BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
Number Citing Articles
1 Naser IB, Hoque MM, Nahid MA, Tareq TM, Rocky MK, Faruque SM. Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh. Sci Rep 2017;7:14880. [PMID: 29093571 DOI: 10.1038/s41598-017-14839-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
2 Rivera AJ, Tyx RE, Keong LM, Stanfill SB, Watson CH. Microbial communities and gene contributions in smokeless tobacco products. Appl Microbiol Biotechnol 2020;104:10613-29. [PMID: 33180172 DOI: 10.1007/s00253-020-10999-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Yingkajorn M, Sermwitayawong N, Palittapongarnpimp P, Nishibuchi M, Robins WP, Mekalanos JJ, Vuddhakul V. Vibrio parahaemolyticus and its specific bacteriophages as an indicator in cockles (Anadara granosa) for the risk of V. parahaemolyticus infection in Southern Thailand. Microb Ecol 2014;67:849-56. [PMID: 24682339 DOI: 10.1007/s00248-014-0382-9] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
4 Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Górski A. Phage Prevalence in the Human Urinary Tract-Current Knowledge and Therapeutic Implications. Microorganisms 2020;8:E1802. [PMID: 33212807 DOI: 10.3390/microorganisms8111802] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Bourgeois J, Lazinski DW, Camilli A. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System. mSphere 2020;5:e00813-20. [PMID: 33208517 DOI: 10.1128/mSphere.00813-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020;22:4919-33. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Yakovlev AA, Rakov AV, Pozdeeva ES. Significance of interspecies and intraspecies interactions of microorganisms as a sub-organism level in the hierarchy of the epidemic process. Epidemiology and Infectious Diseases 2020;25:118-30. [DOI: 10.17816/eid50013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
8 Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 2017;372:20160424. [PMID: 29061896 DOI: 10.1098/rstb.2016.0424] [Cited by in Crossref: 83] [Cited by in F6Publishing: 62] [Article Influence: 20.8] [Reference Citation Analysis]
9 Sakib SN, Reddi G, Almagro-Moreno S. Environmental role of pathogenic traits in Vibrio cholerae. J Bacteriol 2018;200:e00795-17. [PMID: 29581410 DOI: 10.1128/JB.00795-17] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
10 Zielke RA, Simmons RS, Park BR, Nonogaki M, Emerson S, Sikora AE. The type II secretion pathway in Vibrio cholerae is characterized by growth phase-dependent expression of exoprotein genes and is positively regulated by σE. Infect Immun 2014;82:2788-801. [PMID: 24733097 DOI: 10.1128/IAI.01292-13] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
11 Alamdary SZ, Bakhshi B. Lactobacillus acidophilus attenuates toxin production by Vibrio cholerae and shigella dysenteriae following intestinal epithelial cells infection. Microb Pathog 2020;149:104543. [PMID: 33010360 DOI: 10.1016/j.micpath.2020.104543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Garin-Fernandez A, Wichels A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar Genomics 2020;51:100725. [PMID: 31757758 DOI: 10.1016/j.margen.2019.100725] [Reference Citation Analysis]
13 Kostiuk B, Santoriello FJ, Diaz-Satizabal L, Bisaro F, Lee KJ, Dhody AN, Provenzano D, Unterweger D, Pukatzki S. Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype. Nat Commun 2021;12:6457. [PMID: 34753930 DOI: 10.1038/s41467-021-26847-y] [Reference Citation Analysis]
14 Angermeyer A, Hays SG, Nguyen MHT, Johura FT, Sultana M, Alam M, Seed KD. Evolutionary Sweeps of Subviral Parasites and Their Phage Host Bring Unique Parasite Variants and Disappearance of a Phage CRISPR-Cas System. mBio 2022;:e0308821. [PMID: 35164562 DOI: 10.1128/mbio.03088-21] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Sinha A, Maurice CF. Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators Inflamm 2019;2019:3730519. [PMID: 31582898 DOI: 10.1155/2019/3730519] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
16 Ndongmo Teytsa HM, Tsanou B, Bowong S, Lubuma JM. Bifurcation analysis of a phage-bacteria interaction model with prophage induction. Math Med Biol 2021;38:28-58. [PMID: 32720676 DOI: 10.1093/imammb/dqaa010] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Boucher Y, Orata FD, Alam M. The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen. Front Microbiol 2015;6:1120. [PMID: 26539168 DOI: 10.3389/fmicb.2015.01120] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
18 Knezevic P, Voet M, Lavigne R. Prevalence of Pf1-like (pro)phage genetic elements among Pseudomonas aeruginosa isolates. Virology 2015;483:64-71. [PMID: 25965796 DOI: 10.1016/j.virol.2015.04.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
19 Petrova M, Shcherbatova N, Kurakov A, Mindlin S. Genomic characterization and integrative properties of phiSMA6 and phiSMA7, two novel filamentous bacteriophages of Stenotrophomonas maltophilia. Arch Virol 2014;159:1293-303. [DOI: 10.1007/s00705-013-1882-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
20 Endersen L, Buttimer C, Nevin E, Coffey A, Neve H, Oliveira H, Lavigne R, O'mahony J. Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. International Journal of Food Microbiology 2017;253:1-11. [DOI: 10.1016/j.ijfoodmicro.2017.04.009] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
21 Usmani M, Brumfield KD, Jamal Y, Huq A, Colwell RR, Jutla A. A Review of the Environmental Trigger and Transmission Components for Prediction of Cholera. Trop Med Infect Dis 2021;6:147. [PMID: 34449728 DOI: 10.3390/tropicalmed6030147] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Racault, Abdulaziz, George, Menon, C, Punathil, Mcconville, Loveday, Platt, Sathyendranath, Vijayan. Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. Remote Sensing 2019;11:2763. [DOI: 10.3390/rs11232763] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
23 Stephen J, Lekshmi M, Ammini P, Kumar SH, Varela MF. Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence. Microorganisms 2022;10:382. [DOI: 10.3390/microorganisms10020382] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Rahaman MH, Islam T, Colwell RR, Alam M. Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol 2015;6:1040. [PMID: 26500613 DOI: 10.3389/fmicb.2015.01040] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
25 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
26 Sinha-Ray S, Alam MT, Bag S, Morris JG Jr, Ali A. Conversion of a recA-Mediated Non-toxigenic Vibrio cholerae O1 Strain to a Toxigenic Strain Using Chitin-Induced Transformation. Front Microbiol 2019;10:2562. [PMID: 31787954 DOI: 10.3389/fmicb.2019.02562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Mahan MJ, Kubicek-Sutherland JZ, Heithoff DM. Rise of the microbes. Virulence 2013;4:213-22. [PMID: 23334178 DOI: 10.4161/viru.23380] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
28 Azarian T, Ali A, Johnson JA, Mohr D, Prosperi M, Veras NM, Jubair M, Strickland SL, Rashid MH, Alam MT, Weppelmann TA, Katz LS, Tarr CL, Colwell RR, Morris JG Jr, Salemi M. Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 2014;5:e01824-14. [PMID: 25538191 DOI: 10.1128/mBio.01824-14] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
29 Pu M, Duriez P, Arazi M, Rowe-magnus DA. A conserved tad pilus promotes Vibrio vulnificus oyster colonization: A tad pilus promotes V. vulnificus oyster colonization. Environ Microbiol 2018;20:828-41. [DOI: 10.1111/1462-2920.14025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
30 Hounmanou YM, Mdegela RH, Dougnon TV, Mhongole OJ, Mayila ES, Malakalinga J, Makingi G, Dalsgaard A. Toxigenic Vibrio cholerae O1 in vegetables and fish raised in wastewater irrigated fields and stabilization ponds during a non-cholera outbreak period in Morogoro, Tanzania: an environmental health study. BMC Res Notes 2016;9:466. [PMID: 27756420 DOI: 10.1186/s13104-016-2283-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
31 Hoai TD, Yoshida T. Induction and characterization of a lysogenic bacteriophage of Lactococcus garvieae isolated from marine fish species. J Fish Dis 2016;39:799-808. [PMID: 26471724 DOI: 10.1111/jfd.12410] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
32 Roshika R, Jain I, Medicielo J, Wächter J, Danger JL, Sumby P. The RD2 Pathogenicity Island Modifies the Disease Potential of the Group A Streptococcus. Infect Immun 2021;89:e0072220. [PMID: 33820819 DOI: 10.1128/IAI.00722-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Pham TD, Nguyen TH, Iwashita H, Takemura T, Morita K, Yamashiro T. Comparative analyses of CTX prophage region of Vibrio cholerae seventh pandemic wave 1 strains isolated in Asia. Microbiol Immunol 2018;62:635-50. [PMID: 30211956 DOI: 10.1111/1348-0421.12648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Keary R, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage 2014;4:e28451. [PMID: 25105056 DOI: 10.4161/bact.28451] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
35 Makky S, Dawoud A, Safwat A, Abdelsattar AS, Rezk N, El-Shibiny A. The bacteriophage decides own tracks: When they are with or against the bacteria. Curr Res Microb Sci 2021;2:100050. [PMID: 34841341 DOI: 10.1016/j.crmicr.2021.100050] [Reference Citation Analysis]
36 Monteil CL, Cai R, Liu H, Mechan Llontop ME, Leman S, Studholme DJ, Morris CE, Vinatzer BA. Nonagricultural reservoirs contribute to emergence and evolution of Pseudomonas syringae crop pathogens. New Phytol 2013;199:800-11. [DOI: 10.1111/nph.12316] [Cited by in Crossref: 62] [Cited by in F6Publishing: 43] [Article Influence: 6.9] [Reference Citation Analysis]
37 Luo Y, Wang H, Liang J, Qian H, Ye J, Chen L, Yang X, Chen Z, Wang F, Octavia S, Payne M, Song X, Jiang J, Jin D, Lan R. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China. Microb Ecol 2021;82:319-33. [PMID: 33410933 DOI: 10.1007/s00248-020-01645-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Shibata Y, Nomoto R, de Vries GC, Osawa R. Serendipitous isolation of non-Vibrio bacterial strains carrying the cholera toxin gene from environmental waters in indonesia. Int J Microbiol 2013;2013:406078. [PMID: 24368914 DOI: 10.1155/2013/406078] [Reference Citation Analysis]
39 Nuidate T, Kuaphiriyakul A, Surachat K, Mittraparp-Arthorn P. Induction and Genome Analysis of HY01, a Newly Reported Prophage from an Emerging Shrimp Pathogen Vibrio campbellii. Microorganisms 2021;9:400. [PMID: 33671959 DOI: 10.3390/microorganisms9020400] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Varahan S, Hancock LE. To Defend or Not To Defend: That's the Question. mSphere 2016;1:e00127-16. [PMID: 27306929 DOI: 10.1128/mSphere.00127-16] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
41 Faruque SM. Role of phages in the epidemiology of cholera. Curr Top Microbiol Immunol 2014;379:165-80. [PMID: 24213557 DOI: 10.1007/82_2013_358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
42 Levade I, Terrat Y, Leducq JB, Weil AA, Mayo-Smith LM, Chowdhury F, Khan AI, Boncy J, Buteau J, Ivers LC, Ryan ET, Charles RC, Calderwood SB, Qadri F, Harris JB, LaRocque RC, Shapiro BJ. Vibrio cholerae genomic diversity within and between patients. Microb Genom 2017;3. [PMID: 29306353 DOI: 10.1099/mgen.0.000142] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
43 Chang YW. Bacteria suit up with virus armor. Proc Natl Acad Sci U S A 2020;117:6297-9. [PMID: 32152106 DOI: 10.1073/pnas.2001931117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Arens DK, Brady TS, Carter JL, Pape JA, Robinson DM, Russell KA, Staley LA, Stettler JM, Tateoka OB, Townsend MH, Whitley KV, Wienclaw TM, Williamson TL, Johnson SM, Grose JH. Characterization of two related Erwinia myoviruses that are distant relatives of the PhiKZ-like Jumbo phages. PLoS One 2018;13:e0200202. [PMID: 29979759 DOI: 10.1371/journal.pone.0200202] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
45 Pu M, Storms E, Chodur DM, Rowe-Magnus DA. Calcium-dependent site-switching regulates expression of the atypical iam pilus locus in Vibrio vulnificus. Environ Microbiol 2020;22:4167-82. [PMID: 31355512 DOI: 10.1111/1462-2920.14763] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
46 Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Reference Citation Analysis]
47 Hounmanou YMG, Leekitcharoenphon P, Hendriksen RS, Dougnon TV, Mdegela RH, Olsen JE, Dalsgaard A. Surveillance and Genomics of Toxigenic Vibrio cholerae O1 From Fish, Phytoplankton and Water in Lake Victoria, Tanzania. Front Microbiol 2019;10:901. [PMID: 31114556 DOI: 10.3389/fmicb.2019.00901] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
48 Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021;9:1029. [PMID: 34064647 DOI: 10.3390/microorganisms9051029] [Reference Citation Analysis]
49 Lal TM, Sano M, Ransangan J. Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol 2016;56:872-88. [PMID: 26960780 DOI: 10.1002/jobm.201500611] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
50 Ceccarelli D, Amaro C, Romalde JL, Suffredini E, Vezzulli L. Vibrio Species. In: Doyle MP, Diez-gonzalez F, Hill C, editors. Food Microbiology. Washington: ASM Press; 2019. pp. 347-88. [DOI: 10.1128/9781555819972.ch13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
51 Madhusudana Rao B, Lalitha K. Bacteriophages for aquaculture: Are they beneficial or inimical. Aquaculture 2015;437:146-54. [DOI: 10.1016/j.aquaculture.2014.11.039] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 4.1] [Reference Citation Analysis]
52 Endersen L, Guinane CM, Johnston C, Neve H, Coffey A, Ross RP, McAuliffe O, O'Mahony J. Genome analysis of Cronobacter phage vB_CsaP_Ss1 reveals an endolysin with potential for biocontrol of Gram-negative bacterial pathogens. J Gen Virol 2015;96:463-77. [PMID: 25371517 DOI: 10.1099/vir.0.068494-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
53 Silpe JE, Bassler BL. A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell 2019;176:268-280.e13. [PMID: 30554875 DOI: 10.1016/j.cell.2018.10.059] [Cited by in Crossref: 110] [Cited by in F6Publishing: 85] [Article Influence: 27.5] [Reference Citation Analysis]
54 Maronek M, Link R, Ambro L, Gardlik R. Phages and Their Role in Gastrointestinal Disease: Focus on Inflammatory Bowel Disease. Cells 2020;9:E1013. [PMID: 32325706 DOI: 10.3390/cells9041013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
55 Huehn S, Eichhorn C, Urmersbach S, Breidenbach J, Bechlars S, Bier N, Alter T, Bartelt E, Frank C, Oberheitmann B, Gunzer F, Brennholt N, Böer S, Appel B, Dieckmann R, Strauch E. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol 2014;304:843-50. [PMID: 25129553 DOI: 10.1016/j.ijmm.2014.07.010] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 9.0] [Reference Citation Analysis]
56 Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017;8:453. [PMID: 28373867 DOI: 10.3389/fmicb.2017.00453] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
57 Chakrabarti AK, Biswas A, Tewari DN, Mondal PP, Dutta S. Phage Types of Vibrio cholerae 01 Biotype ElTor Strains Isolated from India during 2012-2017. J Glob Infect Dis 2020;12:94-100. [PMID: 32773997 DOI: 10.4103/jgid.jgid_42_19] [Reference Citation Analysis]
58 Gyles C, Boerlin P. Horizontally Transferred Genetic Elements and Their Role in Pathogenesis of Bacterial Disease. Vet Pathol 2014;51:328-40. [DOI: 10.1177/0300985813511131] [Cited by in Crossref: 107] [Cited by in F6Publishing: 84] [Article Influence: 11.9] [Reference Citation Analysis]
59 Azarian T, Ali A, Johnson JA, Jubair M, Cella E, Ciccozzi M, Nolan DJ, Farmerie W, Rashid MH, Sinha-Ray S, Alam MT, Morris JG, Salemi M. Non-toxigenic environmental Vibrio cholerae O1 strain from Haiti provides evidence of pre-pandemic cholera in Hispaniola. Sci Rep 2016;6:36115. [PMID: 27786291 DOI: 10.1038/srep36115] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
60 Kanangat S, Skaljic I. Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Hum Immunol 2021:S0198-8859(21)00183-X. [PMID: 34364710 DOI: 10.1016/j.humimm.2021.07.009] [Reference Citation Analysis]
61 Bongrand C, Koch EJ, Moriano-Gutierrez S, Cordero OX, McFall-Ngai M, Polz MF, Ruby EG. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J 2016;10:2907-17. [PMID: 27128997 DOI: 10.1038/ismej.2016.69] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
62 Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol 2019;17:84. [PMID: 31660953 DOI: 10.1186/s12915-019-0704-y] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 15.3] [Reference Citation Analysis]
63 Ssekatawa K, Byarugaba DK, Kato CD, Wampande EM, Ejobi F, Tweyongyere R, Nakavuma JL. A review of phage mediated antibacterial applications. Alexandria Journal of Medicine 2021;57:1-20. [DOI: 10.1080/20905068.2020.1851441] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
64 Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020;38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
65 Grosso-Becera MV, Servín-González L, Soberón-Chávez G. RNA structures are involved in the thermoregulation of bacterial virulence-associated traits. Trends Microbiol 2015;23:509-18. [PMID: 25999019 DOI: 10.1016/j.tim.2015.04.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
66 Kim EJ, Lee CH, Nair GB, Kim DW. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends in Microbiology 2015;23:479-89. [DOI: 10.1016/j.tim.2015.03.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 7.1] [Reference Citation Analysis]
67 Simpson DJ, Sacher JC, Szymanski CM. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates. Current Opinion in Structural Biology 2015;34:69-77. [DOI: 10.1016/j.sbi.2015.07.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
68 De R. Mobile Genetic Elements of Vibrio cholerae and the Evolution of Its Antimicrobial Resistance. Front Trop Dis 2021;2:691604. [DOI: 10.3389/fitd.2021.691604] [Reference Citation Analysis]
69 Reis-Cunha JL, Bartholomeu DC, Manson AL, Earl AM, Cerqueira GC. ProphET, prophage estimation tool: A stand-alone prophage sequence prediction tool with self-updating reference database. PLoS One 2019;14:e0223364. [PMID: 31577829 DOI: 10.1371/journal.pone.0223364] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
70 Pu M, Rowe-Magnus DA. A Tad pilus promotes the establishment and resistance of Vibrio vulnificus biofilms to mechanical clearance. NPJ Biofilms Microbiomes 2018;4:10. [PMID: 29707230 DOI: 10.1038/s41522-018-0052-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
71 Sultana S, Sarker SA, Brüssow H. What happened to K och's postulates in diarrhoea? Environmental Microbiology 2017;19:2926-34. [DOI: 10.1111/1462-2920.13787] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
72 Moore S, Thomson N, Mutreja A, Piarroux R. Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones. Clin Microbiol Infect 2014;20:373-9. [PMID: 24575898 DOI: 10.1111/1469-0691.12610] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
73 López-Pérez M, Jayakumar JM, Haro-Moreno JM, Zaragoza-Solas A, Reddi G, Rodriguez-Valera F, Shapiro OH, Alam M, Almagro-Moreno S. Evolutionary Model of Cluster Divergence of the Emergent Marine Pathogen Vibrio vulnificus: From Genotype to Ecotype. mBio 2019;10:e02852-18. [PMID: 30782660 DOI: 10.1128/mBio.02852-18] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
74 Maurice Bilung L, Etriam MP, Tahar AS, Tung TS, Apun K. Detection of Cholera Toxin-Producing Vibrio cholerae in Phytoplankton from Santubong and Samariang Estuaries. BJRST 2019;9:36-43. [DOI: 10.33736/bjrst.1584.2019] [Reference Citation Analysis]
75 Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microbial Pathogenesis 2022;165:105490. [DOI: 10.1016/j.micpath.2022.105490] [Reference Citation Analysis]
76 Hoque MM, Naser IB, Bari SM, Zhu J, Mekalanos JJ, Faruque SM. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages. Sci Rep 2016;6:37956. [PMID: 27892495 DOI: 10.1038/srep37956] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
77 Das B. Insights into TLCΦ lysogeny: A twist in the mechanism of IMEX integration. Proc Natl Acad Sci U S A 2019;116:18159-61. [PMID: 31439815 DOI: 10.1073/pnas.1912633116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
78 Kirchberger PC, Orata FD, Barlow EJ, Kauffman KM, Case RJ, Polz MF, Boucher Y. A Small Number of Phylogenetically Distinct Clonal Complexes Dominate a Coastal Vibrio cholerae Population. Appl Environ Microbiol 2016;82:5576-86. [PMID: 27371587 DOI: 10.1128/AEM.01177-16] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
79 Chen D, Li X, Ni L, Xu D, Xu Y, Ding Y, Xie L, Chen L. First Experimental Evidence for the Presence of Potentially Toxic Vibrio cholerae in Snails, and Virulence, Cross-Resistance and Genetic Diversity of the Bacterium in 36 Species of Aquatic Food Animals. Antibiotics (Basel) 2021;10:412. [PMID: 33918855 DOI: 10.3390/antibiotics10040412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
80 Doub JB. Risk of Bacteriophage Therapeutics to Transfer Genetic Material and Contain Contaminants Beyond Endotoxins with Clinically Relevant Mitigation Strategies. Infect Drug Resist 2021;14:5629-37. [PMID: 34992389 DOI: 10.2147/IDR.S341265] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Sambe-Ba B, Diallo MH, Seck A, Wane AA, Constantin de Magny G, Boye CS, Sow AI, Gassama-Sow A. Identification of Atypical El TorV. cholerae O1 Ogawa Hosting SXT Element in Senegal, Africa. Front Microbiol 2017;8:748. [PMID: 28555129 DOI: 10.3389/fmicb.2017.00748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
82 Chibani CM, Farr A, Klama S, Dietrich S, Liesegang H. Classifying the Unclassified: A Phage Classification Method. Viruses 2019;11:E195. [PMID: 30813498 DOI: 10.3390/v11020195] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
83 Naser IB, Hoque MM, Abdullah A, Bari SMN, Ghosh AN, Faruque SM. Environmental bacteriophages active on biofilms and planktonic forms of toxigenic Vibrio cholerae: Potential relevance in cholera epidemiology. PLoS One 2017;12:e0180838. [PMID: 28700707 DOI: 10.1371/journal.pone.0180838] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
84 Pereira C, Costa P, Duarte J, Balcão VM, Almeida A. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption. Int J Food Microbiol 2021;338:108995. [PMID: 33316593 DOI: 10.1016/j.ijfoodmicro.2020.108995] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
85 Meaden S, Koskella B. Exploring the risks of phage application in the environment. Front Microbiol 2013;4:358. [PMID: 24348468 DOI: 10.3389/fmicb.2013.00358] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 6.9] [Reference Citation Analysis]
86 Ahmed SA, Raabe CA, Cheah HL, Hoe CH, Rozhdestvensky TS, Tang TH. Utilization of Small RNA Genes to Distinguish Vibrio cholerae Biotypes via Multiplex Polymerase Chain Reaction. Am J Trop Med Hyg 2019;100:1328-34. [PMID: 30963989 DOI: 10.4269/ajtmh.18-0525] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
87 Ramamurthy T, Nandy RK, Mukhopadhyay AK, Dutta S, Mutreja A, Okamoto K, Miyoshi SI, Nair GB, Ghosh A. Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Front Cell Infect Microbiol 2020;10:572096. [PMID: 33102256 DOI: 10.3389/fcimb.2020.572096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020;44:606-30. [PMID: 32672812 DOI: 10.1093/femsre/fuaa025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
89 Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015;39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
90 Ruenchit P, Reamtong O, Siripanichgon K, Chaicumpa W, Diraphat P. New facet of non-O1/non-O139 Vibrio cholerae hemolysin A: a competitive factor in the ecological niche. FEMS Microbiol Ecol 2017;93. [PMID: 28961768 DOI: 10.1093/femsec/fix113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
91 Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019;20:e47427. [PMID: 30952693 DOI: 10.15252/embr.201847427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
92 Hackbusch S, Wichels A, Gimenez L, Döpke H, Gerdts G. Potentially human pathogenic Vibrio spp. in a coastal transect: Occurrence and multiple virulence factors. Sci Total Environ 2020;707:136113. [PMID: 31864001 DOI: 10.1016/j.scitotenv.2019.136113] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
93 Gong L, Yu P, Zheng H, Gu W, He W, Tang Y, Wang Y, Dong Y, Peng X, She Q, Xie L, Chen L. Comparative genomics for non-O1/O139 Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1. Mol Genet Genomics 2019;294:417-30. [PMID: 30488322 DOI: 10.1007/s00438-018-1514-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]