BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Becker J, Wittmann C. Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Current Opinion in Biotechnology 2020;65:118-28. [DOI: 10.1016/j.copbio.2020.02.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future. Metab Eng 2021:S1096-7176(21)00192-0. [PMID: 34952231 DOI: 10.1016/j.ymben.2021.12.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
2 Mais CN, Hermann L, Altegoer F, Seubert A, Richter AA, Wernersbach I, Czech L, Bremer E, Bange G. Degradation of the microbial stress protectants and chemical chaperones ectoine and hydroxyectoine by a bacterial hydrolase-deacetylase complex. J Biol Chem 2020;295:9087-104. [PMID: 32404365 DOI: 10.1074/jbc.RA120.012722] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
3 Vuong P, Wise MJ, Whiteley AS, Kaur P. Small investments with big returns: environmental genomic bioprospecting of microbial life. Crit Rev Microbiol 2022;:1-15. [PMID: 35100064 DOI: 10.1080/1040841X.2021.2011833] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Onwe RO, Onwosi CO, Ezugworie FN, Ekwealor CC, Okonkwo CC. Microbial trehalose boosts the ecological fitness of biocontrol agents, the viability of probiotics during long-term storage and plants tolerance to environmental-driven abiotic stress. Sci Total Environ 2022;806:150432. [PMID: 34560451 DOI: 10.1016/j.scitotenv.2021.150432] [Reference Citation Analysis]
5 Ma Q, Xia L, Wu H, Zhuo M, Yang M, Zhang Y, Tan M, Zhao K, Sun Q, Xu Q, Chen N, Xie X. Metabolic engineering of Escherichia coli for efficient osmotic stress-free production of compatible solute hydroxyectoine. Biotechnol Bioeng 2022;119:89-101. [PMID: 34612520 DOI: 10.1002/bit.27952] [Reference Citation Analysis]
6 Dong Y, Zhang H, Wang X, Ma J, Lei P, Xu H, Li S. Enhancing ectoine production by recombinant Escherichia coli through step-wise fermentation optimization strategy based on kinetic analysis. Bioprocess Biosyst Eng 2021;44:1557-66. [PMID: 33751211 DOI: 10.1007/s00449-021-02541-7] [Reference Citation Analysis]
7 Cantera S, Sousa DZ, Sánchez-andrea I. Enhanced ectoines production by carbon dioxide capture: A step further towards circular economy. Journal of CO2 Utilization 2022;61:102009. [DOI: 10.1016/j.jcou.2022.102009] [Reference Citation Analysis]
8 Abosamaha A, Williamson MP, Gilmour DJ. Utilization and accumulation of compatible solutes in Halomonas pacifica: a species of moderately halophilic bacteria isolated from a saline lake in South Libya. Access Microbiology 2022;4. [DOI: 10.1099/acmi.0.000359] [Reference Citation Analysis]
9 Wang D, Chen J, Wang Y, Du G, Kang Z. Engineering Escherichia coli for high-yield production of ectoine. Green Chemical Engineering 2021. [DOI: 10.1016/j.gce.2021.09.002] [Reference Citation Analysis]
10 Bethlehem L, van Echten-Deckert G. Ectoines as novel anti-inflammatory and tissue protective lead compounds with special focus on inflammatory bowel disease and lung inflammation. Pharmacol Res 2021;164:105389. [PMID: 33352226 DOI: 10.1016/j.phrs.2020.105389] [Reference Citation Analysis]
11 Liu M, Liu H, Shi M, Jiang M, Li L, Zheng Y. Microbial production of ectoine and hydroxyectoine as high-value chemicals. Microb Cell Fact 2021;20:76. [PMID: 33771157 DOI: 10.1186/s12934-021-01567-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Pérez V, Moltó JL, Lebrero R, Muñoz R. Ectoine Production from Biogas in Waste Treatment Facilities: A Techno-Economic and Sensitivity Analysis. ACS Sustain Chem Eng 2021;9:17371-80. [PMID: 34976443 DOI: 10.1021/acssuschemeng.1c06772] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Carmona-Martínez AA, Marcos-Rodrigo E, Bordel S, Marín D, Herrero-Lobo R, García-Encina PA, Muñoz R. Elucidating the key environmental parameters during the production of ectoines from biogas by mixed methanotrophic consortia. J Environ Manage 2021;298:113462. [PMID: 34365180 DOI: 10.1016/j.jenvman.2021.113462] [Reference Citation Analysis]
14 Abiusi F, Trompetter E, Pollio A, Wijffels RH, Janssen M. Acid Tolerant and Acidophilic Microalgae: An Underexplored World of Biotechnological Opportunities. Front Microbiol 2022;13:820907. [DOI: 10.3389/fmicb.2022.820907] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Rasteniene A, Gruskiene R, Sereikaite J. Interaction of ectoine and hydroxyectoine with protein: fluorescence study. Chem Pap 2021;75:2703-12. [DOI: 10.1007/s11696-021-01527-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Bethlehem L, Moritz KD. Boosting Escherichia coli's heterologous production rate of ectoines by exploiting the non-halophilic gene cluster from Acidiphilium cryptum. Extremophiles 2020;24:733-47. [PMID: 32699914 DOI: 10.1007/s00792-020-01188-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, Bott M, Wendisch VF, Wittmann C. Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021;65:197-212. [PMID: 34096577 DOI: 10.1042/EBC20200134] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hermann L, Mais CN, Czech L, Smits SHJ, Bange G, Bremer E. The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biol Chem 2020;401:1443-68. [PMID: 32755967 DOI: 10.1515/hsz-2020-0223] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Kumar M, Kochhar N, Kavya I, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK. Perspectives on the microorganism of extreme environments and their applications. Current Research in Microbial Sciences 2022. [DOI: 10.1016/j.crmicr.2022.100134] [Reference Citation Analysis]
20 Han T, Kim GB, Lee SY. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum. Proc Natl Acad Sci U S A 2020;117:30328-34. [PMID: 33199604 DOI: 10.1073/pnas.2017483117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
21 Zhang T, Yang J, Tian C, Ren C, Chen P, Men Y, Sun Y. High-Yield Biosynthesis of Glucosylglycerol through Coupling Phosphorolysis and Transglycosylation Reactions. J Agric Food Chem 2020;68:15249-56. [DOI: 10.1021/acs.jafc.0c04851] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Schwaiger KN, Cserjan-Puschmann M, Striedner G, Nidetzky B. Whole cell-based catalyst for enzymatic production of the osmolyte 2-O-α-glucosylglycerol. Microb Cell Fact 2021;20:79. [PMID: 33827582 DOI: 10.1186/s12934-021-01569-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Del Rosario Rodero M, Herrero-Lobo R, Pérez V, Muñoz R. Influence of operational conditions on the performance of biogas bioconversion into ectoines in pilot bubble column bioreactors. Bioresour Technol 2022;:127398. [PMID: 35640813 DOI: 10.1016/j.biortech.2022.127398] [Reference Citation Analysis]