BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Savaş S, Topaloğlu N, Kazcı Ö, Koşar PN. Classification of Carotid Artery Intima Media Thickness Ultrasound Images with Deep Learning. J Med Syst 2019;43:273. [PMID: 31278481 DOI: 10.1007/s10916-019-1406-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Liu D, Wang J, Song W, Ma F. Clinical application of super sensitive microflow ultrasound on the detection of intraplaque neovascularization in patients with atheromatous carotid artery plaque. Clin Hemorheol Microcirc 2022;82:283-93. [PMID: 35912734 DOI: 10.3233/CH-221510] [Reference Citation Analysis]
2 Liu J, Zhou X, Lin H, Lu X, Zheng J, Xu E, Jiang D, Zhang H, Yang X, Zhong J, Hu X, Huang Y, Zhang Y, Liang J, Liu Q, Zhong M, Chen Y, Yan H, Deng H, Zheng R, Ni D, Ren J. Deep learning based on carotid transverse B-mode scan videos for the diagnosis of carotid plaque: a prospective multicenter study. Eur Radiol 2022. [DOI: 10.1007/s00330-022-09324-y] [Reference Citation Analysis]
3 Buyrukoğlu S, Savaş S. Stacked-Based Ensemble Machine Learning Model for Positioning Footballer. Arab J Sci Eng. [DOI: 10.1007/s13369-022-06857-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Savaş T, Savaş S. Tekdüzen Kaynak Bulucu Yoluyla Kimlik Avı Tespiti için Makine Öğrenmesi Algoritmalarının Özellik Tabanlı Performans Karşılaştırması. Journal of Polytechnic 2022. [DOI: 10.2339/politeknik.1035286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Meiburger KM, Marzola F, Zahnd G, Faita F, Loizou CP, Lainé N, Carvalho C, Steinman DA, Gibello L, Bruno RM, Clarenbach R, Francesconi M, Nicolaides AN, Liebgott H, Campilho A, Ghotbi R, Kyriacou E, Navab N, Griffin M, Panayiotou AG, Gherardini R, Varetto G, Bianchini E, Pattichis CS, Ghiadoni L, Rouco J, Orkisz M, Molinari F. Carotid Ultrasound Boundary Study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105333] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Savaş S, Topaloğlu N, Kazci Ö, Koşar P. Comparison of Deep Learning Models in Carotid Artery Intima-Media Thickness Ultrasound Images: CAIMTUSNet. Bilişim Teknolojileri Dergisi 2022;15:1-12. [DOI: 10.17671/gazibtd.804617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhou R, Ou Y, Fang X, Azarpazhooh MR, Gan H, Ye Z, Spence JD, Xu X, Fenster A. Ultrasound carotid plaque segmentation via image reconstruction-based self-supervised learning with limited training labels. MBE 2022;20:1617-1636. [DOI: 10.3934/mbe.2023074] [Reference Citation Analysis]
8 Arsić B. Deep learning approach in ultrasound image segmentation for patients with carotid artery disease. Cardiovascular and Respiratory Bioengineering 2022. [DOI: 10.1016/b978-0-12-823956-8.00001-8] [Reference Citation Analysis]
9 Prabha PL, Jayanthy AK, Janardanan K. M-mode Carotid Artery Image Classification and Risk Analysis Based on Machine Learning and Deep Learning Techniques. Expert Clouds and Applications 2022. [DOI: 10.1007/978-981-19-2500-9_50] [Reference Citation Analysis]
10 Al-Mohannadi A, Al-Maadeed S, Elharrouss O, Sadasivuni KK. Encoder-Decoder Architecture for Ultrasound IMC Segmentation and cIMT Measurement. Sensors (Basel) 2021;21:6839. [PMID: 34696054 DOI: 10.3390/s21206839] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
11 Savaş S. Detecting the Stages of Alzheimer’s Disease with Pre-trained Deep Learning Architectures. Arab J Sci Eng. [DOI: 10.1007/s13369-021-06131-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
12 Lakshmi Prabha P, Jayanthy AK, Prem Kumar C, Ramraj B. Prediction of cardiovascular risk by measuring carotid intima media thickness from an ultrasound image for type II diabetic mellitus subjects using machine learning and transfer learning techniques. J Supercomput 2021;77:10289-10306. [DOI: 10.1007/s11227-021-03676-w] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Zhou Y, Ramirez G. Prediction and Value of Ultrasound Image in Diagnosis of Fetal Central Nervous System Malformation under Deep Learning Algorithm. Scientific Programming 2021;2021:1-7. [DOI: 10.1155/2021/6246274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Sharma N, Nicolaides A, Suri JS. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. Ann Transl Med 2021;9:1206. [PMID: 34430647 DOI: 10.21037/atm-20-7676] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
15 Zhou R, Azarpazhooh MR, Spence JD, Hashemi S, Ma W, Cheng X, Gan H, Ding M, Fenster A. Deep Learning-Based Carotid Plaque Segmentation from B-Mode Ultrasound Images. Ultrasound Med Biol 2021;47:2723-33. [PMID: 34217560 DOI: 10.1016/j.ultrasmedbio.2021.05.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Güler O, Yücedağ İ. Hand Gesture Recognition from 2D Images by Using Convolutional Capsule Neural Networks. Arab J Sci Eng 2022;47:1211-25. [DOI: 10.1007/s13369-021-05867-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Komatsu M, Sakai A, Dozen A, Shozu K, Yasutomi S, Machino H, Asada K, Kaneko S, Hamamoto R. Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines 2021;9:720. [PMID: 34201827 DOI: 10.3390/biomedicines9070720] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
18 Shen YT, Chen L, Yue WW, Xu HX. Artificial intelligence in ultrasound. Eur J Radiol 2021;139:109717. [PMID: 33962110 DOI: 10.1016/j.ejrad.2021.109717] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
19 Latha S, Samiappan D, Muthu P, Kumar R. Fully Automated Integrated Segmentation of Carotid Artery Ultrasound Images Using DBSCAN and Affinity Propagation. J Med Biol Eng 2021;41:260-71. [DOI: 10.1007/s40846-020-00586-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Wang Y, Ge X, Ma H, Qi S, Zhang G, Yao Y. Deep Learning in Medical Ultrasound Image Analysis: A Review. IEEE Access 2021;9:54310-24. [DOI: 10.1109/access.2021.3071301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
21 Li D, Mikela Vilmun B, Frederik Carlsen J, Albrecht-Beste E, Ammitzbøl Lauridsen C, Bachmann Nielsen M, Lindskov Hansen K. The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review. Diagnostics (Basel) 2019;9:E207. [PMID: 31795409 DOI: 10.3390/diagnostics9040207] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]