BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005;57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020;22:4919-33. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, Hauser A, McDougald D, Webb JS, Kjelleberg S. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 2009;3:271-82. [PMID: 19005496 DOI: 10.1038/ismej.2008.109] [Cited by in Crossref: 195] [Cited by in F6Publishing: 178] [Article Influence: 13.9] [Reference Citation Analysis]
3 Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 2008;154:2533-45. [DOI: 10.1099/mic.0.2008/020693-0] [Cited by in Crossref: 194] [Cited by in F6Publishing: 177] [Article Influence: 13.9] [Reference Citation Analysis]
4 Gholizadeh P, Aghazadeh M, Asgharzadeh M, Kafil HS. Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis 2017;36:2043-51. [PMID: 28601970 DOI: 10.1007/s10096-017-3036-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
5 Gutierrez-Rodarte M, Kolappan S, Burrell BA, Craig L. The Vibrio cholerae minor pilin TcpB mediates uptake of the cholera toxin phage CTXφ. J Biol Chem 2019;294:15698-710. [PMID: 31471320 DOI: 10.1074/jbc.RA119.009980] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
6 Liu J, Liu Q, Shen P, Huang YP. Isolation and characterization of a novel filamentous phage from Stenotrophomonas maltophilia. Arch Virol 2012;157:1643-50. [PMID: 22614810 DOI: 10.1007/s00705-012-1305-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
7 Barik S, Mandal NC. Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N-cI- Prophages. Int J Mol Sci 2020;21:E1667. [PMID: 32121308 DOI: 10.3390/ijms21051667] [Reference Citation Analysis]
8 Cochrane K, McGuire AM, Priest ME, Abouelleil A, Cerqueira GC, Lo R, Earl AM, Allen-Vercoe E. Complete genome sequences and analysis of the Fusobacterium nucleatum subspecies animalis 7-1 bacteriophage ɸFunu1 and ɸFunu2. Anaerobe 2016;38:125-9. [PMID: 26545740 DOI: 10.1016/j.anaerobe.2015.10.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
9 Laganenka L, Sander T, Lagonenko A, Chen Y, Link H, Sourjik V. Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1. mBio 2019;10:e01884-19. [PMID: 31506310 DOI: 10.1128/mBio.01884-19] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 7.3] [Reference Citation Analysis]
10 Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017;11:1511-20. [PMID: 28291233 DOI: 10.1038/ismej.2017.16] [Cited by in Crossref: 227] [Cited by in F6Publishing: 174] [Article Influence: 45.4] [Reference Citation Analysis]
11 Steuber J, Halang P, Vorburger T, Steffen W, Vohl G, Fritz G. Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae. Biological Chemistry 2014;395:1389-99. [DOI: 10.1515/hsz-2014-0204] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
12 Weynberg KD, Voolstra CR, Neave MJ, Buerger P, van Oppen MJ. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen. Sci Rep 2015;5:17889. [PMID: 26644037 DOI: 10.1038/srep17889] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.9] [Reference Citation Analysis]
13 Tiaden A, Hilbi H. α-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors (Basel) 2012;12:2899-919. [PMID: 22736983 DOI: 10.3390/s120302899] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
14 Xue H, Xu Y, Boucher Y, Polz MF. High frequency of a novel filamentous phage, VCY φ, within an environmental Vibrio cholerae population. Appl Environ Microbiol 2012;78:28-33. [PMID: 22020507 DOI: 10.1128/AEM.06297-11] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
15 Barth ZK, Netter Z, Angermeyer A, Bhardwaj P, Seed KD. A Family of Viral Satellites Manipulates Invading Virus Gene Expression and Can Affect Cholera Toxin Mobilization. mSystems 2020;5:e00358-20. [PMID: 33051375 DOI: 10.1128/mSystems.00358-20] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
16 Lemire S, Figueroa-Bossi N, Bossi L. Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PLoS Genet 2011;7:e1002149. [PMID: 21731505 DOI: 10.1371/journal.pgen.1002149] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
17 Oliver JD, Pruzzo C, Vezzulli L, Kaper JB. Vibrio Species. In: Doyle MP, Buchanan RL, editors. Food Microbiology. Washington: ASM Press; 2012. pp. 401-39. [DOI: 10.1128/9781555818463.ch16] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
18 Ceccarelli D, Amaro C, Romalde JL, Suffredini E, Vezzulli L. Vibrio Species. In: Doyle MP, Diez-gonzalez F, Hill C, editors. Food Microbiology. Washington: ASM Press; 2019. pp. 347-88. [DOI: 10.1128/9781555819972.ch13] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
19 Schwartz K, Hammerl JA, Göllner C, Strauch E. Environmental and Clinical Strains of Vibrio cholerae Non-O1, Non-O139 From Germany Possess Similar Virulence Gene Profiles. Front Microbiol 2019;10:733. [PMID: 31031724 DOI: 10.3389/fmicb.2019.00733] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
20 Jian H, Xiong L, Xu G, Xiao X. Filamentous phage SW1 is active and influences the transcriptome of the host at high-pressure and low-temperature: Filamentous phage SW1 influences on transcriptome. Environmental Microbiology Reports 2016;8:358-62. [DOI: 10.1111/1758-2229.12388] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
21 Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O'Toole GA. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 2009;191:210-9. [PMID: 18952788 DOI: 10.1128/JB.00797-08] [Cited by in Crossref: 184] [Cited by in F6Publishing: 110] [Article Influence: 13.1] [Reference Citation Analysis]
22 Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, Qadri F, Thomson NR. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci Rep 2019;9:5865. [PMID: 30971707 DOI: 10.1038/s41598-019-41883-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
23 Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microbial Pathogenesis 2022;165:105490. [DOI: 10.1016/j.micpath.2022.105490] [Reference Citation Analysis]
24 Łoś M, Kuzio J, Mcconnell MR, Kropinski AM, Węgrzyn G, Christie GE. Lysogenic Conversion in Bacteria of Importance to the Food Industry. In: Sabour PM, Griffiths MW, editors. Bacteriophages in the Control of Food- and Waterborne Pathogens. Washington: ASM Press; 2010. pp. 157-98. [DOI: 10.1128/9781555816629.ch9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
25 Jian H, Xiong L, Xu G, Xiao X, Wang F. Long 5' untranslated regions regulate the RNA stability of the deep-sea filamentous phage SW1. Sci Rep 2016;6:21908. [PMID: 26898180 DOI: 10.1038/srep21908] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
26 Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-35. [PMID: 22126996 DOI: 10.1128/MMBR.00011-11] [Cited by in Crossref: 174] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
27 Kimsey HH, Waldor MK. Vibrio cholerae LexA coordinates CTX prophage gene expression. J Bacteriol 2009;191:6788-95. [PMID: 19666711 DOI: 10.1128/JB.00682-09] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
28 Mellies JL, Haack KR, Galligan DC. SOS regulation of the type III secretion system of enteropathogenic Escherichia coli. J Bacteriol 2007;189:2863-72. [PMID: 17237173 DOI: 10.1128/JB.01859-06] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
29 Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol 2021;19:501-13. [PMID: 33762712 DOI: 10.1038/s41579-021-00530-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
30 Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015;39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
31 Wang Q, Kan B, Wang R. Isolation and characterization of the new mosaic filamentous phage VFJ Φ of Vibrio cholerae. PLoS One 2013;8:e70934. [PMID: 23936475 DOI: 10.1371/journal.pone.0070934] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
32 Wall T, Båth K, Britton RA, Jonsson H, Versalovic J, Roos S. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl Environ Microbiol 2007;73:3924-35. [PMID: 17449683 DOI: 10.1128/AEM.01502-06] [Cited by in Crossref: 96] [Cited by in F6Publishing: 37] [Article Influence: 6.4] [Reference Citation Analysis]
33 Pereira C, Costa P, Duarte J, Balcão VM, Almeida A. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption. Int J Food Microbiol 2021;338:108995. [PMID: 33316593 DOI: 10.1016/j.ijfoodmicro.2020.108995] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Aggarwala V, Liang G, Bushman FD. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob DNA 2017;8:12. [PMID: 29026445 DOI: 10.1186/s13100-017-0095-y] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 11.2] [Reference Citation Analysis]
35 Rakonjac J, Russel M, Khanum S, Brooke SJ, Rajič M. Filamentous Phage: Structure and Biology. Adv Exp Med Biol 2017;1053:1-20. [PMID: 29549632 DOI: 10.1007/978-3-319-72077-7_1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
36 Kaas RS, Ngandjio A, Nzouankeu A, Siriphap A, Fonkoua MC, Aarestrup FM, Hendriksen RS. The Lake Chad Basin, an Isolated and Persistent Reservoir of Vibrio cholerae O1: A Genomic Insight into the Outbreak in Cameroon, 2010. PLoS One 2016;11:e0155691. [PMID: 27191718 DOI: 10.1371/journal.pone.0155691] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
37 Gogokhia L, Round JL. Immune-bacteriophage interactions in inflammatory bowel diseases. Curr Opin Virol 2021;49:30-5. [PMID: 34029992 DOI: 10.1016/j.coviro.2021.04.010] [Reference Citation Analysis]
38 Zhai Q, Xiao Y, Zhao J, Tian F, Zhang H, Narbad A, Chen W. Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Sci Rep 2017;7:1182. [PMID: 28446769 DOI: 10.1038/s41598-017-01180-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 5.6] [Reference Citation Analysis]
39 Kamruzzaman M, Robins WP, Bari SM, Nahar S, Mekalanos JJ, Faruque SM. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014;82:3636-43. [PMID: 24935981 DOI: 10.1128/IAI.01699-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
40 Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019;20:e47427. [PMID: 30952693 DOI: 10.15252/embr.201847427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
41 Jian H, Xiao X, Wang F. Role of filamentous phage SW1 in regulating the lateral flagella of Shewanella piezotolerans strain WP3 at low temperatures. Appl Environ Microbiol 2013;79:7101-9. [PMID: 24038680 DOI: 10.1128/AEM.01675-13] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
42 Choi SY, Lee JH, Kim EJ, Lee HR, Jeon YS, von Seidlein L, Deen J, Ansaruzzaman M, Lucas GMES, Barreto A, Songane FF, Mondlane C, Nair GB, Czerkinsky C, Clemens JD, Chun J, Kim DW. Classical RS1 and environmental RS1 elements in Vibrio cholerae O1 El Tor strains harbouring a tandem repeat of CTX prophage: revisiting Mozambique in 2005. J Med Microbiol 2010;59:302-8. [PMID: 20007761 DOI: 10.1099/jmm.0.017053-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
43 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
44 Clemens J, Shin S, Sur D, Nair GB, Holmgren J. New-generation vaccines against cholera. Nat Rev Gastroenterol Hepatol 2011;8:701-10. [DOI: 10.1038/nrgastro.2011.174] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
45 Nickels BE. A new twist on a classic paradigm: illumination of a genetic switch in Vibrio cholerae phage CTX Phi. J Bacteriol 2009;191:6779-81. [PMID: 19749052 DOI: 10.1128/JB.01150-09] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
46 Clark CG. Sequencing of CJIE1 prophages from Campylobacter jejuni isolates reveals the presence of inserted and (or) deleted genes. Can J Microbiol 2011;57:795-808. [PMID: 21939376 DOI: 10.1139/w11-069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
47 Garin-Fernandez A, Glöckner FO, Wichels A. Genomic characterization of filamentous phage vB_VpaI_VP-3218, an inducible prophage of Vibrio parahaemolyticus. Mar Genomics 2020;53:100767. [PMID: 32171709 DOI: 10.1016/j.margen.2020.100767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]