BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Leiser SC, Pehrson AL, Robichaud PJ, Sanchez C. Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine--a quantitative EEG study in rats. Br J Pharmacol 2014;171:4255-72. [PMID: 24846338 DOI: 10.1111/bph.12782] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Pehrson AL, Jeyarajah T, Sanchez C. Regional distribution of serotonergic receptors: a systems neuroscience perspective on the downstream effects of the multimodal-acting antidepressant vortioxetine on excitatory and inhibitory neurotransmission. CNS Spectr 2016;21:162-83. [DOI: 10.1017/s1092852915000486] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
2 Gould RW, Nedelcovych MT, Gong X, Tsai E, Bubser M, Bridges TM, Wood MR, Duggan ME, Brandon NJ, Dunlop J, Wood MW, Ivarsson M, Noetzel MJ, Daniels JS, Niswender CM, Lindsley CW, Conn PJ, Jones CK. State-dependent alterations in sleep/wake architecture elicited by the M4 PAM VU0467154 - Relation to antipsychotic-like drug effects. Neuropharmacology 2016;102:244-53. [PMID: 26617071 DOI: 10.1016/j.neuropharm.2015.11.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
3 Schweitzer PK, Randazzo AC. Drugs that Disturb Sleep and Wakefulness. Principles and Practice of Sleep Medicine. Elsevier; 2017. pp. 480-498.e8. [DOI: 10.1016/b978-0-323-24288-2.00045-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Holter KM, Lekander AD, LaValley CM, Bedingham EG, Pierce BE, Sands LP 3rd, Lindsley CW, Jones CK, Gould RW. Partial mGlu5 Negative Allosteric Modulator M-5MPEP Demonstrates Antidepressant-Like Effects on Sleep Without Affecting Cognition or Quantitative EEG. Front Neurosci 2021;15:700822. [PMID: 34276300 DOI: 10.3389/fnins.2021.700822] [Reference Citation Analysis]
5 Li Y, Pehrson AL, Oosting RS, Gulinello M, Olivier B, Sanchez C. A study of time- and sex-dependent effects of vortioxetine on rat sexual behavior: Possible roles of direct receptor modulation. Neuropharmacology 2017;121:89-99. [DOI: 10.1016/j.neuropharm.2017.04.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
6 Pehrson AL, Pedersen CS, Tølbøl KS, Sanchez C. Vortioxetine Treatment Reverses Subchronic PCP Treatment-Induced Cognitive Impairments: A Potential Role for Serotonin Receptor-Mediated Regulation of GABA Neurotransmission. Front Pharmacol 2018;9:162. [PMID: 29559911 DOI: 10.3389/fphar.2018.00162] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
7 Liu X, Sun YX, Zhang CC, Zhang XQ, Zhang Y, Wang T, Ma YN, Wang H, Su YA, Li JT, Si TM. Vortioxetine attenuates the effects of early-life stress on depression-like behaviors and monoamine transporters in female mice. Neuropharmacology 2021;186:108468. [PMID: 33485943 DOI: 10.1016/j.neuropharm.2021.108468] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Riga MS, Sanchez C, Celada P, Artigas F. Sub-chronic vortioxetine (but not escitalopram) normalizes brain rhythm alterations and memory deficits induced by serotonin depletion in rats. Neuropharmacology 2020;178:108238. [DOI: 10.1016/j.neuropharm.2020.108238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019;237:1593-614. [PMID: 31079238 DOI: 10.1007/s00221-019-05556-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
10 Dale E, Grunnet M, Pehrson AL, Frederiksen K, Larsen PH, Nielsen J, Stensbøl TB, Ebert B, Yin H, Lu D, Liu H, Jensen TN, Yang CR, Sanchez C. The multimodal antidepressant vortioxetine may facilitate pyramidal cell firing by inhibition of 5-HT3 receptor expressing interneurons: An in vitro study in rat hippocampus slices. Brain Res 2018;1689:1-11. [PMID: 29274875 DOI: 10.1016/j.brainres.2017.12.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
11 Pérez PD, Ma Z, Hamilton C, Sánchez C, Mørk A, Pehrson AL, Bundgaard C, Zhang N. Acute effects of vortioxetine and duloxetine on resting-state functional connectivity in the awake rat. Neuropharmacology 2018;128:379-87. [PMID: 29104073 DOI: 10.1016/j.neuropharm.2017.10.038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Leiser SC, Iglesias-Bregna D, Westrich L, Pehrson AL, Sanchez C. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism. J Psychopharmacol 2015;29:1092-105. [PMID: 26174134 DOI: 10.1177/0269881115592347] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
13 Smagin GN, Song D, Budac DP, Waller JA, Li Y, Pehrson AL, Sánchez C. Histamine may contribute to vortioxetine's procognitive effects; possibly through an orexigenic mechanism. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2016;68:25-30. [DOI: 10.1016/j.pnpbp.2016.03.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
14 Ip C, Ganz M, Ozenne B, Sluth LB, Gram M, Viardot G, l'Hostis P, Danjou P, Knudsen GM, Christensen SR. Pre-intervention test-retest reliability of EEG and ERP over four recording intervals. International Journal of Psychophysiology 2018;134:30-43. [DOI: 10.1016/j.ijpsycho.2018.09.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
15 Dale E, Bang-andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochemical Pharmacology 2015;95:81-97. [DOI: 10.1016/j.bcp.2015.03.011] [Cited by in Crossref: 123] [Cited by in F6Publishing: 113] [Article Influence: 20.5] [Reference Citation Analysis]
16 Amat-foraster M, Leiser SC, Herrik KF, Richard N, Agerskov C, Bundgaard C, Bastlund JF, de Jong IE. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture. Neuropharmacology 2017;113:45-59. [DOI: 10.1016/j.neuropharm.2016.09.017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
17 Hillhouse TM, Merritt CR, Smith DA, Cajina M, Sanchez C, Porter JH, Pehrson AL. Vortioxetine Differentially Modulates MK-801-Induced Changes in Visual Signal Detection Task Performance and Locomotor Activity. Front Pharmacol 2018;9:1024. [PMID: 30271344 DOI: 10.3389/fphar.2018.01024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Micov AM, Tomić MA, Todorović MB, Vuković MJ, Pecikoza UB, Jasnic NI, Djordjevic JD, Stepanović-Petrović RM. Vortioxetine reduces pain hypersensitivity and associated depression-like behavior in mice with oxaliplatin-induced neuropathy. Prog Neuropsychopharmacol Biol Psychiatry 2020;103:109975. [PMID: 32464241 DOI: 10.1016/j.pnpbp.2020.109975] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
19 Bétry C, Etiévant A, Pehrson A, Sánchez C, Haddjeri N. Effect of the multimodal acting antidepressant vortioxetine on rat hippocampal plasticity and recognition memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2015;58:38-46. [DOI: 10.1016/j.pnpbp.2014.12.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
20 Waller JA, Tamm JA, Abdourahman A, Pehrson AL, Li Y, Cajina M, Sánchez C. Chronic vortioxetine treatment in rodents modulates gene expression of neurodevelopmental and plasticity markers. Eur Neuropsychopharmacol 2017;27:192-203. [PMID: 28108062 DOI: 10.1016/j.euroneuro.2016.11.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
21 Papp N, Vas S, Bogáthy E, Kátai Z, Kostyalik D, Bagdy G. Acute and chronic escitalopram alter EEG gamma oscillations differently: relevance to therapeutic effects. European Journal of Pharmaceutical Sciences 2018;121:347-55. [DOI: 10.1016/j.ejps.2018.06.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
22 Vaseghi S, Arjmandi-Rad S, Nasehi M, Zarrindast MR. Cannabinoids and sleep-wake cycle: The potential role of serotonin. Behav Brain Res 2021;412:113440. [PMID: 34216647 DOI: 10.1016/j.bbr.2021.113440] [Reference Citation Analysis]
23 Nackenoff AG, Simmler LD, Baganz NL, Pehrson AL, Sánchez C, Blakely RD. Serotonin Transporter-Independent Actions of the Antidepressant Vortioxetine As Revealed Using the SERT Met172 Mouse. ACS Chem Neurosci 2017;8:1092-100. [DOI: 10.1021/acschemneuro.7b00038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
24 Nissen TD, Laursen B, Viardot G, l'Hostis P, Danjou P, Sluth LB, Gram M, Bastlund JF, Christensen SR, Drewes AM. Effects of Vortioxetine and Escitalopram on Electroencephalographic Recordings – A Randomized, Crossover Trial in Healthy Males. Neuroscience 2020;424:172-81. [DOI: 10.1016/j.neuroscience.2019.09.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
25 David DJ, Tritschler L, Guilloux JP, Gardier AM, Sanchez C, Gaillard R. [Pharmacological properties of vortioxetine and its pre-clinical consequences]. Encephale 2016;42:1S12-23. [PMID: 26879252 DOI: 10.1016/S0013-7006(16)30015-X] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
26 Gonda X, Sharma SR, Tarazi FI. Vortioxetine: a novel antidepressant for the treatment of major depressive disorder. Expert Opinion on Drug Discovery 2018;14:81-9. [DOI: 10.1080/17460441.2019.1546691] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
27 Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacology & Therapeutics 2015;145:43-57. [DOI: 10.1016/j.pharmthera.2014.07.001] [Cited by in Crossref: 245] [Cited by in F6Publishing: 200] [Article Influence: 40.8] [Reference Citation Analysis]
28 Pehrson AL, Hillhouse TM, Haddjeri N, Rovera R, Porter JH, Mørk A, Smagin G, Song D, Budac D, Cajina M, Sanchez C. Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats. J Pharmacol Exp Ther 2016;358:472-82. [PMID: 27402279 DOI: 10.1124/jpet.116.233924] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
29 Lowe P, Krivoy A, Porffy L, Henriksdottir E, Eromona W, Shergill SS. When the drugs don't work: treatment-resistant schizophrenia, serotonin and serendipity. Ther Adv Psychopharmacol 2018;8:63-70. [PMID: 29344345 DOI: 10.1177/2045125317737003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
30 du Jardin KG, Liebenberg N, Müller HK, Elfving B, Sanchez C, Wegener G. Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression. Psychopharmacology (Berl) 2016;233:2813-25. [PMID: 27236785 DOI: 10.1007/s00213-016-4327-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 8.2] [Reference Citation Analysis]
31 Zuena AR, Maftei D, Alemà GS, Dal Moro F, Lattanzi R, Casolini P, Nicoletti F. Multimodal antidepressant vortioxetine causes analgesia in a mouse model of chronic neuropathic pain. Mol Pain 2018;14:1744806918808987. [PMID: 30289053 DOI: 10.1177/1744806918808987] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
32 Pehrson AL, Sanchez C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des Devel Ther 2015;9:603-24. [PMID: 25653499 DOI: 10.2147/DDDT.S62912] [Cited by in Crossref: 88] [Cited by in F6Publishing: 40] [Article Influence: 14.7] [Reference Citation Analysis]
33 Westrich L, Haddjeri N, Dkhissi-benyahya O, Sánchez C. Involvement of 5-HT7 receptors in vortioxetine's modulation of circadian rhythms and episodic memory in rodents. Neuropharmacology 2015;89:382-90. [DOI: 10.1016/j.neuropharm.2014.10.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
34 Pehrson AL, Leiser SC, Gulinello M, Dale E, Li Y, Waller JA, Sanchez C. Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin–norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. European Journal of Pharmacology 2015;753:19-31. [DOI: 10.1016/j.ejphar.2014.07.044] [Cited by in Crossref: 59] [Cited by in F6Publishing: 44] [Article Influence: 9.8] [Reference Citation Analysis]
35 Dale E, Zhang H, Leiser SC, Xiao Y, Lu D, Yang CR, Plath N, Sanchez C. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus. J Psychopharmacol 2014;28:891-902. [PMID: 25122043 DOI: 10.1177/0269881114543719] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 8.6] [Reference Citation Analysis]
36 Laursen B, Bundgaard CH, Graversen C, Grupe M, Sanchez C, Leiser SC, Sorensen HB, Drewes AM, Bastlund JF. Acute dosing of vortioxetine strengthens event-related brain activity associated with engagement of attention and cognitive functioning in rats. Brain Research 2017;1664:37-47. [DOI: 10.1016/j.brainres.2017.03.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Hrnjadovic A, Friedmann J, Barhebreus S, Allen PJ, Kocsis B. Effect of a 5-HT7 Receptor Antagonist on Reversal Learning in the Rat Attentional Set-Shifting Test. ACS Chem Neurosci 2021;12:42-8. [PMID: 33337152 DOI: 10.1021/acschemneuro.0c00554] [Reference Citation Analysis]
38 Cao B, Park C, Rosenblat JD, Chen Y, Iacobucci M, Subramaniapillai M, Mansur RB, Zuckerman H, Lee Y, Mcintyre RS. Changes in sleep predict changes in depressive symptoms in depressed subjects receiving vortioxetine: An open-label clinical trial. J Psychopharmacol 2019;33:1388-94. [DOI: 10.1177/0269881119874485] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]