BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Das B, Bischerour J, Barre FX. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA. 2011;108:2516-2521. [PMID: 21262799 DOI: 10.1073/pnas.1017061108] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. Infect Genet Evol 2014;23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
2 Bischerour J, Spangenberg C, Barre FX. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012;31:3757-67. [PMID: 22863778 DOI: 10.1038/emboj.2012.219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
3 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
4 Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020;12:E730. [PMID: 32640584 DOI: 10.3390/v12070730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020;38:A83-92. [DOI: 10.1016/j.vaccine.2019.06.031] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
6 Ahmad AA, Askora A, Kawasaki T, Fujie M, Yamada T. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol 2014;5:321. [PMID: 25071734 DOI: 10.3389/fmicb.2014.00321] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
7 Midonet C, Barre FX. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2014;2. [PMID: 26104463 DOI: 10.1128/microbiolspec.MDNA3-0056-2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
8 Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann N Y Acad Sci 2015;1341:41-53. [PMID: 25675979 DOI: 10.1111/nyas.12675] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 6.9] [Reference Citation Analysis]
9 Das B, Pazhani GP, Sarkar A, Mukhopadhyay AK, Nair GB, Ramamurthy T. Molecular evolution and functional divergence of Vibrio cholerae: . Current Opinion in Infectious Diseases 2016;29:520-7. [DOI: 10.1097/qco.0000000000000306] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015;11:e1005256. [PMID: 25992634 DOI: 10.1371/journal.pgen.1005256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
11 Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020;38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Makky S, Dawoud A, Safwat A, Abdelsattar AS, Rezk N, El-Shibiny A. The bacteriophage decides own tracks: When they are with or against the bacteria. Curr Res Microb Sci 2021;2:100050. [PMID: 34841341 DOI: 10.1016/j.crmicr.2021.100050] [Reference Citation Analysis]
13 Yeh TY. Complete nucleotide sequence of a new filamentous phage, Xf109, which integrates its genome into the chromosomal DNA of Xanthomonas oryzae. Arch Virol 2017;162:567-72. [PMID: 27743252 DOI: 10.1007/s00705-016-3105-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
14 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
15 Midonet C, Das B, Paly E, Barre FX. XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A 2014;111:16848-53. [PMID: 25385643 DOI: 10.1073/pnas.1404047111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
16 Galli E, Midonet C, Paly E, Barre FX. Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli. PLoS Genet 2017;13:e1006702. [PMID: 28358835 DOI: 10.1371/journal.pgen.1006702] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
17 Midonet C, Miele S, Paly E, Guerois R, Barre FX. The TLCΦ satellite phage harbors a Xer recombination activation factor. Proc Natl Acad Sci U S A 2019;116:18391-6. [PMID: 31420511 DOI: 10.1073/pnas.1902905116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
18 Kirchberger PC, Ochman H. Resurrection of a global, metagenomically defined gokushovirus. Elife 2020;9:e51599. [PMID: 32101162 DOI: 10.7554/eLife.51599] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
19 Pant A, Anbumani D, Bag S, Mehta O, Kumar P, Saxena S, Nair GB, Das B. Effect of LexA on Chromosomal Integration of CTXϕ in Vibrio cholerae. J Bacteriol 2016;198:268-75. [PMID: 26503849 DOI: 10.1128/JB.00674-15] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
20 Krupovic M, Forterre P. Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS One 2011;6:e19893. [PMID: 21572966 DOI: 10.1371/journal.pone.0019893] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 6.5] [Reference Citation Analysis]
21 Kim EJ, Lee D, Moon SH, Lee CH, Kim SJ, Lee JH, Kim JO, Song M, Das B, Clemens JD, Pape JW, Nair GB, Kim DW. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog 2014;10:e1004384. [PMID: 25233006 DOI: 10.1371/journal.ppat.1004384] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
22 Ledón T, Ferrán B, Pérez C, Suzarte E, Vichi J, Marrero K, Oliva R, Fando R. TLP01, an mshA mutant of Vibrio cholerae O139 as vaccine candidate against cholera. Microbes and Infection 2012;14:968-78. [DOI: 10.1016/j.micinf.2012.04.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yeh TY. XerD-dependent integration of a novel filamentous phage Cf2 into the Xanthomonas citri genome. Virology 2020;548:160-7. [PMID: 32838937 DOI: 10.1016/j.virol.2020.06.010] [Reference Citation Analysis]
24 Das B, Kumari R, Pant A, Sen Gupta S, Saxena S, Mehta O, Nair GB. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies. J Bacteriol 2014;196:4071-80. [PMID: 25225263 DOI: 10.1128/JB.01966-14] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
25 Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol. 2013;21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 7.4] [Reference Citation Analysis]
26 Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021;11:210188. [PMID: 34520699 DOI: 10.1098/rsob.210188] [Reference Citation Analysis]
27 Sellek RE, Niemcewicz M, Olsen JS, Bassy O, Lorenzo P, Martí L, Roszkowiak A, Kocik J, Cabria JC. Phenotypic and genetic analyses of 111 clinical and environmental O1, O139, and non-O1/O139 Vibrio cholerae strains from different geographical areas. Epidemiol Infect 2012;140:1389-99. [PMID: 22074599 DOI: 10.1017/S0950268811002147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
28 Boyd EF. Bacteriophage-Encoded Bacterial Virulence Factors and Phage–Pathogenicity Island Interactions. Bacteriophages, Part A. Elsevier; 2012. pp. 91-118. [DOI: 10.1016/b978-0-12-394621-8.00014-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
29 Fournes F, Crozat E, Pages C, Tardin C, Salomé L, Cornet F, Rousseau P. FtsK translocation permits discrimination between an endogenous and an imported Xer/dif recombination complex. Proc Natl Acad Sci U S A 2016;113:7882-7. [PMID: 27317749 DOI: 10.1073/pnas.1523178113] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
30 Ahmad AA, Kawabe M, Askora A, Kawasaki T, Fujie M, Yamada T. Dynamic integration and excision of filamentous phage XacF1 in Xanthomonas citri pv. citri, the causative agent of citrus canker disease. FEBS Open Bio 2017;7:1715-21. [PMID: 29123980 DOI: 10.1002/2211-5463.12312] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
31 Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019;20:e47427. [PMID: 30952693 DOI: 10.15252/embr.201847427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
32 Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes. Microbiol Spectr 2014;2. [PMID: 26104344 DOI: 10.1128/microbiolspec.PLAS-0025-2014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
33 Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015;39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
34 Midonet C, Barre FX. How Xer-exploiting mobile elements overcome cellular control. Proc Natl Acad Sci U S A 2016;113:8343-5. [PMID: 27422553 DOI: 10.1073/pnas.1608539113] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
35 Tran T, Andres P, Petroni A, Soler-Bistué A, Albornoz E, Zorreguieta A, Reyes-Lamothe R, Sherratt DJ, Corso A, Tolmasky ME. Small plasmids harboring qnrB19: a model for plasmid evolution mediated by site-specific recombination at oriT and Xer sites. Antimicrob Agents Chemother 2012;56:1821-7. [PMID: 22290975 DOI: 10.1128/AAC.06036-11] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
36 Ma CH, Liu YT, Savva CG, Rowley PA, Cannon B, Fan HF, Russell R, Holzenburg A, Jayaram M. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM. J Mol Biol 2014;426:793-815. [PMID: 24286749 DOI: 10.1016/j.jmb.2013.11.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
37 Balalovski P, Grainge I. Mobilization of p dif modules in Acinetobacter : A novel mechanism for antibiotic resistance gene shuffling? Mol Microbiol 2020;114:699-709. [DOI: 10.1111/mmi.14563] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
38 Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2019;111:495-513. [PMID: 30475408 DOI: 10.1111/mmi.14170] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
39 Das B. Insights into TLCΦ lysogeny: A twist in the mechanism of IMEX integration. Proc Natl Acad Sci U S A 2019;116:18159-61. [PMID: 31439815 DOI: 10.1073/pnas.1912633116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Falero A, Marrero K, Trigueros S, Fando R. Characterization of the RstB2 protein, the DNA-binding protein of CTXϕ phage from Vibrio cholerae. Virus Genes 2014;48:518-27. [PMID: 24643345 DOI: 10.1007/s11262-014-1053-0] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]