BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Davis BM, Kimsey HH, Kane AV, Waldor MK. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 2002;21:4240-4249. [PMID: 12169626 DOI: 10.1093/emboj/cdf427] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Nusrin S, Khan GY, Bhuiyan NA, Ansaruzzaman M, Hossain MA, Safa A, Khan R, Faruque SM, Sack DA, Hamabata T, Takeda Y, Nair GB. Diverse CTX phages among toxigenic Vibrio cholerae O1 and O139 strains isolated between 1994 and 2002 in an area where cholera is endemic in Bangladesh. J Clin Microbiol 2004;42:5854-6. [PMID: 15583324 DOI: 10.1128/JCM.42.12.5854-5856.2004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
2 Neogi SB, Chowdhury N, Awasthi SP, Asakura M, Okuno K, Mahmud ZH, Islam MS, Hinenoya A, Nair GB, Yamasaki S. Novel Cholera Toxin Variant and ToxT Regulon in Environmental Vibrio mimicus Isolates: Potential Resources for the Evolution of Vibrio cholerae Hybrid Strains. Appl Environ Microbiol 2019;85:e01977-18. [PMID: 30446560 DOI: 10.1128/AEM.01977-18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
3 Albert MJ, Nair GB. Vibrio cholerae O139 Bengal—10 years on. Reviews in Medical Microbiology 2005;16:135-43. [DOI: 10.1097/01.revmedmi.0000184743.75679.0a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
4 Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020;12:E730. [PMID: 32640584 DOI: 10.3390/v12070730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Navarro-Avilés G, Jiménez MA, Pérez-Marín MC, González C, Rico M, Murillo FJ, Elías-Arnanz M, Padmanabhan S. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Mol Microbiol 2007;63:980-94. [PMID: 17233828 DOI: 10.1111/j.1365-2958.2006.05567.x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
6 Klockgether J, Reva O, Larbig K, Tümmler B. Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 2004;186:518-34. [PMID: 14702321 DOI: 10.1128/JB.186.2.518-534.2004] [Cited by in Crossref: 124] [Cited by in F6Publishing: 77] [Article Influence: 6.9] [Reference Citation Analysis]
7 Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004;68:560-602, table of contents. [PMID: 15353570 DOI: 10.1128/MMBR.68.3.560-602.2004] [Cited by in Crossref: 1023] [Cited by in F6Publishing: 572] [Article Influence: 56.8] [Reference Citation Analysis]
8 van der Mee-Marquet N, Corvaglia AR, Valentin AS, Hernandez D, Bertrand X, Girard M, Kluytmans J, Donnio PY, Quentin R, François P. Analysis of prophages harbored by the human-adapted subpopulation of Staphylococcus aureus CC398. Infect Genet Evol 2013;18:299-308. [PMID: 23770143 DOI: 10.1016/j.meegid.2013.06.009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.4] [Reference Citation Analysis]
9 Boyd EF. Bacteriophage-Encoded Bacterial Virulence Factors and Phage–Pathogenicity Island Interactions. Bacteriophages, Part A. Elsevier; 2012. pp. 91-118. [DOI: 10.1016/b978-0-12-394621-8.00014-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
10 León E, Navarro-Avilés G, Santiveri CM, Flores-Flores C, Rico M, González C, Murillo FJ, Elías-Arnanz M, Jiménez MA, Padmanabhan S. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucleic Acids Res 2010;38:5226-41. [PMID: 20410074 DOI: 10.1093/nar/gkq277] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
11 Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2019;111:495-513. [PMID: 30475408 DOI: 10.1111/mmi.14170] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
12 Robins WP, Mekalanos JJ. Genomic science in understanding cholera outbreaks and evolution of Vibrio cholerae as a human pathogen. Curr Top Microbiol Immunol 2014;379:211-29. [PMID: 24590676 DOI: 10.1007/82_2014_366] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
13 Maiti D, Das B, Saha A, Nandy RK, Nair GB, Bhadra RK. Genetic organization of pre-CTX and CTX prophages in the genome of an environmental Vibrio cholerae non-O1, non-O139 strain. Microbiology 2006;152:3633-41. [DOI: 10.1099/mic.0.2006/000117-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
14 Faruque SM, Nair GB, Mekalanos JJ. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 2004;23:723-41. [PMID: 15585131 DOI: 10.1089/dna.2004.23.723] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
15 Campbell A. The future of bacteriophage biology. Nat Rev Genet 2003;4:471-7. [PMID: 12776216 DOI: 10.1038/nrg1089] [Cited by in Crossref: 98] [Cited by in F6Publishing: 78] [Article Influence: 5.2] [Reference Citation Analysis]
16 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
17 Sinha-Ray S, Alam MT, Bag S, Morris JG Jr, Ali A. Conversion of a recA-Mediated Non-toxigenic Vibrio cholerae O1 Strain to a Toxigenic Strain Using Chitin-Induced Transformation. Front Microbiol 2019;10:2562. [PMID: 31787954 DOI: 10.3389/fmicb.2019.02562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Beyhan S, Tischler AD, Camilli A, Yildiz FH. Differences in gene expression between the classical and El Tor biotypes of Vibrio cholerae O1. Infect Immun 2006;74:3633-42. [PMID: 16714595 DOI: 10.1128/IAI.01750-05] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
19 Bhattacharya T, Chatterjee S, Maiti D, Bhadra RK, Takeda Y, Nair GB, Nandy RK. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. Environ Microbiol 2006;8:526-634. [DOI: 10.1111/j.1462-2920.2005.00932.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 2.7] [Reference Citation Analysis]
20 Williams KP. Traffic at the tmRNA gene. J Bacteriol 2003;185:1059-70. [PMID: 12533482 DOI: 10.1128/JB.185.3.1059-1070.2003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
21 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
22 McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005;57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
23 Halder K, Das B, Nair GB, Bhadra RK. Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology 2010;156:99-107. [DOI: 10.1099/mic.0.032458-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
24 Fan F, Kan B. Survival and proliferation of the lysogenic bacteriophage CTXΦ in Vibrio cholerae. Virol Sin 2015;30:19-25. [PMID: 25613689 DOI: 10.1007/s12250-014-3550-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
25 Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015;11:e1005256. [PMID: 25992634 DOI: 10.1371/journal.pgen.1005256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
26 Quinones M, Davis BM, Waldor MK. Activation of the Vibrio cholerae SOS response is not required for intestinal cholera toxin production or colonization. Infect Immun 2006;74:927-30. [PMID: 16428736 DOI: 10.1128/IAI.74.2.927-930.2006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
27 Hirst TR, D'souza JM. Vibrio cholerae and Escherichia coli thermolabile enterotoxin. The Comprehensive Sourcebook of Bacterial Protein Toxins. Elsevier; 2006. pp. 270-90. [DOI: 10.1016/b978-012088445-2/50020-2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
28 Campos J, Martínez E, Suzarte E, Rodríguez BL, Marrero K, Silva Y, Ledón T, del Sol R, Fando R. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol 2003;185:5685-96. [PMID: 13129939 DOI: 10.1128/JB.185.19.5685-5696.2003] [Cited by in Crossref: 60] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
29 Faruque SM, Kamruzzaman M, Asadulghani, Sack DA, Mekalanos JJ, Nair GB. CTXphi-independent production of the RS1 satellite phage by Vibrio cholerae. Proc Natl Acad Sci U S A 2003;100:1280-5. [PMID: 12529504 DOI: 10.1073/pnas.0237385100] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 1.5] [Reference Citation Analysis]
30 Bose B, Auchtung JM, Lee CA, Grossman AD. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol Microbiol 2008;70:570-82. [PMID: 18761623 DOI: 10.1111/j.1365-2958.2008.06414.x] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 5.1] [Reference Citation Analysis]
31 Chouikha I, Charrier L, Filali S, Derbise A, Carniel E. Insights into the infective properties of YpfΦ, the Yersinia pestis filamentous phage. Virology 2010;407:43-52. [PMID: 20728914 DOI: 10.1016/j.virol.2010.07.048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
32 Silpe JE, Bassler BL. A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell 2019;176:268-280.e13. [PMID: 30554875 DOI: 10.1016/j.cell.2018.10.059] [Cited by in Crossref: 110] [Cited by in F6Publishing: 85] [Article Influence: 27.5] [Reference Citation Analysis]
33 Chen Z, Schneider TD. Comparative analysis of tandem T7-like promoter containing regions in enterobacterial genomes reveals a novel group of genetic islands. Nucleic Acids Res 2006;34:1133-47. [PMID: 16493139 DOI: 10.1093/nar/gkj511] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
34 Pham TD, Nguyen TH, Iwashita H, Takemura T, Morita K, Yamashiro T. Comparative analyses of CTX prophage region of Vibrio cholerae seventh pandemic wave 1 strains isolated in Asia. Microbiol Immunol 2018;62:635-50. [PMID: 30211956 DOI: 10.1111/1348-0421.12648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Lemire S, Figueroa-Bossi N, Bossi L. Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PLoS Genet 2011;7:e1002149. [PMID: 21731505 DOI: 10.1371/journal.pgen.1002149] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
36 O'Shea YA, Reen FJ, Quirke AM, Boyd EF. Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol 2004;42:4657-71. [PMID: 15472325 DOI: 10.1128/JCM.42.10.4657-4671.2004] [Cited by in Crossref: 81] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]
37 Engelhardt T, Orsi WD, Jørgensen BB. Viral activities and life cycles in deep subseafloor sediments. Environ Microbiol Rep 2015;7:868-73. [PMID: 26109514 DOI: 10.1111/1758-2229.12316] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
38 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
39 Silpe JE, Bridges AA, Huang X, Coronado DR, Duddy OP, Bassler BL. Separating Functions of the Phage-Encoded Quorum-Sensing-Activated Antirepressor Qtip. Cell Host Microbe 2020;27:629-641.e4. [PMID: 32101705 DOI: 10.1016/j.chom.2020.01.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
40 Liu G, Yan M, Liang W, Qi G, Liu Y, Gao S, Kan B. Resistance of the cholera vaccine candidate IEM108 against CTXΦ infection. Vaccine 2006;24:1749-55. [DOI: 10.1016/j.vaccine.2005.09.059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
41 Rezaie N, Bakhshi B, Najar-Peerayeh S. The role of CTX and RS1 satellite phages genomic arrangement in Vibrio cholera toxin production in two recent cholera outbreaks (2012 and 2013) in IR Iran. Microb Pathog 2017;112:89-94. [PMID: 28923607 DOI: 10.1016/j.micpath.2017.09.032] [Reference Citation Analysis]
42 Renda BA, Chan C, Parent KN, Barrick JE. Emergence of a Competence-Reducing Filamentous Phage from the Genome of Acinetobacter baylyi ADP1. J Bacteriol 2016;198:3209-19. [PMID: 27645387 DOI: 10.1128/JB.00424-16] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
43 Askora A, Kawasaki T, Fujie M, Yamada T. Insights into the diversity of φRSM phages infecting strains of the phytopathogen Ralstonia solanacearum complex: regulation and evolution. Mol Genet Genomics 2014;289:589-98. [PMID: 24619102 DOI: 10.1007/s00438-014-0835-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
44 Das B, Halder K, Pal P, Bhadra RK. Small chromosomal integration site of classical CTX prophage in Mozambique Vibrio cholerae O1 biotype El Tor strain. Arch Microbiol 2007;188:677-83. [PMID: 17618421 DOI: 10.1007/s00203-007-0275-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
45 Faruque SM, Mekalanos JJ. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends in Microbiology 2003;11:505-10. [DOI: 10.1016/j.tim.2003.09.003] [Cited by in Crossref: 137] [Cited by in F6Publishing: 108] [Article Influence: 7.2] [Reference Citation Analysis]
46 Siboo IR, Bensing BA, Sullam PM. Genomic organization and molecular characterization of SM1, a temperate bacteriophage of Streptococcus mitis. J Bacteriol 2003;185:6968-75. [PMID: 14617660 DOI: 10.1128/JB.185.23.6968-6975.2003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
47 Faruque SM, Bin Naser I, Fujihara K, Diraphat P, Chowdhury N, Kamruzzaman M, Qadri F, Yamasaki S, Ghosh AN, Mekalanos JJ. Genomic sequence and receptor for the Vibrio cholerae phage KSF-1phi: evolutionary divergence among filamentous vibriophages mediating lateral gene transfer. J Bacteriol 2005;187:4095-103. [PMID: 15937172 DOI: 10.1128/JB.187.12.4095-4103.2005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
48 Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005;8:459-65. [PMID: 15979389 DOI: 10.1016/j.mib.2005.06.001] [Cited by in Crossref: 144] [Cited by in F6Publishing: 132] [Article Influence: 8.5] [Reference Citation Analysis]
49 Zhou H, Zhao X, Wu R, Cui Z, Diao B, Li J, Wang D, Kan B, Liang W. Population structural analysis of O1 El Tor Vibrio cholerae isolated in China among the seventh cholera pandemic on the basis of multilocus sequence typing and virulence gene profiles. Infect Genet Evol 2014;22:72-80. [PMID: 24448269 DOI: 10.1016/j.meegid.2013.12.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
50 Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-35. [PMID: 22126996 DOI: 10.1128/MMBR.00011-11] [Cited by in Crossref: 174] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
51 Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
52 Bakhshi B. The role of filamentous CTXphi bacteriophage in Vibrio cholerae genetics and diversity. Reviews in Medical Microbiology 2015;26:43-6. [DOI: 10.1097/mrm.0000000000000017] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
53 Jian H, Xiong L, Xu G, Xiao X, Wang F. Long 5' untranslated regions regulate the RNA stability of the deep-sea filamentous phage SW1. Sci Rep 2016;6:21908. [PMID: 26898180 DOI: 10.1038/srep21908] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
54 Fernandes GR, Barbosa AEAD, Almeida RN, Castro FFDS, da Ponte MCP, Faria-Junior C, Müller FMP, Viana AAB, Grattapaglia D, Franco OL, Alencar SA, Dias SC. Genomic Comparison among Lethal Invasive Strains of Streptococcus pyogenes Serotype M1. Front Microbiol 2017;8:1993. [PMID: 29109702 DOI: 10.3389/fmicb.2017.01993] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
55 Choi SY, Lee JH, Kim EJ, Lee HR, Jeon YS, von Seidlein L, Deen J, Ansaruzzaman M, Lucas GMES, Barreto A, Songane FF, Mondlane C, Nair GB, Czerkinsky C, Clemens JD, Chun J, Kim DW. Classical RS1 and environmental RS1 elements in Vibrio cholerae O1 El Tor strains harbouring a tandem repeat of CTX prophage: revisiting Mozambique in 2005. J Med Microbiol 2010;59:302-8. [PMID: 20007761 DOI: 10.1099/jmm.0.017053-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
56 Wang D, Wang X, Li B, Deng X, Tan H, Diao B, Chen J, Ke B, Zhong H, Zhou H, Ke C, Kan B. High prevalence and diversity of pre-CTXΦ alleles in the environmental Vibrio cholerae O1 and O139 strains in the Zhujiang River estuary: Pre-CTXΦ alleles in environmental V. cholerae strains. Environmental Microbiology Reports 2014;6:251-8. [DOI: 10.1111/1758-2229.12121] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
57 Erauso G, Lakhal F, Bidault-Toffin A, Le Chevalier P, Bouloc P, Paillard C, Jacq A. Evidence for the role of horizontal transfer in generating pVT1, a large mosaic conjugative plasmid from the clam pathogen, Vibrio tapetis. PLoS One 2011;6:e16759. [PMID: 21326607 DOI: 10.1371/journal.pone.0016759] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
58 Bina J, Zhu J, Dziejman M, Faruque S, Calderwood S, Mekalanos J. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci U S A 2003;100:2801-6. [PMID: 12601157 DOI: 10.1073/pnas.2628026100] [Cited by in Crossref: 147] [Cited by in F6Publishing: 128] [Article Influence: 7.7] [Reference Citation Analysis]
59 Ledón T, Campos J, Suzarte E, Rodríguez B, Marrero K, Fando R. El Tor and Calcutta CTXΦ precursors coexisting with intact CTXΦ copies in Vibrio cholerae O139 isolates. Research in Microbiology 2008;159:81-7. [DOI: 10.1016/j.resmic.2007.11.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
60 Sun X, Zahir Z, Lynch KH, Dennis JJ. An antirepressor, SrpR, is involved in transcriptional regulation of the SrpABC solvent tolerance efflux pump of Pseudomonas putida S12. J Bacteriol 2011;193:2717-25. [PMID: 21441510 DOI: 10.1128/JB.00149-11] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
61 Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010;467:982-5. [DOI: 10.1038/nature09469] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 6.4] [Reference Citation Analysis]
62 Goh KM, Gan HM, Chan KG, Chan GF, Shahar S, Chong CS, Kahar UM, Chai KP. Analysis of anoxybacillus genomes from the aspects of lifestyle adaptations, prophage diversity, and carbohydrate metabolism. PLoS One 2014;9:e90549. [PMID: 24603481 DOI: 10.1371/journal.pone.0090549] [Cited by in Crossref: 46] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
63 Gomez-gil B, Thompson CC, Matsumura Y, Sawabe T, Iida T, Christen R, Thompson F, Sawabe T. The Famlily Vibrionaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin: Springer Berlin Heidelberg; 2014. pp. 659-747. [DOI: 10.1007/978-3-642-38922-1_225] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Quinones M, Kimsey HH, Waldor MK. LexA Cleavage Is Required for CTX Prophage Induction. Molecular Cell 2005;17:291-300. [DOI: 10.1016/j.molcel.2004.11.046] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 4.5] [Reference Citation Analysis]
65 Kamruzzaman M, Robins WP, Bari SM, Nahar S, Mekalanos JJ, Faruque SM. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014;82:3636-43. [PMID: 24935981 DOI: 10.1128/IAI.01699-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
66 Moore S, Thomson N, Mutreja A, Piarroux R. Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones. Clin Microbiol Infect 2014;20:373-9. [PMID: 24575898 DOI: 10.1111/1469-0691.12610] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
67 Faruque SM, Zhu J, Asadulghani, Kamruzzaman M, Mekalanos JJ. Examination of diverse toxin-coregulated pilus-positive Vibrio cholerae strains fails to demonstrate evidence for Vibrio pathogenicity island phage. Infect Immun 2003;71:2993-9. [PMID: 12761075 DOI: 10.1128/IAI.71.6.2993-2999.2003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
68 Jermyn WS, Boyd EF. Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates. Microbiology (Reading) 2005;151:311-22. [PMID: 15632448 DOI: 10.1099/mic.0.27621-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 1.7] [Reference Citation Analysis]
69 Xiong Y, Wang P, Lan R, Ye C, Wang H, Ren J, Jing H, Wang Y, Zhou Z, Bai X, Cui Z, Luo X, Zhao A, Wang Y, Zhang S, Sun H, Wang L, Xu J. A novel Escherichia coli O157:H7 clone causing a major hemolytic uremic syndrome outbreak in China. PLoS One 2012;7:e36144. [PMID: 22558360 DOI: 10.1371/journal.pone.0036144] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 4.2] [Reference Citation Analysis]
70 Campos J, Martínez E, Marrero K, Silva Y, Rodríguez BL, Suzarte E, Ledón T, Fando R. Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae. J Bacteriol 2003;185:7231-40. [PMID: 14645284 DOI: 10.1128/JB.185.24.7231-7240.2003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
71 Faruque SM, Tam VC, Chowdhury N, Diraphat P, Dziejman M, Heidelberg JF, Clemens JD, Mekalanos JJ, Nair GB. Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc Natl Acad Sci U S A 2007;104:5151-6. [PMID: 17360342 DOI: 10.1073/pnas.0700365104] [Cited by in Crossref: 78] [Cited by in F6Publishing: 61] [Article Influence: 5.2] [Reference Citation Analysis]
72 Waldor MK. Mobilizable genomic islands: going mobile with oriT mimicry. Mol Microbiol 2010;78:537-40. [PMID: 21038479 DOI: 10.1111/j.1365-2958.2010.07365.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
73 Nguyen DT, Nguyen BM, Tran HH, Ngo TC, Le TH, Nguyen HT, Albert MJ, Iwami M, Ehara M. Filamentous vibriophage fs2 encoding the rstC gene integrates into the same chromosomal region as the CTX phage [corrected]. FEMS Microbiol Lett 2008;284:225-30. [PMID: 18503544 DOI: 10.1111/j.1574-6968.2008.01200.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
74 Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019;20:e47427. [PMID: 30952693 DOI: 10.15252/embr.201847427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
75 Wang H, Pang B, Xiong L, Wang D, Wang X, Zhang L, Kan B. The Hybrid Pre-CTXΦ-RS1 Prophage Genome and Its Regulatory Function in Environmental Vibrio cholerae O1 Strains. Appl Environ Microbiol 2015;81:7171-7. [PMID: 26253680 DOI: 10.1128/AEM.01742-15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
76 Nickels BE. A new twist on a classic paradigm: illumination of a genetic switch in Vibrio cholerae phage CTX Phi. J Bacteriol 2009;191:6779-81. [PMID: 19749052 DOI: 10.1128/JB.01150-09] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
77 Safa A, Jime JS, Shahel F. Cholera toxin phage: structural and functional diversity between Vibrio cholerae biotypes. AIMS Microbiol 2020;6:144-51. [PMID: 32617446 DOI: 10.3934/microbiol.2020009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Lee JH, Han KH, Choi SY, Lucas MES, Mondlane C, Ansaruzzaman M, Nair GB, Sack DA, von Seidlein L, Clemens JD, Song M, Chun J, Kim DW; The Mozambique Cholera Vaccine Demonstration Project Coordination Group. Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage. Journal of Medical Microbiology 2006;55:165-70. [DOI: 10.1099/jmm.0.46287-0] [Cited by in Crossref: 61] [Cited by in F6Publishing: 50] [Article Influence: 3.8] [Reference Citation Analysis]
79 Aliabad NH, Bakhshi B, Pourshafie MR, Sharifnia A, Ghorbani M. Molecular diversity of CTX prophage in Vibrio cholerae. Lett Appl Microbiol 2012;55:27-32. [PMID: 22502605 DOI: 10.1111/j.1472-765X.2012.03253.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]