BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Waldor MK, Rubin EJ, Pearson GD, Kimsey H, Mekalanos JJ. Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol Microbiol. 1997;24:917-926. [PMID: 9220000 DOI: 10.1046/j.1365-2958.1997.3911758.x] [Cited by in Crossref: 157] [Cited by in F6Publishing: 127] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Igere BE, Okoh AI, Nwodo UU. Atypical and dual biotypes variant of virulent SA-NAG-Vibrio cholerae: an evidence of emerging/evolving patho-significant strain in municipal domestic water sources. Ann Microbiol 2022;72. [DOI: 10.1186/s13213-021-01661-5] [Reference Citation Analysis]
2 Hirst TR, D'souza JM. Vibrio cholerae and Escherichia coli thermolabile enterotoxin. The Comprehensive Sourcebook of Bacterial Protein Toxins. Elsevier; 2006. pp. 270-90. [DOI: 10.1016/b978-012088445-2/50020-2] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
3 Boyd EF, Heilpern AJ, Waldor MK. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae. J Bacteriol 2000;182:5530-8. [PMID: 10986258 DOI: 10.1128/JB.182.19.5530-5538.2000] [Cited by in Crossref: 65] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
4 Fullner KJ. Toxins of Vibrio cholerae : Consensus and Controversy. In: Hecht GA, editor. Microbial Pathogenesis and the Intestinal Epithelial Cell. Washington: ASM Press; 2003. pp. 481-502. [DOI: 10.1128/9781555817848.ch26] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
5 Boyd EF, Moyer KE, Shi L, Waldor MK. Infectious CTXPhi and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 2000;68:1507-13. [PMID: 10678967 DOI: 10.1128/IAI.68.3.1507-1513.2000] [Cited by in Crossref: 107] [Cited by in F6Publishing: 43] [Article Influence: 4.9] [Reference Citation Analysis]
6 Das B, Bischerour J, Val ME, Barre FX. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA. 2010;107:4377-4382. [PMID: 20133778 DOI: 10.1073/pnas.0910212107] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
7 Rubin EJ, Lin W, Mekalanos JJ, Waldor MK. Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol Microbiol 1998;28:1247-54. [PMID: 9680213 DOI: 10.1046/j.1365-2958.1998.00889.x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 2.4] [Reference Citation Analysis]
8 Neogi SB, Chowdhury N, Awasthi SP, Asakura M, Okuno K, Mahmud ZH, Islam MS, Hinenoya A, Nair GB, Yamasaki S. Novel Cholera Toxin Variant and ToxT Regulon in Environmental Vibrio mimicus Isolates: Potential Resources for the Evolution of Vibrio cholerae Hybrid Strains. Appl Environ Microbiol 2019;85:e01977-18. [PMID: 30446560 DOI: 10.1128/AEM.01977-18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
9 McLeod SM, Waldor MK. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 2004;54:935-47. [PMID: 15522078 DOI: 10.1111/j.1365-2958.2004.04309.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
10 Wooldridge KG, Kizil M, Wells DB, Ala'aldeen DA. Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis. Infect Immun 2005;73:5554-67. [PMID: 16113272 DOI: 10.1128/IAI.73.9.5554-5567.2005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
11 Hochhut B, Waldor MK. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 1999;32:99-110. [DOI: 10.1046/j.1365-2958.1999.01330.x] [Cited by in Crossref: 153] [Cited by in F6Publishing: 134] [Article Influence: 6.7] [Reference Citation Analysis]
12 Safa A, Bhuyian NA, Nusrin S, Ansaruzzaman M, Alam M, Hamabata T, Takeda Y, Sack DA, Nair GB. Genetic characteristics of Matlab variants of Vibrio cholerae O1 that are hybrids between classical and El Tor biotypes. Journal of Medical Microbiology 2006;55:1563-9. [DOI: 10.1099/jmm.0.46689-0] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 3.3] [Reference Citation Analysis]
13 Bhattacharya T, Chatterjee S, Maiti D, Bhadra RK, Takeda Y, Nair GB, Nandy RK. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. Environ Microbiol 2006;8:526-634. [DOI: 10.1111/j.1462-2920.2005.00932.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 2.7] [Reference Citation Analysis]
14 Liu J, Liu Q, Shen P, Huang YP. Isolation and characterization of a novel filamentous phage from Stenotrophomonas maltophilia. Arch Virol 2012;157:1643-50. [PMID: 22614810 DOI: 10.1007/s00705-012-1305-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
15 Li X, Zhao L, Gao H, Chen L, Fan F, Li Z, Fan Y, Li J, Liang W, Pang B, Kan B. A novel pre-CTX prophage in the Vibrio cholerae serogroup O139 strain. Infect Genet Evol 2020;81:104238. [PMID: 32045711 DOI: 10.1016/j.meegid.2020.104238] [Reference Citation Analysis]
16 Munson RS Jr, Zhong H, Mungur R, Ray WC, Shea RJ, Mahairas GG, Mulks MH. Haemophilus ducreyi strain ATCC 27722 contains a genetic element with homology to the vibrio RS1 element that can replicate as a plasmid and confer NAD independence on haemophilus influenzae. Infect Immun 2004;72:1143-6. [PMID: 14742562 DOI: 10.1128/IAI.72.2.1143-1146.2004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
17 Barbieri JT, Fidelma Boyd E, Waldor MK. Alternative Mechanism of Cholera Toxin Acquisition by Vibrio cholerae : Generalized Transduction of CTXΦ by Bacteriophage CP-T1. Infect Immun 1999;67:5898-905. [DOI: 10.1128/iai.67.11.5898-5905.1999] [Cited by in Crossref: 46] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
18 Bakhshi B. Molecular characterization of Vibrio cholerae isolates from Iran 2012 and 2013 outbreaks. Lett Appl Microbiol 2016;62:466-71. [PMID: 27060480 DOI: 10.1111/lam.12571] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
19 Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. Infect Genet Evol 2014;23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
20 Kimsey HH, Waldor MK. The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor-operator complexes. J Biol Chem 2004;279:2640-7. [PMID: 14610071 DOI: 10.1074/jbc.M311109200] [Cited by in Crossref: 39] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
21 Bundi M, Shah MM, Odoyo E, Kathiiko C, Wandera E, Miring'u G, Guyo S, Langat D, Morita K, Ichinose Y. Characterization of Vibrio cholerae O1 isolates responsible for cholera outbreaks in Kenya between 1975 and 2017. Microbiol Immunol 2019;63:350-8. [PMID: 31407393 DOI: 10.1111/1348-0421.12731] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Garg P, Nandy RK, Chaudhury P, Chowdhury NR, De K, Ramamurthy T, Yamasaki S, Bhattacharya SK, Takeda Y, Nair GB. Emergence of Vibrio cholerae O1 Biotype El Tor Serotype Inaba from the Prevailing O1 Ogawa Serotype Strains in India. J Clin Microbiol 2000;38:4249-53. [DOI: 10.1128/jcm.38.11.4249-4253.2000] [Cited by in Crossref: 45] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
23 McLeod SM, Kimsey HH, Davis BM, Waldor MK. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 2005;57:347-56. [PMID: 15978069 DOI: 10.1111/j.1365-2958.2005.04676.x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
24 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
25 Das B, Pazhani GP, Sarkar A, Mukhopadhyay AK, Nair GB, Ramamurthy T. Molecular evolution and functional divergence of Vibrio cholerae: . Current Opinion in Infectious Diseases 2016;29:520-7. [DOI: 10.1097/qco.0000000000000306] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Campos J, Fando R, Silva A, Rodriguez BL, Benitez JA. Replicating function of the RS1 element associated with Vibrio cholerae CTX phi prophage. FEMS Microbiol Lett 1998;164:141-7. [PMID: 9675860 DOI: 10.1111/j.1574-6968.1998.tb13079.x] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
27 Sarkar A, Nandy RK, Nair GB, Ghose AC. Vibrio pathogenicity island and cholera toxin genetic element-associated virulence genes and their expression in non-O1 non-O139 strains of Vibrio cholerae. Infect Immun 2002;70:4735-42. [PMID: 12117994 DOI: 10.1128/IAI.70.8.4735-4742.2002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
28 Robins WP, Mekalanos JJ. Genomic science in understanding cholera outbreaks and evolution of Vibrio cholerae as a human pathogen. Curr Top Microbiol Immunol 2014;379:211-29. [PMID: 24590676 DOI: 10.1007/82_2014_366] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
29 Ochi K, Mizuno T, Samanta P, Mukhopadhyay AK, Miyoshi SI, Imamura D. Recent Vibrio cholerae O1 Epidemic Strains Are Unable To Replicate CTXΦ Prophage Genome. mSphere 2021;6:e0033721. [PMID: 34106768 DOI: 10.1128/mSphere.00337-21] [Reference Citation Analysis]
30 Rubin EJ, Mekalanos JJ, Waldor MK. Mobile genetic elements and the evolution of new epidemic strains of Vibrio cholerae. Emerging Infections. Elsevier; 1998. pp. 147-61. [DOI: 10.1016/s1874-5326(07)80028-7] [Cited by in Crossref: 10] [Article Influence: 0.4] [Reference Citation Analysis]
31 Falero A, Caballero A, Ferrán B, Izquierdo Y, Fando R, Campos J. DNA binding proteins of the filamentous phages CTXphi and VGJphi of Vibrio cholerae. J Bacteriol. 2009;191:5873-5876. [PMID: 19617366 DOI: 10.1128/jb.01206-08] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
32 Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 2002;99:1556-61. [PMID: 11818571 DOI: 10.1073/pnas.042667999] [Cited by in Crossref: 327] [Cited by in F6Publishing: 277] [Article Influence: 16.4] [Reference Citation Analysis]
33 Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet. 2004;363:223-233. [PMID: 14738797 DOI: 10.1016/s0140-6736(03)15328-7] [Cited by in Crossref: 698] [Cited by in F6Publishing: 340] [Article Influence: 38.8] [Reference Citation Analysis]
34 Falero A, Marrero K, Trigueros S, Fando R. Characterization of the RstB2 protein, the DNA-binding protein of CTXϕ phage from Vibrio cholerae. Virus Genes 2014;48:518-27. [PMID: 24643345 DOI: 10.1007/s11262-014-1053-0] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
35 Safa A, Nair GB, Kong RY. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol. 2010;18:46-54. [PMID: 19942436 DOI: 10.1016/j.tim.2009.10.003] [Cited by in Crossref: 202] [Cited by in F6Publishing: 154] [Article Influence: 15.5] [Reference Citation Analysis]
36 Mcghee JR, Benítez JA, García L, Silva A, García H, Fando R, Cedré B, Pérez A, Campos J, Rodríguez BL, Pérez J, Valmaseda T, Pérez O, Pérez A, Ramírez M, Ledón T, Jidy MD, Lastre M, Bravo L, Sierra G. Preliminary Assessment of the Safety and Immunogenicity of a New CTXΦ-Negative, Hemagglutinin/Protease-Defective El Tor Strain as a Cholera Vaccine Candidate. Infect Immun 1999;67:539-45. [DOI: 10.1128/iai.67.2.539-545.1999] [Cited by in Crossref: 70] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
37 Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM. Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 2008;27:347-55. [PMID: 18462070 DOI: 10.1089/dna.2008.0737] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 4.6] [Reference Citation Analysis]
38 Hochhut B, Beaber JW, Woodgate R, Waldor MK. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol 2001;183:1124-32. [PMID: 11157923 DOI: 10.1128/JB.183.4.1124-1132.2001] [Cited by in Crossref: 71] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
39 Jian H, Xu G, Liu S, Hao Y, Meng C, Xu J, Zhang Y, Liu X, Xiao X. Multiple Mechanisms Are Involved in Repression of Filamentous Phage SW1 Transcription by the DNA-Binding Protein FpsR. Journal of Molecular Biology 2019;431:1113-26. [DOI: 10.1016/j.jmb.2019.01.040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
40 Rocco JM, Churchward G. The integrase of the conjugative transposon Tn916 directs strand- and sequence-specific cleavage of the origin of conjugal transfer, oriT, by the endonuclease Orf20. J Bacteriol 2006;188:2207-13. [PMID: 16513750 DOI: 10.1128/JB.188.6.2207-2213.2006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
41 Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015;11:e1005256. [PMID: 25992634 DOI: 10.1371/journal.pgen.1005256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
42 Smirnova NI, Cheldyshova NB, Zadnova SP, Kutyrev VV. Molecular–genetic peculiarities of classical biotype Vibrio cholerae, the etiological agent of the last outbreak Asiatic cholera in Russia. Microbial Pathogenesis 2004;36:131-9. [DOI: 10.1016/j.micpath.2003.10.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
43 Faruque SM, Kamruzzaman M, Asadulghani, Sack DA, Mekalanos JJ, Nair GB. CTXphi-independent production of the RS1 satellite phage by Vibrio cholerae. Proc Natl Acad Sci U S A 2003;100:1280-5. [PMID: 12529504 DOI: 10.1073/pnas.0237385100] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 1.5] [Reference Citation Analysis]
44 Faruque SM, Kamruzzaman M, Meraj IM, Chowdhury N, Nair GB, Sack RB, Colwell RR, Sack DA. Pathogenic potential of environmental Vibrio cholerae strains carrying genetic variants of the toxin-coregulated pilus pathogenicity island. Infect Immun 2003;71:1020-5. [PMID: 12540588 DOI: 10.1128/IAI.71.2.1020-1025.2003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
45 Chouikha I, Charrier L, Filali S, Derbise A, Carniel E. Insights into the infective properties of YpfΦ, the Yersinia pestis filamentous phage. Virology 2010;407:43-52. [PMID: 20728914 DOI: 10.1016/j.virol.2010.07.048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
46 Dirita VJ. Molecular Basis of Vibrio cholerae Pathogenesis. Principles of Bacterial Pathogenesis. Elsevier; 2001. pp. 457-508. [DOI: 10.1016/b978-012304220-0/50011-x] [Cited by in Crossref: 4] [Article Influence: 0.2] [Reference Citation Analysis]
47 Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005;8:459-65. [PMID: 15979389 DOI: 10.1016/j.mib.2005.06.001] [Cited by in Crossref: 144] [Cited by in F6Publishing: 132] [Article Influence: 8.5] [Reference Citation Analysis]
48 Hasan NA, Choi SY, Eppinger M, Clark PW, Chen A, Alam M, Haley BJ, Taviani E, Hine E, Su Q, Tallon LJ, Prosper JB, Furth K, Hoq MM, Li H, Fraser-Liggett CM, Cravioto A, Huq A, Ravel J, Cebula TA, Colwell RR. Genomic diversity of 2010 Haitian cholera outbreak strains. Proc Natl Acad Sci U S A 2012;109:E2010-7. [PMID: 22711841 DOI: 10.1073/pnas.1207359109] [Cited by in Crossref: 132] [Cited by in F6Publishing: 113] [Article Influence: 13.2] [Reference Citation Analysis]
49 Rabaan AA. Cholera: an overview with reference to the Yemen epidemic. Front Med 2019;13:213-28. [DOI: 10.1007/s11684-018-0631-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
50 Fan F, Kan B. Survival and proliferation of the lysogenic bacteriophage CTXΦ in Vibrio cholerae. Virol Sin 2015;30:19-25. [PMID: 25613689 DOI: 10.1007/s12250-014-3550-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
51 Campos J, Martínez E, Suzarte E, Rodríguez BL, Marrero K, Silva Y, Ledón T, del Sol R, Fando R. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol 2003;185:5685-96. [PMID: 13129939 DOI: 10.1128/JB.185.19.5685-5696.2003] [Cited by in Crossref: 60] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
52 Boyd EF. Bacteriophage-Encoded Bacterial Virulence Factors and Phage–Pathogenicity Island Interactions. Bacteriophages, Part A. Elsevier; 2012. pp. 91-118. [DOI: 10.1016/b978-0-12-394621-8.00014-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 7.9] [Reference Citation Analysis]
53 Reidl J, Klose KE. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 2002;26:125-39. [PMID: 12069878 DOI: 10.1111/j.1574-6976.2002.tb00605.x] [Cited by in Crossref: 244] [Cited by in F6Publishing: 218] [Article Influence: 12.2] [Reference Citation Analysis]
54 Davis BM, Kimsey HH, Kane AV, Waldor MK. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 2002;21:4240-4249. [PMID: 12169626 DOI: 10.1093/emboj/cdf427] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 4.6] [Reference Citation Analysis]
55 Claus H, Stoevesandt J, Frosch M, Vogel U. Genetic isolation of meningococci of the electrophoretic type 37 complex. J Bacteriol 2001;183:2570-5. [PMID: 11274117 DOI: 10.1128/JB.183.8.2570-2575.2001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
56 Mohapatra SS, Ramachandran D, Mantri CK, Singh DV. Characterization of the genetic background of Vibrio cholerae O1 biotype El Tor serotype Inaba strains isolated in Trivandrum, southern India. Journal of Medical Microbiology 2007;56:260-5. [DOI: 10.1099/jmm.0.46868-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
57 Lazar S, Waldor MK. ToxR-Independent Expression of Cholera Toxin from the Replicative Form of CTXφ. Infect Immun 1998;66:394-7. [DOI: 10.1128/iai.66.1.394-397.1998] [Cited by in Crossref: 39] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
58 Ikema M, Honma Y. A novel filamentous phage, fs-2, of Vibrio cholerae O139. Microbiology (Reading) 1998;144 ( Pt 7):1901-6. [PMID: 9695923 DOI: 10.1099/00221287-144-7-1901] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 1.4] [Reference Citation Analysis]
59 Bourgeois J, Lazinski DW, Camilli A. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System. mSphere 2020;5:e00813-20. [PMID: 33208517 DOI: 10.1128/mSphere.00813-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020;38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
61 Faruque SM, Asadulghani, Kamruzzaman M, Nandi RK, Ghosh AN, Nair GB, Mekalanos JJ, Sack DA. RS1 element of Vibrio cholerae can propagate horizontally as a filamentous phage exploiting the morphogenesis genes of CTXphi. Infect Immun 2002;70:163-70. [PMID: 11748178 DOI: 10.1128/IAI.70.1.163-170.2002] [Cited by in Crossref: 52] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
62 Heilpern AJ, Waldor MK. CTXphi infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 2000;182:1739-47. [PMID: 10692381 DOI: 10.1128/JB.182.6.1739-1747.2000] [Cited by in Crossref: 78] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
63 Mantri CK, Mohapatra SS, Colwell RR, Singh DV. Sequence analysis of Vibrio cholerae orfU and zot from pre-CTXΦ and CTXΦ reveals multiple origin of pre-CTXΦ and CTXΦ: Analysis of orfU and zot sequences of CTXΦ and pre-CTXΦ. Environmental Microbiology Reports 2010;2:67-75. [DOI: 10.1111/j.1758-2229.2009.00085.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
64 Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A 2005;102:3004-9. [PMID: 15703294 DOI: 10.1073/pnas.0409900102] [Cited by in Crossref: 257] [Cited by in F6Publishing: 228] [Article Influence: 15.1] [Reference Citation Analysis]
65 Karaolis DKR, Kaper JB. Pathogenicity Islands and Other Mobile Virulence Elements of Vibrio cholerae. In: Kaper JB, Hacker J, editors. Pathogenicity Islands and Other Mobile Virulence Elements. Washington: ASM Press; 1999. pp. 167-87. [DOI: 10.1128/9781555818173.ch9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Kimsey HH, Waldor MK. Vibrio cholerae hemagglutinin/protease inactivates CTXphi. Infect Immun 1998;66:4025-9. [PMID: 9712742 DOI: 10.1128/IAI.66.9.4025-4029.1998] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
67 Maiti D, Das B, Saha A, Nandy RK, Nair GB, Bhadra RK. Genetic organization of pre-CTX and CTX prophages in the genome of an environmental Vibrio cholerae non-O1, non-O139 strain. Microbiology 2006;152:3633-41. [DOI: 10.1099/mic.0.2006/000117-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
68 Nakaguchi Y, Okuda J, Iida T, Nishibuchi M. The urease gene cluster of Vibrio parahaemolyticus does not influence the expression of the thermostable direct hemolysin (TDH) gene or the TDH-related hemolysin gene. Microbiol Immunol 2003;47:233-9. [PMID: 12725294 DOI: 10.1111/j.1348-0421.2003.tb03392.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
69 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
70 Chang B, Miyamoto H, Taniguchi H, Yoshida S. Isolation and Genetic Characterization of a Novel Filamentous Bacteriophage, a Deleted Form of Phage f237, from a Pandemic Vibrio parahaemolyticus O4:K68 Strain. Microbiology and Immunology 2002;46:565-9. [DOI: 10.1111/j.1348-0421.2002.tb02734.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
71 Halder K, Das B, Nair GB, Bhadra RK. Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology 2010;156:99-107. [DOI: 10.1099/mic.0.032458-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
72 Bakhshi B. The role of filamentous CTXphi bacteriophage in Vibrio cholerae genetics and diversity. Reviews in Medical Microbiology 2015;26:43-6. [DOI: 10.1097/mrm.0000000000000017] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
73 Faruque SM, Nair GB. Molecular ecology of toxigenic Vibrio cholerae. Microbiol Immunol 2002;46:59-66. [PMID: 11939579 DOI: 10.1111/j.1348-0421.2002.tb02659.x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 44] [Article Influence: 2.9] [Reference Citation Analysis]
74 Pant A, Anbumani D, Bag S, Mehta O, Kumar P, Saxena S, Nair GB, Das B. Effect of LexA on Chromosomal Integration of CTXϕ in Vibrio cholerae. J Bacteriol 2016;198:268-75. [PMID: 26503849 DOI: 10.1128/JB.00674-15] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
75 Martínez E, Campos-Gómez J, Barre FX. CTXϕ: Exploring new alternatives in host factor-mediated filamentous phage replications. Bacteriophage 2016;6:e1128512. [PMID: 27607139 DOI: 10.1080/21597081.2015.1128512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
76 Okuda J, Nishibuchi M. Manifestation of the Kanagawa phenomenon, the virulence-associated phenotype, of Vibrio parahaemolyticus depends on a particular single base change in the promoter of the thermostable direct haemolysin gene. Mol Microbiol 1998;30:499-511. [PMID: 9822816 DOI: 10.1046/j.1365-2958.1998.01072.x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 2.4] [Reference Citation Analysis]
77 Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-35. [PMID: 22126996 DOI: 10.1128/MMBR.00011-11] [Cited by in Crossref: 174] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
78 Liu G, Yan M, Liang W, Qi G, Liu Y, Gao S, Kan B. Resistance of the cholera vaccine candidate IEM108 against CTXΦ infection. Vaccine 2006;24:1749-55. [DOI: 10.1016/j.vaccine.2005.09.059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
79 Faruque SM, Bin Naser I, Fujihara K, Diraphat P, Chowdhury N, Kamruzzaman M, Qadri F, Yamasaki S, Ghosh AN, Mekalanos JJ. Genomic sequence and receptor for the Vibrio cholerae phage KSF-1phi: evolutionary divergence among filamentous vibriophages mediating lateral gene transfer. J Bacteriol 2005;187:4095-103. [PMID: 15937172 DOI: 10.1128/JB.187.12.4095-4103.2005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
80 Davis BM, Waldor MK. CTXphi contains a hybrid genome derived from tandemly integrated elements. Proc Natl Acad Sci U S A 2000;97:8572-7. [PMID: 10880564 DOI: 10.1073/pnas.140109997] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 2.6] [Reference Citation Analysis]
81 Moyer KE, Kimsey HH, Waldor MK. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi. Mol Microbiol. 2001;41:311-323. [PMID: 11489120 DOI: 10.1046/j.1365-2958.2001.02517.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
82 Derbise A, Chenal‐francisque V, Pouillot F, Fayolle C, Prévost M, Médigue C, Hinnebusch BJ, Carniel E. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Molecular Microbiology 2007;63:1145-57. [DOI: 10.1111/j.1365-2958.2006.05570.x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 3.7] [Reference Citation Analysis]
83 Gary TP, Colowick NE, Mosig G. A Species Barrier Between Bacteriophages T2 and T4: Exclusion, Join-Copy and Join-Cut-Copy Recombination and Mutagenesis in the dCTPase Genes. Genetics 1998;148:1461-73. [DOI: 10.1093/genetics/148.4.1461] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
84 Liang W, Wang S, Yu F, Zhang L, Qi G, Liu Y, Gao S, Kan B. Construction and evaluation of a safe, live, oral Vibrio cholerae vaccine candidate, IEM108. Infect Immun 2003;71:5498-504. [PMID: 14500467 DOI: 10.1128/IAI.71.10.5498-5504.2003] [Cited by in Crossref: 72] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
85 Wang F, Wang F, Li Q, Xiao X. A novel filamentous phage from the deep-sea bacterium Shewanella piezotolerans WP3 is induced at low temperature. J Bacteriol 2007;189:7151-3. [PMID: 17660281 DOI: 10.1128/JB.00569-07] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
86 Renda BA, Chan C, Parent KN, Barrick JE. Emergence of a Competence-Reducing Filamentous Phage from the Genome of Acinetobacter baylyi ADP1. J Bacteriol 2016;198:3209-19. [PMID: 27645387 DOI: 10.1128/JB.00424-16] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
87 Klose KE. Regulation of virulence in Vibrio cholerae. Int J Med Microbiol 2001;291:81-8. [PMID: 11437342 DOI: 10.1078/1438-4221-00104] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 1.7] [Reference Citation Analysis]
88 Safa A, Jime JS, Shahel F. Cholera toxin phage: structural and functional diversity between Vibrio cholerae biotypes. AIMS Microbiol 2020;6:144-51. [PMID: 32617446 DOI: 10.3934/microbiol.2020009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Safa A, Bhuiyan NA, Murphy D, Bates J, Nusrin S, Kong RYC, Chongsanguan M, Chaicumpa W, Nair GB. Multilocus genetic analysis reveals that the Australian strains of Vibrio cholerae O1 are similar to the pre-seventh pandemic strains of the El Tor biotype. J Med Microbiol 2009;58:105-11. [PMID: 19074660 DOI: 10.1099/jmm.0.004333-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
90 Faruque SM, Nair GB, Mekalanos JJ. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 2004;23:723-41. [PMID: 15585131 DOI: 10.1089/dna.2004.23.723] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
91 Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 1998;62:1301-14. [PMID: 9841673 DOI: 10.1128/MMBR.62.4.1301-1314.1998] [Cited by in Crossref: 615] [Cited by in F6Publishing: 317] [Article Influence: 26.7] [Reference Citation Analysis]
92 O'Shea YA, Reen FJ, Quirke AM, Boyd EF. Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol 2004;42:4657-71. [PMID: 15472325 DOI: 10.1128/JCM.42.10.4657-4671.2004] [Cited by in Crossref: 81] [Cited by in F6Publishing: 36] [Article Influence: 4.5] [Reference Citation Analysis]
93 Quinones M, Kimsey HH, Waldor MK. LexA Cleavage Is Required for CTX Prophage Induction. Molecular Cell 2005;17:291-300. [DOI: 10.1016/j.molcel.2004.11.046] [Cited by in Crossref: 77] [Cited by in F6Publishing: 71] [Article Influence: 4.5] [Reference Citation Analysis]
94 Viret J, Dietrich G, Favre D. Biosafety aspects of the recombinant live oral Vibrio cholerae vaccine strain CVD 103-HgR. Vaccine 2004;22:2457-69. [DOI: 10.1016/j.vaccine.2003.12.033] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
95 Sambe-Ba B, Diallo MH, Seck A, Wane AA, Constantin de Magny G, Boye CS, Sow AI, Gassama-Sow A. Identification of Atypical El TorV. cholerae O1 Ogawa Hosting SXT Element in Senegal, Africa. Front Microbiol 2017;8:748. [PMID: 28555129 DOI: 10.3389/fmicb.2017.00748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
96 Wang H, Pang B, Xiong L, Wang D, Wang X, Zhang L, Kan B. The Hybrid Pre-CTXΦ-RS1 Prophage Genome and Its Regulatory Function in Environmental Vibrio cholerae O1 Strains. Appl Environ Microbiol 2015;81:7171-7. [PMID: 26253680 DOI: 10.1128/AEM.01742-15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
97 Kimsey HH, Waldor MK. Vibrio cholerae LexA coordinates CTX prophage gene expression. J Bacteriol 2009;191:6788-95. [PMID: 19666711 DOI: 10.1128/JB.00682-09] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
98 Das B, Kumari R, Pant A, Sen Gupta S, Saxena S, Mehta O, Nair GB. A novel, broad-range, CTXΦ-derived stable integrative expression vector for functional studies. J Bacteriol 2014;196:4071-80. [PMID: 25225263 DOI: 10.1128/JB.01966-14] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
99 Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010;467:982-5. [DOI: 10.1038/nature09469] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 6.4] [Reference Citation Analysis]
100 Chang B, Taniguchi H, Miyamoto H, Yoshida S. Filamentous Bacteriophages of Vibrio parahaemolyticus as a Possible Clue to Genetic Transmission. J Bacteriol 1998;180:5094-101. [DOI: 10.1128/jb.180.19.5094-5101.1998] [Cited by in Crossref: 33] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
101 Heggelund JE, Bjørnestad VA, Krengel U. Vibrio cholerae and Escherichia coli heat-labile enterotoxins and beyond. The Comprehensive Sourcebook of Bacterial Protein Toxins. Elsevier; 2015. pp. 195-229. [DOI: 10.1016/b978-0-12-800188-2.00007-0] [Cited by in Crossref: 15] [Article Influence: 2.1] [Reference Citation Analysis]
102 Cheney L, Payne M, Kaur S, Lan R. Multilevel Genome Typing Describes Short- and Long-Term Vibrio cholerae Molecular Epidemiology. mSystems 2021;6:e0013421. [PMID: 34427512 DOI: 10.1128/mSystems.00134-21] [Reference Citation Analysis]
103 Butz HA, Mey AR, Ciosek AL, Crofts AA, Davies BW, Payne SM. Regulatory Effects of CsrA in Vibrio cholerae. mBio 2021;12:e03380-20. [PMID: 33531387 DOI: 10.1128/mBio.03380-20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
105 Faruque SM, Asadulghani, Alim AR, Albert MJ, Islam KM, Mekalanos JJ. Induction of the lysogenic phage encoding cholera toxin in naturally occurring strains of toxigenic Vibrio cholerae O1 and O139. Infect Immun 1998;66:3752-7. [PMID: 9673258 DOI: 10.1128/IAI.66.8.3752-3757.1998] [Cited by in Crossref: 68] [Cited by in F6Publishing: 35] [Article Influence: 2.8] [Reference Citation Analysis]
106 Davis BM, Kimsey HH, Chang W, Waldor MK. The Vibrio cholerae O139 Calcutta Bacteriophage CTXφ Is Infectious and Encodes a Novel Repressor. J Bacteriol 1999;181:6779-87. [DOI: 10.1128/jb.181.21.6779-6787.1999] [Cited by in Crossref: 94] [Cited by in F6Publishing: 39] [Article Influence: 4.1] [Reference Citation Analysis]
107 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
108 Sealfon R, Gire S, Ellis C, Calderwood S, Qadri F, Hensley L, Kellis M, Ryan ET, LaRocque RC, Harris JB, Sabeti PC. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic. BMC Genomics 2012;13:468. [PMID: 22963323 DOI: 10.1186/1471-2164-13-468] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
109 Islam MS, Rahman MZ, Khan SI, Mahmud ZH, Ramamurthy T, Nair GB, Sack RB, Sack DA. Organization of the CTX Prophage in Environmental Isolates of Vibrio mimicus. Microbiology and Immunology 2005;49:779-84. [DOI: 10.1111/j.1348-0421.2005.tb03668.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
110 Mukhopadhyay AK, Al Benwan K, Samanta P, Chowdhury G, Albert MJ. Vibrio cholerae O1 Imported from Iraq to Kuwait, 2015. Emerg Infect Dis 2016;22:1693-4. [PMID: 27532267 DOI: 10.3201/eid2209.160811] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
111 Fontana MR, Monaci E, Yanqing L, Guoming Q, Duan G, Rappuoli R, Pizza M. IEM101, a naturally attenuated Vibrio cholerae strain as carrier for genetically detoxified derivatives of cholera toxin. Vaccine 2000;19:75-85. [DOI: 10.1016/s0264-410x(00)00137-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
112 Ledón T, Valle E, Valmaseda T, Cedré B, Campos J, Rodrı́guez BL, Marrero K, Garcı́a H, Garcı́a L, Fando R. Construction and characterisation of O139 cholera vaccine candidates. Vaccine 2003;21:1282-91. [DOI: 10.1016/s0264-410x(02)00412-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
113 Meyer J, Brissac T, Frapy E, Omer H, Euphrasie D, Bonavita A, Nassif X, Bille E. Characterization of MDAΦ, a temperate filamentous bacteriophage of Neisseria meningitidis. Microbiology (Reading) 2016;162:268-82. [PMID: 26602366 DOI: 10.1099/mic.0.000215] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
114 Faruque SM, Asadulghani, Rahman MM, Waldor MK, Sack DA. Sunlight-induced propagation of the lysogenic phage encoding cholera toxin. Infect Immun 2000;68:4795-801. [PMID: 10899892 DOI: 10.1128/IAI.68.8.4795-4801.2000] [Cited by in Crossref: 45] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
115 Nasu H, Iida T, Sugahara T, Yamaichi Y, Park K, Yokoyama K, Makino K, Shinagawa H, Honda T. A Filamentous Phage Associated with Recent Pandemic Vibrio parahaemolyticus O3:K6 Strains. J Clin Microbiol 2000;38:2156-61. [DOI: 10.1128/jcm.38.6.2156-2161.2000] [Cited by in Crossref: 167] [Cited by in F6Publishing: 77] [Article Influence: 7.6] [Reference Citation Analysis]
116 Ledón T, Campos J, Suzarte E, Rodríguez B, Marrero K, Fando R. El Tor and Calcutta CTXΦ precursors coexisting with intact CTXΦ copies in Vibrio cholerae O139 isolates. Research in Microbiology 2008;159:81-7. [DOI: 10.1016/j.resmic.2007.11.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
117 Das B, Halder K, Pal P, Bhadra RK. Small chromosomal integration site of classical CTX prophage in Mozambique Vibrio cholerae O1 biotype El Tor strain. Arch Microbiol 2007;188:677-83. [PMID: 17618421 DOI: 10.1007/s00203-007-0275-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
118 Perrin A, Nassif X, Tinsley C. Identification of regions of the chromosome of Neisseria meningitidis and Neisseria gonorrhoeae which are specific to the pathogenic Neisseria species. Infect Immun 1999;67:6119-29. [PMID: 10531275 DOI: 10.1128/IAI.67.11.6119-6129.1999] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 1.5] [Reference Citation Analysis]
119 Davis BM, Moyer KE, Boyd EF, Waldor MK. CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J Bacteriol 2000;182:6992-8. [PMID: 11092860 DOI: 10.1128/JB.182.24.6992-6998.2000] [Cited by in Crossref: 93] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
120 Ramamurthy T, Nandy RK, Mukhopadhyay AK, Dutta S, Mutreja A, Okamoto K, Miyoshi SI, Nair GB, Ghosh A. Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Front Cell Infect Microbiol 2020;10:572096. [PMID: 33102256 DOI: 10.3389/fcimb.2020.572096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
121 Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015;39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
122 Faruque SM, Chowdhury N, Kamruzzaman M, Ahmad QS, Faruque AS, Salam MA, Ramamurthy T, Nair GB, Weintraub A, Sack DA. Reemergence of epidemic Vibrio cholerae O139, Bangladesh. Emerg Infect Dis 2003;9:1116-22. [PMID: 14519249 DOI: 10.3201/eid0909.020443] [Cited by in Crossref: 71] [Cited by in F6Publishing: 48] [Article Influence: 3.7] [Reference Citation Analysis]
123 Pomerantsev AP, Kalnin KV, Osorio M, Leppla SH. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun 2003;71:6591-606. [PMID: 14573681 DOI: 10.1128/IAI.71.11.6591-6606.2003] [Cited by in Crossref: 61] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
124 Kimsey HH, Waldor MK. CTXphi immunity: application in the development of cholera vaccines. Proc Natl Acad Sci U S A 1998;95:7035-9. [PMID: 9618534 DOI: 10.1073/pnas.95.12.7035] [Cited by in Crossref: 94] [Cited by in F6Publishing: 85] [Article Influence: 3.9] [Reference Citation Analysis]
125 Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK. Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother. 2001;45:2991-3000. [PMID: 11600347 DOI: 10.1128/aac.45.11.2991-3000.2001] [Cited by in Crossref: 223] [Cited by in F6Publishing: 98] [Article Influence: 11.2] [Reference Citation Analysis]
126 Mukherjee M, Kakarla P, Kumar S, Gonzalez E, Floyd JT, Inupakutika M, Devireddy AR, Tirrell SR, Bruns M, He G, Lindquist IE, Sundararajan A, Schilkey FD, Mudge J, Varela MF. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae.. Genom Discov 2014;2:1-15. [PMID: 25722857 DOI: 10.7243/2052-7993-2-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
127 Mukhopadhyay AK, Takeda Y, Balakrish Nair G. Cholera outbreaks in the El Tor biotype era and the impact of the new El Tor variants. Curr Top Microbiol Immunol 2014;379:17-47. [PMID: 24710767 DOI: 10.1007/82_2014_363] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
128 Moore S, Thomson N, Mutreja A, Piarroux R. Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones. Clin Microbiol Infect 2014;20:373-9. [PMID: 24575898 DOI: 10.1111/1469-0691.12610] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
129 Kamruzzaman M, Robins WP, Bari SM, Nahar S, Mekalanos JJ, Faruque SM. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014;82:3636-43. [PMID: 24935981 DOI: 10.1128/IAI.01699-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
130 Faruque SM, Mekalanos JJ. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends in Microbiology 2003;11:505-10. [DOI: 10.1016/j.tim.2003.09.003] [Cited by in Crossref: 137] [Cited by in F6Publishing: 108] [Article Influence: 7.2] [Reference Citation Analysis]
131 Fisher SH, Wray LV Jr. Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase. J Bacteriol 2002;184:2148-54. [PMID: 11914346 DOI: 10.1128/JB.184.8.2148-2154.2002] [Cited by in Crossref: 48] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]