BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Das B, Bischerour J, Val ME, Barre FX. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA. 2010;107:4377-4382. [PMID: 20133778 DOI: 10.1073/pnas.0910212107] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020;38:A83-92. [DOI: 10.1016/j.vaccine.2019.06.031] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
2 Bischerour J, Spangenberg C, Barre FX. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012;31:3757-67. [PMID: 22863778 DOI: 10.1038/emboj.2012.219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
3 Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020;12:E730. [PMID: 32640584 DOI: 10.3390/v12070730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Das B, Bischerour J, Barre FX. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA. 2011;108:2516-2521. [PMID: 21262799 DOI: 10.1073/pnas.1017061108] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
5 Rabaan AA. Cholera: an overview with reference to the Yemen epidemic. Front Med 2019;13:213-28. [DOI: 10.1007/s11684-018-0631-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
6 Falero A, Marrero K, Trigueros S, Fando R. Characterization of the RstB2 protein, the DNA-binding protein of CTXϕ phage from Vibrio cholerae. Virus Genes 2014;48:518-27. [PMID: 24643345 DOI: 10.1007/s11262-014-1053-0] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
7 Midonet C, Barre FX. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2014;2. [PMID: 26104463 DOI: 10.1128/microbiolspec.MDNA3-0056-2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
8 Yeh TY. Complete nucleotide sequence of a new filamentous phage, Xf109, which integrates its genome into the chromosomal DNA of Xanthomonas oryzae. Arch Virol 2017;162:567-72. [PMID: 27743252 DOI: 10.1007/s00705-016-3105-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
9 Lee I, Ha SM, Baek MG, Kim DW, Yi H, Chun J. VicPred: A Vibrio cholerae Genotype Prediction Tool. Front Microbiol 2021;12:691895. [PMID: 34566903 DOI: 10.3389/fmicb.2021.691895] [Reference Citation Analysis]
10 Yu HJ, Cha DSR, Shin DH, Nair GB, Kim EJ, Kim DW. Design and Construction of Vibrio cholerae Strains That Harbor Various CTX Prophage Arrays. Front Microbiol 2018;9:339. [PMID: 29563899 DOI: 10.3389/fmicb.2018.00339] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020;38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Carr CE, Marky LA. Increased Flexibility between Stems of Intramolecular Three-Way Junctions by the Insertion of Bulges. Biophys J 2018;114:2764-74. [PMID: 29925014 DOI: 10.1016/j.bpj.2018.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann N Y Acad Sci 2015;1341:41-53. [PMID: 25675979 DOI: 10.1111/nyas.12675] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 6.9] [Reference Citation Analysis]
14 Pant A, Bag S, Saha B, Verma J, Kumar P, Banerjee S, Kumar B, Kumar Y, Desigamani A, Maiti S, Maiti TK, Banerjee SK, Bhadra RK, Koley H, Dutta S, Nair GB, Ramamurthy T, Das B. Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae. Proc Natl Acad Sci U S A 2020;117:23762-73. [PMID: 32873641 DOI: 10.1073/pnas.2006283117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Bikard D, Loot C, Baharoglu Z, Mazel D. Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 2010;74:570-88. [PMID: 21119018 DOI: 10.1128/MMBR.00026-10] [Cited by in Crossref: 121] [Cited by in F6Publishing: 56] [Article Influence: 11.0] [Reference Citation Analysis]
16 Carr CE, Marky LA. Effect of GCAA stabilizing loops on three- and four-way intramolecular junctions. Phys Chem Chem Phys 2018;20:5046-56. [PMID: 29388988 DOI: 10.1039/c7cp08329g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Midonet C, Das B, Paly E, Barre FX. XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A 2014;111:16848-53. [PMID: 25385643 DOI: 10.1073/pnas.1404047111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
18 Das B, Pazhani GP, Sarkar A, Mukhopadhyay AK, Nair GB, Ramamurthy T. Molecular evolution and functional divergence of Vibrio cholerae: . Current Opinion in Infectious Diseases 2016;29:520-7. [DOI: 10.1097/qco.0000000000000306] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
20 Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. Infect Genet Evol 2014;23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
21 Boyd EF. Bacteriophage-Encoded Bacterial Virulence Factors and Phage–Pathogenicity Island Interactions. Bacteriophages, Part A. Elsevier; 2012. pp. 91-118. [DOI: 10.1016/b978-0-12-394621-8.00014-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
22 Houot L, Navarro R, Nouailler M, Duché D, Guerlesquin F, Lloubes R. Electrostatic interactions between the CTX phage minor coat protein and the bacterial host receptor TolA drive the pathogenic conversion of Vibrio cholerae. J Biol Chem 2017;292:13584-98. [PMID: 28642371 DOI: 10.1074/jbc.M117.786061] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
23 Demarre G, Galli E, Muresan L, Paly E, David A, Possoz C, Barre FX. Differential management of the replication terminus regions of the two Vibrio cholerae chromosomes during cell division. PLoS Genet 2014;10:e1004557. [PMID: 25255436 DOI: 10.1371/journal.pgen.1004557] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
24 Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015;11:e1005256. [PMID: 25992634 DOI: 10.1371/journal.pgen.1005256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
25 Midonet C, Miele S, Paly E, Guerois R, Barre FX. The TLCΦ satellite phage harbors a Xer recombination activation factor. Proc Natl Acad Sci U S A 2019;116:18391-6. [PMID: 31420511 DOI: 10.1073/pnas.1902905116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
26 Das B, Kumari R, Pant A, Sen Gupta S, Saxena S, Mehta O, Nair GB. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies. J Bacteriol 2014;196:4071-80. [PMID: 25225263 DOI: 10.1128/JB.01966-14] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
27 Galli E, Midonet C, Paly E, Barre FX. Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli. PLoS Genet 2017;13:e1006702. [PMID: 28358835 DOI: 10.1371/journal.pgen.1006702] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
28 Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol. 2013;21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 7.4] [Reference Citation Analysis]
29 Askora A, Abdel-haliem MEF, Yamada T. Site-specific recombination systems in filamentous phages. Mol Genet Genomics 2012;287:525-30. [DOI: 10.1007/s00438-012-0700-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
30 Pant A, Anbumani D, Bag S, Mehta O, Kumar P, Saxena S, Nair GB, Das B. Effect of LexA on Chromosomal Integration of CTXϕ in Vibrio cholerae. J Bacteriol 2016;198:268-75. [PMID: 26503849 DOI: 10.1128/JB.00674-15] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
31 Juhas M, Ajioka JW. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome. J Microbiol Methods 2016;125:1-7. [PMID: 27033694 DOI: 10.1016/j.mimet.2016.03.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
32 Boyd EF. Efficiency and specificity of CTXphi chromosomal integration: dif makes all the difference. Proc Natl Acad Sci U S A 2010;107:3951-2. [PMID: 20197438 DOI: 10.1073/pnas.1000310107] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
33 Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
34 Li X, Song G, Dou L, Yan S, Zhang M, Yuan W, Lai S, Jiang X, Li K, Sun K, Zhao C, Geng J. The structure and unzipping behavior of dumbbell and hairpin DNA revealed by real-time nanopore sensing. Nanoscale 2021;13:11827-35. [PMID: 34152351 DOI: 10.1039/d0nr08729g] [Reference Citation Analysis]
35 Carr CE, Marky LA. Investigation of the Melting Behavior of DNA Three-Way Junctions in the Closed and Open States. Biophys J 2017;113:529-39. [PMID: 28793208 DOI: 10.1016/j.bpj.2017.06.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
36 Midonet C, Barre FX. How Xer-exploiting mobile elements overcome cellular control. Proc Natl Acad Sci U S A 2016;113:8343-5. [PMID: 27422553 DOI: 10.1073/pnas.1608539113] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
37 Val M, Kennedy SP, Soler-bistué AJ, Barbe V, Bouchier C, Ducos-galand M, Skovgaard O, Mazel D. Fuse or die: how to survive the loss of Dam in Vibrio cholerae: Natural fusion of Vibrio cholerae chromosomes. Molecular Microbiology 2014;91:665-78. [DOI: 10.1111/mmi.12483] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
38 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
39 Juhas M, Evans LD, Frost J, Davenport PW, Yarkoni O, Fraser GM, Ajioka JW. Escherichia coli flagellar genes as target sites for integration and expression of genetic circuits. PLoS One 2014;9:e111451. [PMID: 25350000 DOI: 10.1371/journal.pone.0111451] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
40 Boyd EF, Carpenter MR, Chowdhury N. Mobile effector proteins on phage genomes. Bacteriophage 2012;2:139-48. [PMID: 23275865 DOI: 10.4161/bact.21658] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
41 Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010;467:982-5. [DOI: 10.1038/nature09469] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 6.4] [Reference Citation Analysis]
42 Kono N, Arakawa K, Tomita M. Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes. BMC Genomics 2011;12:19. [PMID: 21223577 DOI: 10.1186/1471-2164-12-19] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
43 Kamruzzaman M, Robins WP, Bari SM, Nahar S, Mekalanos JJ, Faruque SM. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014;82:3636-43. [PMID: 24935981 DOI: 10.1128/IAI.01699-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
44 Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019;20:e47427. [PMID: 30952693 DOI: 10.15252/embr.201847427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
45 Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020;10:561296. [PMID: 33123494 DOI: 10.3389/fcimb.2020.561296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Yeh TY. XerD-dependent integration of a novel filamentous phage Cf2 into the Xanthomonas citri genome. Virology 2020;548:160-7. [PMID: 32838937 DOI: 10.1016/j.virol.2020.06.010] [Reference Citation Analysis]
47 Das B. Insights into TLCΦ lysogeny: A twist in the mechanism of IMEX integration. Proc Natl Acad Sci U S A 2019;116:18159-61. [PMID: 31439815 DOI: 10.1073/pnas.1912633116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]