BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol Adv 2021;49:107739. [PMID: 33794304 DOI: 10.1016/j.biotechadv.2021.107739] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Hall RD, D’auria JC, Silva Ferreira AC, Gibon Y, Kruszka D, Mishra P, van de Zedde R. High-throughput plant phenotyping: a role for metabolomics? Trends in Plant Science 2022. [DOI: 10.1016/j.tplants.2022.02.001] [Reference Citation Analysis]
2 DiMucci D, Kon M, Segrè D. BowSaw: Inferring Higher-Order Trait Interactions Associated With Complex Biological Phenotypes. Front Mol Biosci 2021;8:663532. [PMID: 34222331 DOI: 10.3389/fmolb.2021.663532] [Reference Citation Analysis]
3 Cummins TD, Korte EA, Bhayana S, Merchant ML, Barati MT, Smoyer WE, Klein JB. Advances in proteomic profiling of pediatric kidney diseases. Pediatr Nephrol. [DOI: 10.1007/s00467-022-05497-2] [Reference Citation Analysis]
4 Paredes O, Morales JA, Mendizabal AP, Romo-Vázquez R. Metacode: One code to rule them all. Biosystems 2021;208:104486. [PMID: 34274462 DOI: 10.1016/j.biosystems.2021.104486] [Reference Citation Analysis]
5 Vasilchenko NG, Prazdnova EV, Lewitin E. Epigenetic Mechanisms of Gene Expression Regulation in Bacteria of the Genus Bacillus. Russ J Genet 2022;58:1-19. [DOI: 10.1134/s1022795422010124] [Reference Citation Analysis]
6 Li Z, Jiang X, Wang Y, Kim Y. Applied machine learning in Alzheimer's disease research: omics, imaging, and clinical data. Emerg Top Life Sci 2021;5:765-77. [PMID: 34881778 DOI: 10.1042/ETLS20210249] [Reference Citation Analysis]
7 Lee SM, Kim HU. Development of computational models using omics data for the identification of effective cancer metabolic biomarkers. Mol Omics 2021;17:881-93. [PMID: 34608924 DOI: 10.1039/d1mo00337b] [Reference Citation Analysis]
8 Pichot F, Marchand V, Helm M, Motorin Y. Machine learning algorithm for precise prediction of 2’-O-methylation (Nm) sites from experimental RiboMethSeq datasets. Methods 2022. [DOI: 10.1016/j.ymeth.2022.03.007] [Reference Citation Analysis]
9 Rahman MT, Chari D, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear Implants: Causes, Effects and Mitigation Strategies for the Foreign Body Response and Inflammation. Hearing Research 2022. [DOI: 10.1016/j.heares.2022.108536] [Reference Citation Analysis]
10 Boeri L, Donnaloja F, Campanile M, Sardelli L, Tunesi M, Fusco F, Giordano C, Albani D. Using integrated meta-omics to appreciate the role of the gut microbiota in epilepsy. Neurobiol Dis 2022;:105614. [PMID: 35017031 DOI: 10.1016/j.nbd.2022.105614] [Reference Citation Analysis]
11 Nogales J, Garmendia J. Bacterial metabolism and pathogenesis intimate intertwining: time for metabolic modelling to come into action. Microb Biotechnol 2021. [PMID: 34672429 DOI: 10.1111/1751-7915.13942] [Reference Citation Analysis]
12 Chakraborty D, Sharma N, Kour S, Sodhi SS, Gupta MK, Lee SJ, Son YO. Applications of Omics Technology for Livestock Selection and Improvement. Front Genet 2022;13:774113. [DOI: 10.3389/fgene.2022.774113] [Reference Citation Analysis]
13 Jones DT, Kerber KA. Artificial Intelligence and the Practice of Neurology in 2035: The Neurology Future Forecasting Series. Neurology 2022;98:238-45. [PMID: 35131918 DOI: 10.1212/WNL.0000000000013200] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Pratella D, Ait-El-Mkadem Saadi S, Bannwarth S, Paquis-Fluckinger V, Bottini S. A Survey of Autoencoder Algorithms to Pave the Diagnosis of Rare Diseases. Int J Mol Sci 2021;22:10891. [PMID: 34639231 DOI: 10.3390/ijms221910891] [Reference Citation Analysis]
15 Bhardwaj M, Schrotz-king P, Brenner H. Correlation of Repeat Measurements of 27 Candidate Protein Markers for Colorectal Cancer Screening Taken Three Years and Multiple Freeze–Thaw Cycles Apart. Life 2022;12:359. [DOI: 10.3390/life12030359] [Reference Citation Analysis]
16 Cheng N, Cui X, Chen C, Li C, Huang J. Exploration of Lung Cancer-Related Genetic Factors via Mendelian Randomization Method Based on Genomic and Transcriptomic Summarized Data. Front Cell Dev Biol 2021;9:800756. [PMID: 34938740 DOI: 10.3389/fcell.2021.800756] [Reference Citation Analysis]
17 Delgado-Dolset MI, Obeso D, Rodríguez-Coira J, Tarin C, Tan G, Cumplido JA, Cabrera A, Angulo S, Barbas C, Sokolowska M, Barber D, Carrillo T, Villaseñor A, Escribese MM. Understanding uncontrolled severe allergic asthma by integration of omic and clinical data. Allergy 2022;77:1772-85. [PMID: 34839541 DOI: 10.1111/all.15192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hesami M, Alizadeh M, Jones AMP, Torkamaneh D. Machine learning: its challenges and opportunities in plant system biology. Appl Microbiol Biotechnol 2022. [PMID: 35575915 DOI: 10.1007/s00253-022-11963-6] [Reference Citation Analysis]
19 Jiang W, Jones JC, Shankavaram U, Sproull M, Camphausen K, Krauze AV. Analytical Considerations of Large-Scale Aptamer-Based Datasets for Translational Applications. Cancers 2022;14:2227. [DOI: 10.3390/cancers14092227] [Reference Citation Analysis]
20 Vilne B, Ķibilds J, Siksna I, Lazda I, Valciņa O, Krūmiņa A. Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease. Front Microbiol 2022;13:627892. [DOI: 10.3389/fmicb.2022.627892] [Reference Citation Analysis]
21 Shen Y, Zhou G, Liang C, Tian Z. Omics-based interdisciplinarity is accelerating plant breeding. Curr Opin Plant Biol 2022;66:102167. [PMID: 35016139 DOI: 10.1016/j.pbi.2021.102167] [Reference Citation Analysis]
22 Kamel F, Schneider N, Nisar P, Soloviev M. Bottom-Up Approach to the Discovery of Clinically Relevant Biomarker Genes: The Case of Colorectal Cancer. Cancers 2022;14:2654. [DOI: 10.3390/cancers14112654] [Reference Citation Analysis]
23 Hladik D, Bucher M, Endesfelder D, Oestreicher U. The Potential of Omics in Biological Dosimetry. Radiation 2022;2:78-90. [DOI: 10.3390/radiation2010006] [Reference Citation Analysis]