BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM. Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration. Nature 2010;467:982-5. [DOI: 10.1038/nature09469] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Bischerour J, Spangenberg C, Barre FX. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012;31:3757-67. [PMID: 22863778 DOI: 10.1038/emboj.2012.219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
2 Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J. The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elements 2011;1:55-65. [PMID: 22016845 DOI: 10.4161/mge.1.1.16432] [Cited by in Crossref: 84] [Cited by in F6Publishing: 61] [Article Influence: 10.5] [Reference Citation Analysis]
3 Patra T, Chatterjee S, Raychoudhuri A, Mukhopadhyay A, Ramamurthy T, Nandy R. Emergence and progression of Vibrio cholerae O1 El Tor variants and progenitor strains of Mozambique variants in Kolkata, India. International Journal of Medical Microbiology 2011;301:310-7. [DOI: 10.1016/j.ijmm.2010.11.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
4 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
5 Das B, Bischerour J, Barre FX. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA. 2011;108:2516-2521. [PMID: 21262799 DOI: 10.1073/pnas.1017061108] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
6 Frígols B, Quiles-Puchalt N, Mir-Sanchis I, Donderis J, Elena SF, Buckling A, Novick RP, Marina A, Penadés JR. Virus Satellites Drive Viral Evolution and Ecology. PLoS Genet 2015;11:e1005609. [PMID: 26495848 DOI: 10.1371/journal.pgen.1005609] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 5.1] [Reference Citation Analysis]
7 Sinha-Ray S, Alam MT, Bag S, Morris JG Jr, Ali A. Conversion of a recA-Mediated Non-toxigenic Vibrio cholerae O1 Strain to a Toxigenic Strain Using Chitin-Induced Transformation. Front Microbiol 2019;10:2562. [PMID: 31787954 DOI: 10.3389/fmicb.2019.02562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Davies BW, Bogard RW, Young TS, Mekalanos JJ. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell. 2012;149:358-370. [PMID: 22500802 DOI: 10.1016/j.cell.2012.01.053] [Cited by in Crossref: 259] [Cited by in F6Publishing: 230] [Article Influence: 25.9] [Reference Citation Analysis]
9 Wei W, Xiong L, Ye YN, Du MZ, Gao YZ, Zhang KY, Jin YT, Yang Z, Wong PC, Lau SKP, Kan B, Zhu J, Woo PCY, Guo FB. Mutation Landscape of Base Substitutions, Duplications, and Deletions in the Representative Current Cholera Pandemic Strain. Genome Biol Evol 2018;10:2072-85. [PMID: 30060177 DOI: 10.1093/gbe/evy151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Das R, Shimamoto T, Hosen SM, Arifuzzaman M. Comparative Study of different msDNA (multicopy single-stranded DNA) structures and phylogenetic comparison of reverse transcriptases (RTs): evidence for vertical inheritance. Bioinformation 2011;7:176-9. [PMID: 22102774 DOI: 10.6026/97320630007176] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
11 Spagnoletti M, Ceccarelli D, Colombo MM. Rapid detection by multiplex PCR of Genomic Islands, prophages and Integrative Conjugative Elements in V. cholerae 7th pandemic variants. Journal of Microbiological Methods 2012;88:98-102. [DOI: 10.1016/j.mimet.2011.10.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
12 Faruque SM. Role of phages in the epidemiology of cholera. Curr Top Microbiol Immunol 2014;379:165-80. [PMID: 24213557 DOI: 10.1007/82_2013_358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
13 Midonet C, Barre FX. Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2014;2. [PMID: 26104463 DOI: 10.1128/microbiolspec.MDNA3-0056-2014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
14 Martínez E, Paly E, Barre FX. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase. PLoS Genet 2015;11:e1005256. [PMID: 25992634 DOI: 10.1371/journal.pgen.1005256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
15 Sinkovics JG. Horizontal gene transfers with or without cell fusions in all categories of the living matter. Adv Exp Med Biol 2011;714:5-89. [PMID: 21506007 DOI: 10.1007/978-94-007-0782-5_2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
16 Midonet C, Miele S, Paly E, Guerois R, Barre FX. The TLCΦ satellite phage harbors a Xer recombination activation factor. Proc Natl Acad Sci U S A 2019;116:18391-6. [PMID: 31420511 DOI: 10.1073/pnas.1902905116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
17 Zhu S, Kojima S, Homma M. Structure, gene regulation and environmental response of flagella in Vibrio. Front Microbiol 2013;4:410. [PMID: 24400002 DOI: 10.3389/fmicb.2013.00410] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 4.7] [Reference Citation Analysis]
18 Wucher BR, Bartlett TM, Hoyos M, Papenfort K, Persat A, Nadell CD. Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. Proc Natl Acad Sci U S A 2019;116:14216-21. [PMID: 31239347 DOI: 10.1073/pnas.1819016116] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
19 Li D, Tang F, Xue F, Ren J, Liu Y, Yang D, Dai J. Prophage phiv142-3 enhances the colonization and resistance to environmental stresses of avian pathogenic Escherichia coli. Vet Microbiol 2018;218:70-7. [PMID: 29685224 DOI: 10.1016/j.vetmic.2018.03.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
20 Yu HJ, Cha DSR, Shin DH, Nair GB, Kim EJ, Kim DW. Design and Construction of Vibrio cholerae Strains That Harbor Various CTX Prophage Arrays. Front Microbiol 2018;9:339. [PMID: 29563899 DOI: 10.3389/fmicb.2018.00339] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Xue H, Xu Y, Boucher Y, Polz MF. High frequency of a novel filamentous phage, VCY φ, within an environmental Vibrio cholerae population. Appl Environ Microbiol 2012;78:28-33. [PMID: 22020507 DOI: 10.1128/AEM.06297-11] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
22 Denes T, Vongkamjan K, Ackermann HW, Moreno Switt AI, Wiedmann M, den Bakker HC. Comparative genomic and morphological analyses of Listeria phages isolated from farm environments. Appl Environ Microbiol 2014;80:4616-25. [PMID: 24837381 DOI: 10.1128/AEM.00720-14] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
23 Li D, Chen Y, Qian X, Liu Y, Ren J, Xue F, Sun J, Tang F, Dai J. orf20 in prophage phiv142-3 contributes to the adhesion and colonization ability of avian pathogenic Escherichia coli strain DE142 by affecting the formation of flagella and I fimbriae. Vet Microbiol 2019;235:301-9. [PMID: 31383317 DOI: 10.1016/j.vetmic.2019.07.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Sunderland KS, Yang M, Mao C. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angew Chem Int Ed Engl 2017;56:1964-92. [PMID: 27491926 DOI: 10.1002/anie.201606181] [Cited by in Crossref: 81] [Cited by in F6Publishing: 71] [Article Influence: 16.2] [Reference Citation Analysis]
25 Morais LL, Garza DR, Loureiro EC, Vale ER, Santos DS, Corrêa VC, Sousa NR, Gurjão TC, Santos EC, Vieira VV, da Fonseca EL, Vicente AC. Population and genetic study of Vibrio cholerae from the amazon environment confirms that the WASA-1 prophage is the main marker of the epidemic strain that circulated in the region. PLoS One 2013;8:e81372. [PMID: 24303045 DOI: 10.1371/journal.pone.0081372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
26 Midonet C, Das B, Paly E, Barre FX. XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A 2014;111:16848-53. [PMID: 25385643 DOI: 10.1073/pnas.1404047111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
27 Caro F, Caro JA, Place NM, Mekalanos JJ. Transcriptional Silencing by TsrA in the Evolution of Pathogenic Vibrio cholerae Biotypes. mBio 2020;11:e02901-20. [PMID: 33234688 DOI: 10.1128/mBio.02901-20] [Reference Citation Analysis]
28 Sunderland KS, Yang M, Mao C. Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika für eine Präzisionsmedizin. Angew Chem 2017;129:1992-2022. [DOI: 10.1002/ange.201606181] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
29 Kim EJ, Yu HJ, Lee JH, Kim JO, Han SH, Yun CH, Chun J, Nair GB, Kim DW. Replication of Vibrio cholerae classical CTX phage. Proc Natl Acad Sci U S A 2017;114:2343-8. [PMID: 28196886 DOI: 10.1073/pnas.1701335114] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
30 Lee I, Ha SM, Baek MG, Kim DW, Yi H, Chun J. VicPred: A Vibrio cholerae Genotype Prediction Tool. Front Microbiol 2021;12:691895. [PMID: 34566903 DOI: 10.3389/fmicb.2021.691895] [Reference Citation Analysis]
31 Casas V, Maloy S. Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol 2011;6:1461-73. [PMID: 22122442 DOI: 10.2217/fmb.11.124] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
32 Amábile-Cuevas CF. Antibiotic resistance: from Darwin to Lederberg to Keynes. Microb Drug Resist 2013;19:73-87. [PMID: 23046150 DOI: 10.1089/mdr.2012.0115] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
33 Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020;38:A83-92. [DOI: 10.1016/j.vaccine.2019.06.031] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
34 Kim EJ, Lee CH, Nair GB, Kim DW. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends in Microbiology 2015;23:479-89. [DOI: 10.1016/j.tim.2015.03.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 7.1] [Reference Citation Analysis]
35 Duerkop BA, Clements CV, Rollins D, Rodrigues JL, Hooper LV. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A 2012;109:17621-6. [PMID: 23045666 DOI: 10.1073/pnas.1206136109] [Cited by in Crossref: 151] [Cited by in F6Publishing: 138] [Article Influence: 15.1] [Reference Citation Analysis]
36 Espinosa E, Paly E, Barre FX. High-Resolution Whole-Genome Analysis of Sister-Chromatid Contacts. Mol Cell 2020;79:857-869.e3. [PMID: 32681820 DOI: 10.1016/j.molcel.2020.06.033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
37 Das B, Pazhani GP, Sarkar A, Mukhopadhyay AK, Nair GB, Ramamurthy T. Molecular evolution and functional divergence of Vibrio cholerae: . Current Opinion in Infectious Diseases 2016;29:520-7. [DOI: 10.1097/qco.0000000000000306] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
38 Oramadike C, Ogunbanwo ST, Yildiz F. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from seafoods in Lagos Lagoon Nigeria. Cogent Food & Agriculture 2015;1:1041349. [DOI: 10.1080/23311932.2015.1041349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
39 Robins WP, Mekalanos JJ. Genomic science in understanding cholera outbreaks and evolution of Vibrio cholerae as a human pathogen. Curr Top Microbiol Immunol 2014;379:211-29. [PMID: 24590676 DOI: 10.1007/82_2014_366] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
40 Sultana S, Sarker SA, Brüssow H. What happened to K och's postulates in diarrhoea? Environmental Microbiology 2017;19:2926-34. [DOI: 10.1111/1462-2920.13787] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
41 Laumay F, Corvaglia AR, Diene SM, Girard M, Oechslin F, van der Mee-Marquet N, Entenza JM, François P. Temperate Prophages Increase Bacterial Adhesin Expression and Virulence in an Experimental Model of Endocarditis Due to Staphylococcus aureus From the CC398 Lineage. Front Microbiol 2019;10:742. [PMID: 31105650 DOI: 10.3389/fmicb.2019.00742] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
42 Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011;75:610-35. [PMID: 22126996 DOI: 10.1128/MMBR.00011-11] [Cited by in Crossref: 174] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
43 Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020;38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
44 Mai-Prochnow A, Hui JG, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015;39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 59] [Article Influence: 10.3] [Reference Citation Analysis]
45 Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556-65. [PMID: 23076327 DOI: 10.4161/viru.22351] [Cited by in Crossref: 101] [Cited by in F6Publishing: 78] [Article Influence: 10.1] [Reference Citation Analysis]
46 Van Valen D, Wu D, Chen YJ, Tuson H, Wiggins P, Phillips R. A single-molecule Hershey-Chase experiment. Curr Biol 2012;22:1339-43. [PMID: 22727695 DOI: 10.1016/j.cub.2012.05.023] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
47 Martínez E, Campos-Gómez J, Barre FX. CTXϕ: Exploring new alternatives in host factor-mediated filamentous phage replications. Bacteriophage 2016;6:e1128512. [PMID: 27607139 DOI: 10.1080/21597081.2015.1128512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
48 Saeed AF, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017;8:495. [PMID: 28400756 DOI: 10.3389/fmicb.2017.00495] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 12.4] [Reference Citation Analysis]
49 Hay ID, Lithgow T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep 2019;20:e47427. [PMID: 30952693 DOI: 10.15252/embr.201847427] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
50 Dutilh BE, Thompson CC, Vicente AC, Marin MA, Lee C, Silva GG, Schmieder R, Andrade BG, Chimetto L, Cuevas D, Garza DR, Okeke IN, Aboderin AO, Spangler J, Ross T, Dinsdale EA, Thompson FL, Harkins TT, Edwards RA. Comparative genomics of 274 Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions. BMC Genomics 2014;15:654. [PMID: 25096633 DOI: 10.1186/1471-2164-15-654] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
51 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
52 Kamruzzaman M, Robins WP, Bari SM, Nahar S, Mekalanos JJ, Faruque SM. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014;82:3636-43. [PMID: 24935981 DOI: 10.1128/IAI.01699-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
53 Martínez E, Campos-Gómez J. Pf Filamentous Phage Requires UvrD for Replication in Pseudomonas aeruginosa. mSphere 2016;1:e00104-15. [PMID: 27303696 DOI: 10.1128/mSphere.00104-15] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
54 Bashir A, Klammer AA, Robins WP, Chin CS, Webster D, Paxinos E, Hsu D, Ashby M, Wang S, Peluso P. A hybrid approach for the automated finishing of bacterial genomes. Nat Biotechnol. 2012;30:701-707. [PMID: 22750883 DOI: 10.1038/nbt.2288] [Cited by in Crossref: 141] [Cited by in F6Publishing: 119] [Article Influence: 14.1] [Reference Citation Analysis]
55 Garin-Fernandez A, Glöckner FO, Wichels A. Genomic characterization of filamentous phage vB_VpaI_VP-3218, an inducible prophage of Vibrio parahaemolyticus. Mar Genomics 2020;53:100767. [PMID: 32171709 DOI: 10.1016/j.margen.2020.100767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Nagayoshi Y, Kumagae K, Mori K, Tashiro K, Nakamura A, Fujino Y, Hiromasa Y, Iwamoto T, Kuhara S, Ohshima T, Doi K. Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage φOH3 Which Infects Thermus thermophilus HB8. Front Microbiol 2016;7:50. [PMID: 26941711 DOI: 10.3389/fmicb.2016.00050] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
57 Pham TD, Nguyen TH, Iwashita H, Takemura T, Morita K, Yamashiro T. Comparative analyses of CTX prophage region of Vibrio cholerae seventh pandemic wave 1 strains isolated in Asia. Microbiol Immunol 2018;62:635-50. [PMID: 30211956 DOI: 10.1111/1348-0421.12648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Junghans S, Rojas SV, Skusa R, Püschel A, Grambow E, Kohlen J, Warnke P, Gummert J, Gross J. Bacteriophages for the Treatment of Graft Infections in Cardiovascular Medicine. Antibiotics (Basel) 2021;10:1446. [PMID: 34943658 DOI: 10.3390/antibiotics10121446] [Reference Citation Analysis]
59 Lin DL, Traglia GM, Baker R, Sherratt DJ, Ramirez MS, Tolmasky ME. Functional Analysis of the Acinetobacter baumannii XerC and XerD Site-Specific Recombinases: Potential Role in Dissemination of Resistance Genes. Antibiotics (Basel) 2020;9:E405. [PMID: 32668667 DOI: 10.3390/antibiotics9070405] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
60 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
61 Hartley M, Ronet C, Fasel N. Backseat drivers: the hidden influence of microbial viruses on disease. Current Opinion in Microbiology 2012;15:538-45. [DOI: 10.1016/j.mib.2012.05.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
62 Das B. Insights into TLCΦ lysogeny: A twist in the mechanism of IMEX integration. Proc Natl Acad Sci U S A 2019;116:18159-61. [PMID: 31439815 DOI: 10.1073/pnas.1912633116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
63 Yeh TY. XerD-dependent integration of a novel filamentous phage Cf2 into the Xanthomonas citri genome. Virology 2020;548:160-7. [PMID: 32838937 DOI: 10.1016/j.virol.2020.06.010] [Reference Citation Analysis]
64 Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020;10:561296. [PMID: 33123494 DOI: 10.3389/fcimb.2020.561296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
65 Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015;6:755. [PMID: 26300850 DOI: 10.3389/fmicb.2015.00755] [Cited by in Crossref: 34] [Cited by in F6Publishing: 43] [Article Influence: 4.9] [Reference Citation Analysis]
66 Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol. 2013;21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 7.4] [Reference Citation Analysis]
67 Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017;8:453. [PMID: 28373867 DOI: 10.3389/fmicb.2017.00453] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]