BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McLeod SM, Waldor MK. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 2004;54:935-47. [PMID: 15522078 DOI: 10.1111/j.1365-2958.2004.04309.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
Number Citing Articles
1 Hirst TR, D'souza JM. Vibrio cholerae and Escherichia coli thermolabile enterotoxin. The Comprehensive Sourcebook of Bacterial Protein Toxins. Elsevier; 2006. pp. 270-90. [DOI: 10.1016/b978-012088445-2/50020-2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
2 Leroux M, Jia F, Szatmari G. Characterization of the Streptococcus suis XerS recombinase and its unconventional cleavage of the difSL site. FEMS Microbiol Lett 2011;324:135-41. [PMID: 22092814 DOI: 10.1111/j.1574-6968.2011.02398.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
3 McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005;57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
4 Quinones M, Kimsey HH, Ross W, Gourse RL, Waldor MK. LexA represses CTXphi transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA. J Biol Chem 2006;281:39407-12. [PMID: 17046810 DOI: 10.1074/jbc.M609694200] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
5 Garin-Fernandez A, Wichels A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar Genomics 2020;51:100725. [PMID: 31757758 DOI: 10.1016/j.margen.2019.100725] [Reference Citation Analysis]
6 Krupovic M, Forterre P. Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS One 2011;6:e19893. [PMID: 21572966 DOI: 10.1371/journal.pone.0019893] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 6.5] [Reference Citation Analysis]
7 Das B, Bischerour J, Val ME, Barre FX. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA. 2010;107:4377-4382. [PMID: 20133778 DOI: 10.1073/pnas.0910212107] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
8 Boyd EF. Bacteriophage-Encoded Bacterial Virulence Factors and Phage–Pathogenicity Island Interactions. Bacteriophages, Part A. Elsevier; 2012. pp. 91-118. [DOI: 10.1016/b978-0-12-394621-8.00014-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
9 Das B, Bischerour J, Barre FX. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA. 2011;108:2516-2521. [PMID: 21262799 DOI: 10.1073/pnas.1017061108] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
10 Sinha-Ray S, Alam MT, Bag S, Morris JG Jr, Ali A. Conversion of a recA-Mediated Non-toxigenic Vibrio cholerae O1 Strain to a Toxigenic Strain Using Chitin-Induced Transformation. Front Microbiol 2019;10:2562. [PMID: 31787954 DOI: 10.3389/fmicb.2019.02562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Bakhshi B, Mohammadi-barzelighi H, Sharifnia A, Dashtbani-roozbehani A, Rahbar M, Pourshafie M. Presence of CTX gene cluster in environmental non-O1/O139 Vibrio cholerae and its potential clinical significance. Indian Journal of Medical Microbiology 2012;30:285-9. [DOI: 10.4103/0255-0857.99487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
12 Chouikha I, Charrier L, Filali S, Derbise A, Carniel E. Insights into the infective properties of YpfΦ, the Yersinia pestis filamentous phage. Virology 2010;407:43-52. [PMID: 20728914 DOI: 10.1016/j.virol.2010.07.048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
13 Rajeev L, Malanowska K, Gardner JF. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 2009;73:300-9. [PMID: 19487729 DOI: 10.1128/MMBR.00038-08] [Cited by in Crossref: 69] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
14 Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005;8:459-65. [PMID: 15979389 DOI: 10.1016/j.mib.2005.06.001] [Cited by in Crossref: 144] [Cited by in F6Publishing: 132] [Article Influence: 8.5] [Reference Citation Analysis]
15 Carnoy C, Roten CA. The dif/Xer recombination systems in proteobacteria. PLoS One. 2009;4:e6531. [PMID: 19727445 DOI: 10.1371/journal.pone.0006531] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 6.2] [Reference Citation Analysis]
16 Srivastava P, Fekete RA, Chattoraj DK. Segregation of the replication terminus of the two Vibrio cholerae chromosomes. J Bacteriol 2006;188:1060-70. [PMID: 16428410 DOI: 10.1128/JB.188.3.1060-1070.2006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
17 Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
18 Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, Qadri F, Thomson NR. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci Rep 2019;9:5865. [PMID: 30971707 DOI: 10.1038/s41598-019-41883-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-35. [PMID: 22126996 DOI: 10.1128/MMBR.00011-11] [Cited by in Crossref: 174] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
20 Okada K, Na-Ubol M, Natakuathung W, Roobthaisong A, Maruyama F, Nakagawa I, Chantaroj S, Hamada S. Comparative genomic characterization of a Thailand-Myanmar isolate, MS6, of Vibrio cholerae O1 El Tor, which is phylogenetically related to a "US Gulf Coast" clone. PLoS One 2014;9:e98120. [PMID: 24887199 DOI: 10.1371/journal.pone.0098120] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
21 Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017;8:453. [PMID: 28373867 DOI: 10.3389/fmicb.2017.00453] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
22 Piekarowicz A, Kłyż A, Majchrzak M, Szczêsna E, Piechucki M, Kwiatek A, Maugel TK, Stein DC. Neisseria gonorrhoeae filamentous phage NgoΦ6 is capable of infecting a variety of Gram-negative bacteria. J Virol 2014;88:1002-10. [PMID: 24198404 DOI: 10.1128/JVI.02707-13] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
23 Balding C, Bromley SA, Pickup RW, Saunders JR. Diversity of phage integrases in Enterobacteriaceae: development of markers for environmental analysis of temperate phages. Environ Microbiol 2005;7:1558-67. [PMID: 16156729 DOI: 10.1111/j.1462-2920.2005.00845.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
24 Xue H, Xu Y, Boucher Y, Polz MF. High frequency of a novel filamentous phage, VCY φ, within an environmental Vibrio cholerae population. Appl Environ Microbiol 2012;78:28-33. [PMID: 22020507 DOI: 10.1128/AEM.06297-11] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
25 Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell. 2005;19:559-566. [PMID: 16109379 DOI: 10.1016/j.molcel.2005.07.002] [Cited by in Crossref: 124] [Cited by in F6Publishing: 101] [Article Influence: 7.3] [Reference Citation Analysis]
26 Boyd EF. Efficiency and specificity of CTXphi chromosomal integration: dif makes all the difference. Proc Natl Acad Sci U S A 2010;107:3951-2. [PMID: 20197438 DOI: 10.1073/pnas.1000310107] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
27 Val ME, Kennedy SP, El Karoui M, Bonné L, Chevalier F, Barre FX. FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae. PLoS Genet 2008;4:e1000201. [PMID: 18818731 DOI: 10.1371/journal.pgen.1000201] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 4.2] [Reference Citation Analysis]
28 Murugaiah C. The burden of cholera. Critical Reviews in Microbiology 2011;37:337-48. [DOI: 10.3109/1040841x.2011.603288] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
29 Askora A, Abdel-haliem MEF, Yamada T. Site-specific recombination systems in filamentous phages. Mol Genet Genomics 2012;287:525-30. [DOI: 10.1007/s00438-012-0700-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
30 Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018;9:2686. [PMID: 30473684 DOI: 10.3389/fmicb.2018.02686] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
31 Das B, Halder K, Pal P, Bhadra RK. Small chromosomal integration site of classical CTX prophage in Mozambique Vibrio cholerae O1 biotype El Tor strain. Arch Microbiol 2007;188:677-83. [PMID: 17618421 DOI: 10.1007/s00203-007-0275-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
32 Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020;10:561296. [PMID: 33123494 DOI: 10.3389/fcimb.2020.561296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Segall AM, Craig NL. New Wrinkles and Folds in Site-Specific Recombination. Molecular Cell 2005;19:433-5. [DOI: 10.1016/j.molcel.2005.08.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
34 Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015;39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
35 Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021;11:210188. [PMID: 34520699 DOI: 10.1098/rsob.210188] [Reference Citation Analysis]
36 Kono N, Arakawa K, Tomita M. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 2011;12:19. [PMID: 21223577 DOI: 10.1186/1471-2164-12-19] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
37 Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010;467:982-5. [DOI: 10.1038/nature09469] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 6.4] [Reference Citation Analysis]
38 Schmidt JW, Rajeev L, Salyers AA, Gardner JF. NBU1 integrase: evidence for an altered recombination mechanism. Mol Microbiol 2006;60:152-64. [PMID: 16556227 DOI: 10.1111/j.1365-2958.2006.05073.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
39 Lood R, Collin M. Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny. BMC Genomics 2011;12:198. [PMID: 21504575 DOI: 10.1186/1471-2164-12-198] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
40 de Almeida JCF, da Silva Xavier A, Cascardo RS, de Rezende RR, de Souza FO, Lopes CA, Alfenas-Zerbini P. Genomic and Biological Characterization of Ralstonia solanacearum Inovirus Brazil 1, an Inovirus that Alters the Pathogenicity of the Phytopathogen Ralstonia pseudosolanacearum. Microb Ecol 2021. [PMID: 34557947 DOI: 10.1007/s00248-021-01874-w] [Reference Citation Analysis]
41 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
42 Midonet C, Barre FX. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2014;2. [PMID: 26104463 DOI: 10.1128/microbiolspec.MDNA3-0056-2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]