BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zegers C, Posch J, Traverso A, Eekers D, Postma A, Backes W, Dekker A, van Elmpt W. Current applications of deep-learning in neuro-oncological MRI. Physica Medica 2021;83:161-73. [DOI: 10.1016/j.ejmp.2021.03.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Paquier Z, Chao S, Bregni G, Sanchez AV, Guiot T, Dhont J, Gulyban A, Levillain H, Sclafani F, Reynaert N, Bali MA. Pre-trial quality assurance of diffusion-weighted MRI for radiomic analysis and the role of harmonisation. Physica Medica 2022;103:138-146. [DOI: 10.1016/j.ejmp.2022.10.009] [Reference Citation Analysis]
2 Venkatesan D, Elangovan A, Winster H, Pasha MY, Abraham KS, J S, P S, Niraikulam A, Gopalakrishnan AV, Narayanasamy A, Vellingiri B. Diagnostic and therapeutic approach of artificial intelligence in neuro-oncological diseases. Biosensors and Bioelectronics: X 2022;11:100188. [DOI: 10.1016/j.biosx.2022.100188] [Reference Citation Analysis]
3 Ong W, Zhu L, Zhang W, Kuah T, Lim DSW, Low XZ, Thian YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers (Basel) 2022;14:4025. [PMID: 36011018 DOI: 10.3390/cancers14164025] [Reference Citation Analysis]
4 Lu A, Lu G, Nagaraj B. Application of MRI and CT Images in Surgical Treatment of Early Cervical Cancer. Scanning 2022;2022:1-9. [DOI: 10.1155/2022/1592449] [Reference Citation Analysis]
5 Khodadadi Shoushtari F, Sina S, Dehkordi ANV. Automatic segmentation of glioblastoma multiform brain tumor in MRI images: Using Deeplabv3+ with pre-trained Resnet18 weights. Phys Med 2022;100:51-63. [PMID: 35732092 DOI: 10.1016/j.ejmp.2022.06.007] [Reference Citation Analysis]
6 Bamisile O, Cai D, Oluwasanmi A, Ejiyi C, Ukwuoma CC, Ojo O, Mukhtar M, Huang Q. Comprehensive assessment, review, and comparison of AI models for solar irradiance prediction based on different time/estimation intervals. Sci Rep 2022;12:9644. [PMID: 35688900 DOI: 10.1038/s41598-022-13652-w] [Reference Citation Analysis]
7 Liu J, Dey N, Das N, Crespo RG, Shi F, Liu C. Brain fMRI segmentation under emotion stimuli incorporating attention-based deep convolutional neural networks. Applied Soft Computing 2022;122:108837. [DOI: 10.1016/j.asoc.2022.108837] [Reference Citation Analysis]
8 Chen H, Li S, Zhang Y, Liu L, Lv X, Yi Y, Ruan G, Ke C, Feng Y. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Eur Radiol 2022. [PMID: 35420299 DOI: 10.1007/s00330-022-08749-9] [Reference Citation Analysis]
9 Amouheidari A, Alirezaei Z, Rauh S, Hassanpour M, Kanat O. PrACTiC: A Predictive Algorithm for Chemoradiotherapy-Induced Cytopenia in Glioblastoma Patients. Journal of Oncology 2022;2022:1-7. [DOI: 10.1155/2022/1438190] [Reference Citation Analysis]
10 Anaya-isaza A, Mera-jimenez L. Data Augmentation and Transfer Learning for Brain Tumor Detection in Magnetic Resonance Imaging. IEEE Access 2022;10:23217-33. [DOI: 10.1109/access.2022.3154061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Tuan TA, Bao PT. A survey of brain segmentation methods from magnetic resonance imaging. Brain Tumor MRI Image Segmentation Using Deep Learning Techniques 2022. [DOI: 10.1016/b978-0-323-91171-9.00007-7] [Reference Citation Analysis]
12 Zanca F, Avanzo M, Colgan N, Crijns W, Guidi G, Hernandez-Giron I, Kagadis GC, Diaz O, Zaidi H, Russo P, Toma-Dasu I, Kortesniemi M. Focus issue: Artificial intelligence in medical physics. Phys Med 2021;83:287-91. [PMID: 34004585 DOI: 10.1016/j.ejmp.2021.05.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]