BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moyer KE, Kimsey HH, Waldor MK. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi. Mol Microbiol. 2001;41:311-323. [PMID: 11489120 DOI: 10.1046/j.1365-2958.2001.02517.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015;11:e1005256. [PMID: 25992634 DOI: 10.1371/journal.pgen.1005256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
2 Ochi K, Mizuno T, Samanta P, Mukhopadhyay AK, Miyoshi SI, Imamura D. Recent Vibrio cholerae O1 Epidemic Strains Are Unable To Replicate CTXΦ Prophage Genome. mSphere 2021;6:e0033721. [PMID: 34106768 DOI: 10.1128/mSphere.00337-21] [Reference Citation Analysis]
3 Bischerour J, Spangenberg C, Barre FX. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012;31:3757-67. [PMID: 22863778 DOI: 10.1038/emboj.2012.219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
4 Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell. 2005;19:559-566. [PMID: 16109379 DOI: 10.1016/j.molcel.2005.07.002] [Cited by in Crossref: 124] [Cited by in F6Publishing: 101] [Article Influence: 7.3] [Reference Citation Analysis]
5 Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol. 2013;21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 7.4] [Reference Citation Analysis]
6 Mantri CK, Mohapatra SS, Colwell RR, Singh DV. Sequence analysis of Vibrio cholerae orfU and zot from pre-CTXΦ and CTXΦ reveals multiple origin of pre-CTXΦ and CTXΦ: Analysis of orfU and zot sequences of CTXΦ and pre-CTXΦ. Environmental Microbiology Reports 2010;2:67-75. [DOI: 10.1111/j.1758-2229.2009.00085.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
7 Das B, Bischerour J, Barre FX. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA. 2011;108:2516-2521. [PMID: 21262799 DOI: 10.1073/pnas.1017061108] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
8 Das B, Bischerour J, Val ME, Barre FX. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA. 2010;107:4377-4382. [PMID: 20133778 DOI: 10.1073/pnas.0910212107] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
9 Midonet C, Das B, Paly E, Barre FX. XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A 2014;111:16848-53. [PMID: 25385643 DOI: 10.1073/pnas.1404047111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
10 Derbise A, Chenal‐francisque V, Pouillot F, Fayolle C, Prévost M, Médigue C, Hinnebusch BJ, Carniel E. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Molecular Microbiology 2007;63:1145-57. [DOI: 10.1111/j.1365-2958.2006.05570.x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 3.7] [Reference Citation Analysis]
11 Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-35. [PMID: 22126996 DOI: 10.1128/MMBR.00011-11] [Cited by in Crossref: 174] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
12 Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, Qadri F, Thomson NR. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci Rep 2019;9:5865. [PMID: 30971707 DOI: 10.1038/s41598-019-41883-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
13 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
14 Liu G, Yan M, Liang W, Qi G, Liu Y, Gao S, Kan B. Resistance of the cholera vaccine candidate IEM108 against CTXΦ infection. Vaccine 2006;24:1749-55. [DOI: 10.1016/j.vaccine.2005.09.059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
15 Viret J, Dietrich G, Favre D. Biosafety aspects of the recombinant live oral Vibrio cholerae vaccine strain CVD 103-HgR. Vaccine 2004;22:2457-69. [DOI: 10.1016/j.vaccine.2003.12.033] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
16 Segall AM, Craig NL. New Wrinkles and Folds in Site-Specific Recombination. Molecular Cell 2005;19:433-5. [DOI: 10.1016/j.molcel.2005.08.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
17 Ledón T, Campos J, Suzarte E, Rodríguez B, Marrero K, Fando R. El Tor and Calcutta CTXΦ precursors coexisting with intact CTXΦ copies in Vibrio cholerae O139 isolates. Research in Microbiology 2008;159:81-7. [DOI: 10.1016/j.resmic.2007.11.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
18 Campos J, Martínez E, Marrero K, Silva Y, Rodríguez BL, Suzarte E, Ledón T, Fando R. Novel type of specialized transduction for CTX phi or its satellite phage RS1 mediated by filamentous phage VGJ phi in Vibrio cholerae. J Bacteriol 2003;185:7231-40. [PMID: 14645284 DOI: 10.1128/JB.185.24.7231-7240.2003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
19 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
20 Egan ES, Waldor MK. Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes. Cell 2003;114:521-30. [DOI: 10.1016/s0092-8674(03)00611-1] [Cited by in Crossref: 131] [Cited by in F6Publishing: 79] [Article Influence: 6.9] [Reference Citation Analysis]
21 Neogi SB, Chowdhury N, Awasthi SP, Asakura M, Okuno K, Mahmud ZH, Islam MS, Hinenoya A, Nair GB, Yamasaki S. Novel Cholera Toxin Variant and ToxT Regulon in Environmental Vibrio mimicus Isolates: Potential Resources for the Evolution of Vibrio cholerae Hybrid Strains. Appl Environ Microbiol 2019;85:e01977-18. [PMID: 30446560 DOI: 10.1128/AEM.01977-18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
22 Rabaan AA. Cholera: an overview with reference to the Yemen epidemic. Front Med 2019;13:213-28. [DOI: 10.1007/s11684-018-0631-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
23 Midonet C, Barre FX. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2014;2. [PMID: 26104463 DOI: 10.1128/microbiolspec.MDNA3-0056-2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
24 Fan F, Kan B. Survival and proliferation of the lysogenic bacteriophage CTXΦ in Vibrio cholerae. Virol Sin 2015;30:19-25. [PMID: 25613689 DOI: 10.1007/s12250-014-3550-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
25 Wei W, Xiong L, Ye YN, Du MZ, Gao YZ, Zhang KY, Jin YT, Yang Z, Wong PC, Lau SKP, Kan B, Zhu J, Woo PCY, Guo FB. Mutation Landscape of Base Substitutions, Duplications, and Deletions in the Representative Current Cholera Pandemic Strain. Genome Biol Evol 2018;10:2072-85. [PMID: 30060177 DOI: 10.1093/gbe/evy151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Mauritzen JJ, Castillo D, Tan D, Svenningsen SL, Middelboe M. Beyond Cholera: Characterization of zot-Encoding Filamentous Phages in the Marine Fish Pathogen Vibrio anguillarum. Viruses 2020;12:E730. [PMID: 32640584 DOI: 10.3390/v12070730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005;57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
28 Davis BM, Kimsey HH, Kane AV, Waldor MK. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 2002;21:4240-4249. [PMID: 12169626 DOI: 10.1093/emboj/cdf427] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 4.6] [Reference Citation Analysis]
29 Campos J, Martínez E, Suzarte E, Rodríguez BL, Marrero K, Silva Y, Ledón T, del Sol R, Fando R. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol 2003;185:5685-96. [PMID: 13129939 DOI: 10.1128/JB.185.19.5685-5696.2003] [Cited by in Crossref: 60] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
30 Huber KE, Waldor MK. Filamentous phage integration requires the host recombinases XerC and XerD. Nature. 2002;417:656-659. [PMID: 12050668 DOI: 10.1038/nature00782] [Cited by in Crossref: 138] [Cited by in F6Publishing: 121] [Article Influence: 6.9] [Reference Citation Analysis]
31 Burrus V, Waldor MK. Formation of SXT tandem arrays and SXT-R391 hybrids. J Bacteriol 2004;186:2636-45. [PMID: 15090504 DOI: 10.1128/JB.186.9.2636-2645.2004] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
32 McLeod SM, Waldor MK. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 2004;54:935-47. [PMID: 15522078 DOI: 10.1111/j.1365-2958.2004.04309.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
33 Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005;8:459-65. [PMID: 15979389 DOI: 10.1016/j.mib.2005.06.001] [Cited by in Crossref: 144] [Cited by in F6Publishing: 132] [Article Influence: 8.5] [Reference Citation Analysis]
34 Boyd EF. Efficiency and specificity of CTXphi chromosomal integration: dif makes all the difference. Proc Natl Acad Sci U S A 2010;107:3951-2. [PMID: 20197438 DOI: 10.1073/pnas.1000310107] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]