BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kessler RC, Bauer MS, Bishop TM, Demler OV, Dobscha SK, Gildea SM, Goulet JL, Karras E, Kreyenbuhl J, Landes SJ, Liu H, Luedtke AR, Mair P, McAuliffe WHB, Nock M, Petukhova M, Pigeon WR, Sampson NA, Smoller JW, Weinstock LM, Bossarte RM. Using Administrative Data to Predict Suicide After Psychiatric Hospitalization in the Veterans Health Administration System. Front Psychiatry 2020;11:390. [PMID: 32435212 DOI: 10.3389/fpsyt.2020.00390] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Jiang T, Rosellini AJ, Horváth-Puhó E, Shiner B, Street AE, Lash TL, Sørensen HT, Gradus JL. Using machine learning to predict suicide in the 30 days after discharge from psychiatric hospital in Denmark. Br J Psychiatry 2021;:1-8. [PMID: 33653425 DOI: 10.1192/bjp.2021.19] [Reference Citation Analysis]
2 Corke M, Mullin K, Angel-Scott H, Xia S, Large M. Meta-analysis of the strength of exploratory suicide prediction models; from clinicians to computers. BJPsych Open 2021;7:e26. [PMID: 33407984 DOI: 10.1192/bjo.2020.162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Wulz AR, Law R, Wang J, Wolkin AF. Leveraging data science to enhance suicide prevention research: a literature review. Inj Prev 2021:injuryprev-2021-044322. [PMID: 34413072 DOI: 10.1136/injuryprev-2021-044322] [Reference Citation Analysis]
4 Kirtley OJ, van Mens K, Hoogendoorn M, Kapur N, de Beurs D. Translating promise into practice: a review of machine learning in suicide research and prevention. The Lancet Psychiatry 2022;9:243-52. [DOI: 10.1016/s2215-0366(21)00254-6] [Reference Citation Analysis]
5 Thomas LB, Mastorides SM, Viswanadhan NA, Jakey CE, Borkowski AA. Artificial Intelligence: Review of Current and Future Applications in Medicine. Fed Pract 2021;38:527-38. [PMID: 35136337 DOI: 10.12788/fp.0174] [Reference Citation Analysis]
6 Mann JJ, Rizk MM. A Brain-Centric Model of Suicidal Behavior.Am J Psychiatry. 2020;177:902-916. [PMID: 32998550 DOI: 10.1176/appi.ajp.2020.20081224] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
7 Yarborough BJH, Stumbo SP. A Stakeholder-Informed Ethical Framework to Guide Implementation of Suicide Risk Prediction Models Derived from Electronic Health Records. Arch Suicide Res 2022;:1-14. [PMID: 35446244 DOI: 10.1080/13811118.2022.2064255] [Reference Citation Analysis]
8 Stanley IH, Chu C, Gildea SM, Hwang IH, King AJ, Kennedy CJ, Luedtke A, Marx BP, O’brien R, Petukhova MV, Sampson NA, Vogt D, Stein MB, Ursano RJ, Kessler RC. Predicting suicide attempts among U.S. Army soldiers after leaving active duty using information available before leaving active duty: results from the Study to Assess Risk and Resilience in Servicemembers-Longitudinal Study (STARRS-LS). Mol Psychiatry. [DOI: 10.1038/s41380-021-01423-4] [Reference Citation Analysis]
9 Nierenberg AA. Precision Psychiatry and a Vision for the Future. Psychiatric Annals 2021;51:206-206. [DOI: 10.3928/00485713-20210409-01] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mitra A, Ahsan H, Li W, Liu W, Kerns RD, Tsai J, Becker W, Smelson DA, Yu H. Risk Factors Associated With Nonfatal Opioid Overdose Leading to Intensive Care Unit Admission: A Cross-sectional Study. JMIR Med Inform 2021;9:e32851. [PMID: 34747714 DOI: 10.2196/32851] [Reference Citation Analysis]