BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thillaikkarasi R, Saravanan S. An Enhancement of Deep Learning Algorithm for Brain Tumor Segmentation Using Kernel Based CNN with M-SVM. J Med Syst 2019;43:84. [PMID: 30810822 DOI: 10.1007/s10916-019-1223-7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Tan S, Pan J, Zhang J, Liu Y. CASVM: An Efficient Deep Learning Image Classification Method Combined with SVM. Applied Sciences 2022;12:11690. [DOI: 10.3390/app122211690] [Reference Citation Analysis]
2 Popat M, Patel S. Research perspective and review towards brain tumour segmentation and classification using different image modalities. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2022. [DOI: 10.1080/21681163.2022.2124546] [Reference Citation Analysis]
3 Xia K, Zhou Q, Jiang Y, Chen B, Gu X. Deep residual neural network based image enhancement algorithm for low dose CT images. Multimed Tools Appl 2022;81:36007-36030. [DOI: 10.1007/s11042-021-11024-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Anita JN, Kumaran S. A Deep Learning Architecture for Meningioma Brain Tumor Detection and Segmentation. J Cancer Prev 2022;27:192-8. [PMID: 36258715 DOI: 10.15430/JCP.2022.27.3.192] [Reference Citation Analysis]
5 Humayun M, Khalil MI, Alwakid G, Jhanjhi NZ. Superlative Feature Selection Based Image Classification Using Deep Learning in Medical Imaging. Journal of Healthcare Engineering 2022;2022:1-11. [DOI: 10.1155/2022/7028717] [Reference Citation Analysis]
6 Jyothi P, Singh AR. Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artif Intell Rev. [DOI: 10.1007/s10462-022-10245-x] [Reference Citation Analysis]
7 Sindhiya Devi R, Perumal B, Pallikonda Rajasekaran M. A hybrid deep learning based brain tumor classification and segmentation by stationary wavelet packet transform and adaptive kernel fuzzy c means clustering. Advances in Engineering Software 2022;170:103146. [DOI: 10.1016/j.advengsoft.2022.103146] [Reference Citation Analysis]
8 Wibowo MSW, Anggraeni W, Purnomo MH. Automatic Brain Tumor Segmentation Using U-Net 2D. 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA) 2022. [DOI: 10.1109/isitia56226.2022.9855212] [Reference Citation Analysis]
9 Bidkar PS, Ghosh A, Kumar R. Seg Net and Salp Water Optimization-driven Deep Belief network for segmentation and classification of brain tumor. Gene Expr Patterns 2022;:119248. [PMID: 35667619 DOI: 10.1016/j.gep.2022.119248] [Reference Citation Analysis]
10 Ali S, Li J, Pei Y, Khurram R, Rehman KU, Mahmood T. A Comprehensive Survey on Brain Tumor Diagnosis Using Deep Learning and Emerging Hybrid Techniques with Multi-modal MR Image. Arch Computat Methods Eng. [DOI: 10.1007/s11831-022-09758-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Singh V, Gourisaria MK, Gm H, Rautaray SS, Pandey M, Sahni M, Leon-castro E, Espinoza-audelo LF. Diagnosis of Intracranial Tumors via the Selective CNN Data Modeling Technique. Applied Sciences 2022;12:2900. [DOI: 10.3390/app12062900] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Naeem A, Anees T, Naqvi RA, Loh W. A Comprehensive Analysis of Recent Deep and Federated-Learning-Based Methodologies for Brain Tumor Diagnosis. JPM 2022;12:275. [DOI: 10.3390/jpm12020275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sambath Kumar K, Rajendran A. An automatic brain tumor segmentation using modified inception module based U-Net model. IFS 2022;42:2743-54. [DOI: 10.3233/jifs-211879] [Reference Citation Analysis]
14 Das S, Nayak G, Saba L, Kalra M, Suri JS, Saxena S. An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105273] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
15 Jemimma TA, Raj YJV. Significant LOOP with clustering approach and optimization enabled deep learning classifier for the brain tumor segmentation and classification. Multimed Tools Appl 2022;81:2365-2391. [DOI: 10.1007/s11042-021-11591-8] [Reference Citation Analysis]
16 Bidkar P, Kumar R, Ghosh A. Automatic Segmentation Techniques for Brain Cancer Detection from MR Images. Advances in Intelligent Systems and Computing 2022. [DOI: 10.1007/978-981-16-1249-7_44] [Reference Citation Analysis]
17 Maria HH, Jossy AM, Malarvizhi S. Perspective Review on Deep Learning Models to Medical Image Segmentation. IFIP Advances in Information and Communication Technology 2022. [DOI: 10.1007/978-3-031-16364-7_15] [Reference Citation Analysis]
18 Matsuzaka Y, Kusakawa S, Uesawa Y, Sato Y, Satoh M. Deep Learning-Based In Vitro Detection Method for Cellular Impurities in Human Cell-Processed Therapeutic Products. Applied Sciences 2021;11:9755. [DOI: 10.3390/app11209755] [Reference Citation Analysis]
19 Revathi V, Muddana AL. A Brief Survey on Brain Tumor Identification Models Using Deep Neural Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) 2021. [DOI: 10.1109/icosec51865.2021.9591832] [Reference Citation Analysis]
20 Zhang Q, Yun KK, Wang H, Yoon SW, Lu F, Won D. Automatic cell counting from stimulated Raman imaging using deep learning. PLoS One 2021;16:e0254586. [PMID: 34288972 DOI: 10.1371/journal.pone.0254586] [Reference Citation Analysis]
21 Dixit A, Nanda A. An improved whale optimization algorithm-based radial neural network for multi-grade brain tumor classification. Vis Comput. [DOI: 10.1007/s00371-021-02176-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Ravikumar M, Shivaprasad BJ, Guru DS. Enhancement of MRI Brain Images Using Notch Filter Based on Discrete Wavelet Transform. Int J Image Grap 2022;22:2250010. [DOI: 10.1142/s0219467822500103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zegers C, Posch J, Traverso A, Eekers D, Postma A, Backes W, Dekker A, van Elmpt W. Current applications of deep-learning in neuro-oncological MRI. Physica Medica 2021;83:161-73. [DOI: 10.1016/j.ejmp.2021.03.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
24 Zhang J, Yu J, Fu S, Tian X. Adoption value of deep learning and serological indicators in the screening of atrophic gastritis based on artificial intelligence. J Supercomput 2021;77:8674-93. [DOI: 10.1007/s11227-021-03630-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
25 Al-galal SAY, Alshaikhli IFT, Abdulrazzaq MM. MRI brain tumor medical images analysis using deep learning techniques: a systematic review. Health Technol 2021;11:267-82. [DOI: 10.1007/s12553-020-00514-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
26 Sabeenian R, Vijitha V. Identification and categorization of brain tumors using ensemble classifiers with hybrid features. Biomed Biotechnol Res J 2021;5:357. [DOI: 10.4103/bbrj.bbrj_163_21] [Reference Citation Analysis]
27 Nie Y, Ding H, Shang Y, Shao Z, Liu T. Spatial Attention-based Efficiently Features Fusion Network for 3D-MR Brain Tumor Segmentation. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC) 2020. [DOI: 10.1109/pic50277.2020.9350767] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Shresta S, Senanayake SA, Triloka J. Advanced Cascaded Anisotropic Convolutional Neural Network Architecture Based Optimized Feature Selection Brain Tumour Segmentation and Classification. 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA) 2020. [DOI: 10.1109/citisia50690.2020.9371807] [Reference Citation Analysis]
29 Zadeh Shirazi A, Fornaciari E, McDonnell MD, Yaghoobi M, Cevallos Y, Tello-Oquendo L, Inca D, Gomez GA. The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey. J Pers Med 2020;10:E224. [PMID: 33198332 DOI: 10.3390/jpm10040224] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
30 Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020;4:041503. [PMID: 33094213 DOI: 10.1063/5.0011697] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
31 Randhawa S, Alsadoon A, Prasad P, Al-dala’in T, Dawoud A, Alrubaie A. Deep learning for liver tumour classification: enhanced loss function. Multimed Tools Appl 2021;80:4729-50. [DOI: 10.1007/s11042-020-09900-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
32 Nadeem MW, Ghamdi MAA, Hussain M, Khan MA, Khan KM, Almotiri SH, Butt SA. Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sci 2020;10:E118. [PMID: 32098333 DOI: 10.3390/brainsci10020118] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 35.5] [Reference Citation Analysis]
33 Zhang F, Wang Q, Li H. Automatic Segmentation of the Gross Target Volume in Non-Small Cell Lung Cancer Using a Modified Version of ResNet. Technol Cancer Res Treat 2020;19:153303382094748. [DOI: 10.1177/1533033820947484] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
34 Rani NS, U K, S R. Extraction of Gliomas from 3D MRI Images using Convolution Kernel Processing and Adaptive Thresholding. Procedia Computer Science 2020;167:273-84. [DOI: 10.1016/j.procs.2020.03.221] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
35 Kalaiselvi T, Kumarashankar P, Sriramakrishnan P. Three-Phase Automatic Brain Tumor Diagnosis System Using Patches Based Updated Run Length Region Growing Technique. J Digit Imaging 2020;33:465-79. [PMID: 31529237 DOI: 10.1007/s10278-019-00276-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
36 Savaş S, Topaloğlu N, Kazcı Ö, Koşar PN. Classification of Carotid Artery Intima Media Thickness Ultrasound Images with Deep Learning. J Med Syst 2019;43:273. [PMID: 31278481 DOI: 10.1007/s10916-019-1406-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]