, Li X, Tao H, Tse B, Fenn M, Babine R, Bradley E, Crowe P, Thacher S, Adachi T, Kamada M. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment. Genes Cells 2017;22:535-51. [DOI: 10.1111/gtc.12494] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
307 Zhang Y, Xue X, Jin X, Song Y, Li J, Luo X, Song M, Yan W, Song H, Xu Y. Discovery of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide derivatives as new RORγ inhibitors using virtual screening, synthesis and biological evaluation. Eur J Med Chem 2014;78:431-41. [PMID: 24704616 DOI: 10.1016/j.ejmech.2014.03.065] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
308 Zhong C, Zhu J. Small-Molecule RORγt Antagonists: One Stone Kills Two Birds. Trends Immunol 2017;38:229-31. [PMID: 28258823 DOI: 10.1016/j.it.2017.02.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
309 Kamenecka TM, Lyda B, Chang MR, Griffin PR. Synthetic modulators of the retinoic acid receptor-related orphan receptors. Med Chem Commun 2013;4:764. [DOI: 10.1039/c3md00005b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
310 Zou H, Yang N, Zhang X, Chen HW. RORγ is a context-specific master regulator of cholesterol biosynthesis and an emerging therapeutic target in cancer and autoimmune diseases. Biochem Pharmacol 2021;:114725. [PMID: 34384758 DOI: 10.1016/j.bcp.2021.114725] [Reference Citation Analysis]
311 Takeda Y, Kang HS, Freudenberg J, DeGraff LM, Jothi R, Jetten AM. Retinoic acid-related orphan receptor γ (RORγ): a novel participant in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. PLoS Genet 2014;10:e1004331. [PMID: 24831725 DOI: 10.1371/journal.pgen.1004331] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
312 Sun N, Yuan C, Ma X, Wang Y, Gu X, Fu W. Molecular Mechanism of Action of RORγt Agonists and Inverse Agonists: Insights from Molecular Dynamics Simulation. Molecules 2018;23:E3181. [PMID: 30513894 DOI: 10.3390/molecules23123181] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
313 Jetten AM, Takeda Y, Slominski A, Kang HS. Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. Curr Opin Toxicol 2018;8:66-80. [PMID: 29568812 DOI: 10.1016/j.cotox.2018.01.005] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 13.0] [Reference Citation Analysis]
314 Li N, Mu L, Wang J, Zhang J, Xie X, Kong Q, Tang W, Yao X, Liu Y, Wang L, Wang G, Wang D, Jin L, Sun B, Li H. Activation of the adenosine A2A receptor attenuates experimental autoimmune myasthenia gravis severity. Eur J Immunol 2012;42:1140-51. [PMID: 22539289 DOI: 10.1002/eji.201142088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
315 Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021;38:757-81. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
316 Yanagida E, Miyoshi H, Kawamoto K, Nakashima K, Matsuda K, Yamada K, Muto R, Nagafuji K, Seto M, Ohshima K. Clinicopathological analysis of immunohistochemical expression of retinoic acid–related orphan receptor-γt in peripheral T-cell lymphoma, not otherwise specified. Human Pathology 2018;79:86-92. [DOI: 10.1016/j.humpath.2018.05.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
317 Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The Role of IL-17 and Th17 Lymphocytes in Autoimmune Diseases. Arch Immunol Ther Exp (Warsz) 2015;63:435-49. [PMID: 26062902 DOI: 10.1007/s00005-015-0344-z] [Cited by in Crossref: 116] [Cited by in F6Publishing: 93] [Article Influence: 19.3] [Reference Citation Analysis]
318 Zhou X, Chen H, Wei F, Zhao Q, Su Q, Lei Y, Yin M, Tian X, Liu Z, Yu B, Bai C, He X, Huang Z. α‐mangostin attenuates pristane‐induced lupus nephritis by regulating Th17 differentiation. Int J Rheum Dis 2019;23:74-83. [DOI: 10.1111/1756-185x.13743] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
319 Yan H, Li W, Zhang Y, Wei X, Fu L, Shen G, Yin T, Li X, Shi H, Wan Y, Zhang Q, Li J, Yang S, Wei Y. Accumulation of FLT3+ CD11c+ dendritic cells in psoriatic lesions and the anti-psoriatic effect of a selective FLT3 inhibitor. Immunol Res 2014;60:112-26. [DOI: 10.1007/s12026-014-8521-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
320 Park BV, Pan F. Metabolic regulation of T cell differentiation and function. Mol Immunol 2015;68:497-506. [PMID: 26277275 DOI: 10.1016/j.molimm.2015.07.027] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]