BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rajanna C, Wang J, Zhang D, Xu Z, Ali A, Hou YM, Karaolis DK. The vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. J Bacteriol. 2003;185:6893-6901. [PMID: 14617653 DOI: 10.1128/jb.185.23.6893-6901.2003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 De Silva LADS, Wickramanayake MVKS, Heo GJ. Occurrence of Virulence and Antimicrobial Resistance Determinants in Vibrio harveyi Isolated from Marine Food Fish Cultured in Korea. Microb Drug Resist 2021. [PMID: 34569863 DOI: 10.1089/mdr.2020.0618] [Reference Citation Analysis]
2 Labbate M, Orata FD, Petty NK, Jayatilleke ND, King WL, Kirchberger PC, Allen C, Mann G, Mutreja A, Thomson NR, Boucher Y, Charles IG. A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Sci Rep 2016;6:36891. [PMID: 27845364 DOI: 10.1038/srep36891] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
3 Bielaszewska M, Middendorf B, Tarr PI, Zhang W, Prager R, Aldick T, Dobrindt U, Karch H, Mellmann A. Chromosomal instability in enterohaemorrhagic Escherichia coli O157:H7: impact on adherence, tellurite resistance and colony phenotype. Mol Microbiol 2011;79:1024-44. [PMID: 21299654 DOI: 10.1111/j.1365-2958.2010.07499.x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
4 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
5 Zhang D, Manos J, Ma X, Belas R, Karaolis DK. Transcriptional analysis and operon structure of the tagA–orf2–orf3–mop–tagD region on the Vibrio pathogenicity island in epidemic V. cholerae. FEMS Microbiology Letters 2004;235:199-207. [DOI: 10.1111/j.1574-6968.2004.tb09587.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
6 Klockgether J, Würdemann D, Reva O, Wiehlmann L, Tümmler B. Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 2007;189:2443-59. [PMID: 17194795 DOI: 10.1128/JB.01688-06] [Cited by in Crossref: 79] [Cited by in F6Publishing: 50] [Article Influence: 4.9] [Reference Citation Analysis]
7 Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020;11:2065. [PMID: 33101219 DOI: 10.3389/fmicb.2020.02065] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 Carpenter MR, Kalburge SS, Borowski JD, Peters MC, Colwell RR, Boyd EF. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules. J Bacteriol 2017;199:e00842-16. [PMID: 28264992 DOI: 10.1128/JB.00842-16] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
9 Huhulescu S, Indra A, Feierl G, Stoeger A, Ruppitsch W, Sarkar B, Allerberger F. Occurrence of Vibrio cholerae serogroups other than O1 and O139 in Austria. Wien Klin Wochenschr 2007;119:235-41. [PMID: 17492351 DOI: 10.1007/s00508-006-0747-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 1.9] [Reference Citation Analysis]
10 Ast JC, Urbanczyk H, Dunlap PV. Natural merodiploidy of the lux-rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan. J Bacteriol 2007;189:6148-58. [PMID: 17586644 DOI: 10.1128/JB.00672-07] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
11 Santoriello FJ, Michel L, Unterweger D, Pukatzki S. Pandemic Vibrio cholerae shuts down site-specific recombination to retain an interbacterial defence mechanism. Nat Commun 2020;11:6246. [PMID: 33288753 DOI: 10.1038/s41467-020-20012-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020;10:561296. [PMID: 33123494 DOI: 10.3389/fcimb.2020.561296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
14 Kirchberger PC, Unterweger D, Provenzano D, Pukatzki S, Boucher Y. Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017;7:45133. [PMID: 28327641 DOI: 10.1038/srep45133] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 10.2] [Reference Citation Analysis]
15 Richard AL, Withey JH, Beyhan S, Yildiz F, DiRita VJ. The Vibrio cholerae virulence regulatory cascade controls glucose uptake through activation of TarA, a small regulatory RNA. Mol Microbiol 2010;78:1171-81. [PMID: 21091503 DOI: 10.1111/j.1365-2958.2010.07397.x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
16 Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
17 Murphy RA, Boyd EF. Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol. 2008;190:636-647. [PMID: 17993521 DOI: 10.1128/jb.00562-07] [Cited by in Crossref: 79] [Cited by in F6Publishing: 48] [Article Influence: 5.3] [Reference Citation Analysis]
18 Almagro-Moreno S, Napolitano MG, Boyd EF. Excision dynamics of Vibrio pathogenicity island-2 from Vibrio cholerae: role of a recombination directionality factor VefA. BMC Microbiol 2010;10:306. [PMID: 21118541 DOI: 10.1186/1471-2180-10-306] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.7] [Reference Citation Analysis]
19 Schneider G, Dobrindt U, Middendorf B, Hochhut B, Szijártó V, Emody L, Hacker J. Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands. BMC Microbiol. 2011;11:210. [PMID: 21943043 DOI: 10.1186/1471-2180-11-210] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
20 Zeng Z, Liu X, Yao J, Guo Y, Li B, Li Y, Jiao N, Wang X. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis. ISME J 2016;10:2787-800. [PMID: 27482926 DOI: 10.1038/ismej.2016.85] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
21 Bourhy P, Salaün L, Lajus A, Médigue C, Boursaux-Eude C, Picardeau M. A genomic island of the pathogen Leptospira interrogans serovar Lai can excise from its chromosome. Infect Immun 2007;75:677-83. [PMID: 17118975 DOI: 10.1128/IAI.01067-06] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
22 Laverde Gomez JA, Hendrickx AP, Willems RJ, Top J, Sava I, Huebner J, Witte W, Werner G. Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island. PLoS One 2011;6:e16720. [PMID: 21559082 DOI: 10.1371/journal.pone.0016720] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 3.3] [Reference Citation Analysis]
23 Lilburn TG, Gu J, Cai H, Wang Y. Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins. BMC Genomics 2010;11:369. [PMID: 20537180 DOI: 10.1186/1471-2164-11-369] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
24 Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019;20:e47427. [PMID: 30952693 DOI: 10.15252/embr.201847427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
25 Domínguez NM, Hackett KT, Dillard JP. XerCD-mediated site-specific recombination leads to loss of the 57-kilobase gonococcal genetic island. J Bacteriol 2011;193:377-88. [PMID: 21075927 DOI: 10.1128/JB.00948-10] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
26 Carpenter MR, Rozovsky S, Boyd EF. Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome. J Bacteriol 2015;198:766-76. [PMID: 26668266 DOI: 10.1128/JB.00704-15] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
27 Pant A, Bag S, Saha B, Verma J, Kumar P, Banerjee S, Kumar B, Kumar Y, Desigamani A, Maiti S, Maiti TK, Banerjee SK, Bhadra RK, Koley H, Dutta S, Nair GB, Ramamurthy T, Das B. Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae. Proc Natl Acad Sci U S A 2020;117:23762-73. [PMID: 32873641 DOI: 10.1073/pnas.2006283117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]