BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005;8:459-65. [PMID: 15979389 DOI: 10.1016/j.mib.2005.06.001] [Cited by in Crossref: 144] [Cited by in F6Publishing: 132] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018;416:117-48. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
2 Tamarit D, Neuvonen MM, Engel P, Guy L, Andersson SGE. Origin and Evolution of the Bartonella Gene Transfer Agent. Mol Biol Evol 2018;35:451-64. [PMID: 29161442 DOI: 10.1093/molbev/msx299] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Dydecka A, Bloch S, Necel A, Topka G, Węgrzyn A, Tong J, Donaldson LW, Węgrzyn G, Nejman-Faleńczyk B. The ea22 gene of lambdoid phages: preserved prolysogenic function despite of high sequence diversity. Virus Genes 2020;56:266-77. [PMID: 31970620 DOI: 10.1007/s11262-020-01734-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Serwer P. Evolution and the complexity of bacteriophages. Virol J 2007;4:30. [PMID: 17355641 DOI: 10.1186/1743-422X-4-30] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
5 Senthakumaran T, Brandal LT, Lindstedt BA, Jørgensen SB, Charnock C, Tunsjø HS. Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli. Eur J Clin Microbiol Infect Dis 2018;37:2361-70. [PMID: 30267169 DOI: 10.1007/s10096-018-3384-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
6 Yahiro K, Ogura K, Goto Y, Iyoda S, Kobayashi T, Takeuchi H, Ohnishi M, Moss J. Subtilase cytotoxin induces a novel form of Lipocalin 2, which promotes Shiga-toxigenic Escherichia coli survival. Sci Rep 2020;10:18943. [PMID: 33144618 DOI: 10.1038/s41598-020-76027-z] [Reference Citation Analysis]
7 Yim G, McClure J, Surette MG, Davies JE. Modulation of Salmonella gene expression by subinhibitory concentrations of quinolones. J Antibiot (Tokyo) 2011;64:73-8. [PMID: 21102598 DOI: 10.1038/ja.2010.137] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
8 Fagerlund A, Aspholm M, Węgrzyn G, Lindbäck T. High diversity in the regulatory region of Shiga toxin encoding bacteriophages. BMC Genomics 2022;23:230. [PMID: 35331132 DOI: 10.1186/s12864-022-08428-5] [Reference Citation Analysis]
9 Mosso HM, Xiaoli L, Banerjee K, Hoffmann M, Yao K, Dudley EG. A Putative Microcin Amplifies Shiga Toxin 2a Production of Escherichia coli O157:H7. J Bacteriol 2019;202:e00353-19. [PMID: 31611289 DOI: 10.1128/JB.00353-19] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
10 Fang Y, McMullen LM, Gänzle MG. Effect of drying on oxidation of membrane lipids and expression of genes encoded by the Shiga toxin prophage in Escherichia coli. Food Microbiol 2020;86:103332. [PMID: 31703888 DOI: 10.1016/j.fm.2019.103332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
11 Fang Y, Mercer RG, McMullen LM, Gänzle MG. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Appl Environ Microbiol 2017;83:e01378-17. [PMID: 28778890 DOI: 10.1128/AEM.01378-17] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
12 Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses. Part II. Biochemistry (Mosc) 2021;86:449-70. [PMID: 33941066 DOI: 10.1134/S0006297921040064] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Hayes S, Mahony J, Nauta A, van Sinderen D. Metagenomic Approaches to Assess Bacteriophages in Various Environmental Niches. Viruses 2017;9:E127. [PMID: 28538703 DOI: 10.3390/v9060127] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 12.6] [Reference Citation Analysis]
14 Ding F, Allen V, Luo W, Zhang S, Duan Y. Molecular mechanisms underlying heat or tetracycline treatments for citrus HLB control. Hortic Res 2018;5:30. [PMID: 29872535 DOI: 10.1038/s41438-018-0038-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Colon MP, Chakraborty D, Pevzner Y, Koudelka GB. Mechanisms that Determine the Differential Stability of Stx⁺ and Stx(-) Lysogens. Toxins (Basel) 2016;8:96. [PMID: 27043626 DOI: 10.3390/toxins8040096] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
16 Bobay LM, Touchon M, Rocha EP. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci U S A 2014;111:12127-32. [PMID: 25092302 DOI: 10.1073/pnas.1405336111] [Cited by in Crossref: 161] [Cited by in F6Publishing: 130] [Article Influence: 20.1] [Reference Citation Analysis]
17 Loś JM, Loś M, Wegrzyn G, Wegrzyn A. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb Pathog 2009;47:289-98. [PMID: 19761828 DOI: 10.1016/j.micpath.2009.09.006] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 4.7] [Reference Citation Analysis]
18 Ivy RA, Wiedmann M, Boor KJ. Listeria monocytogenes grown at 7° C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37° C. Appl Environ Microbiol 2012;78:3824-36. [PMID: 22447604 DOI: 10.1128/AEM.00051-12] [Cited by in Crossref: 38] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
19 Cambray G, Sanchez-Alberola N, Campoy S, Guerin É, Da Re S, González-Zorn B, Ploy MC, Barbé J, Mazel D, Erill I. Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2011;2:6. [PMID: 21529368 DOI: 10.1186/1759-8753-2-6] [Cited by in Crossref: 79] [Cited by in F6Publishing: 66] [Article Influence: 7.2] [Reference Citation Analysis]
20 Serwer P, Hayes SJ, Thomas JA, Griess GA, Hardies SC. Rapid determination of genomic DNA length for new bacteriophages. Electrophoresis 2007;28:1896-902. [PMID: 17480041 DOI: 10.1002/elps.200600672] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
21 Gyles CL, Fairbrother JM. Escherichia Coli. In: Gyles CL, Prescott JF, Songer JG, Thoen CO, editors. Pathogenesis of Bacterial Infections in Animals. Oxford: Wiley-Blackwell; 2010. pp. 267-308. [DOI: 10.1002/9780470958209.ch15] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
22 Chekabab SM, Jubelin G, Dozois CM, Harel J. PhoB activates Escherichia coli O157:H7 virulence factors in response to inorganic phosphate limitation. PLoS One 2014;9:e94285. [PMID: 24710330 DOI: 10.1371/journal.pone.0094285] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
23 Krüger A, Burgán J, Friedrich AW, Rossen JWA, Lucchesi PMA. ArgO145, a Stx2a prophage of a bovine O145:H- STEC strain, is closely related to phages of virulent human strains. Infect Genet Evol 2018;60:126-32. [PMID: 29476813 DOI: 10.1016/j.meegid.2018.02.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
24 Tinsley CR, Bille E, Nassif X. Bacteriophages and pathogenicity: more than just providing a toxin? Microbes Infect 2006;8:1365-71. [PMID: 16698301 DOI: 10.1016/j.micinf.2005.12.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.2] [Reference Citation Analysis]
25 Sack M, Baltes N. Identification of novel potential virulence-associated factors in Haemophilus parasuis. Veterinary Microbiology 2009;136:382-6. [DOI: 10.1016/j.vetmic.2008.11.008] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
26 Lee YD, Park JH. Complete genome of temperate phage ENT39118 from Cronobacter sakazakii. J Virol 2012;86:5400-1. [PMID: 22492925 DOI: 10.1128/JVI.00345-12] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
27 Loś JM, Loś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 2012;2:166. [PMID: 23316482 DOI: 10.3389/fcimb.2012.00166] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
28 Piekarowicz A, Kłyz A, Majchrzak M, Adamczyk-Popławska M, Maugel TK, Stein DC. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol 2007;7:66. [PMID: 17615066 DOI: 10.1186/1471-2180-7-66] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
29 Mellies JL, Lorenzen E, Sperandio V, Hovde CJ. Enterohemorrhagic Escherichia coli Virulence Gene Regulation. Microbiol Spectr 2014;2. [DOI: 10.1128/microbiolspec.ehec-0004-2013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
30 Ogura Y, Mondal SI, Islam MR, Mako T, Arisawa K, Katsura K, Ooka T, Gotoh Y, Murase K, Ohnishi M, Hayashi T. The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep 2015;5:16663. [PMID: 26567959 DOI: 10.1038/srep16663] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 8.3] [Reference Citation Analysis]
31 Touchon M, Bobay L, Rocha EP. The chromosomal accommodation and domestication of mobile genetic elements. Current Opinion in Microbiology 2014;22:22-9. [DOI: 10.1016/j.mib.2014.09.010] [Cited by in Crossref: 46] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
32 Hinenoya A, Ichimura H, Awasthi SP, Yasuda N, Yatsuyanagi J, Yamasaki S. Phenotypic and molecular characterization of Escherichia albertii: Further surrogates to avoid potential laboratory misidentification. International Journal of Medical Microbiology 2019;309:108-15. [DOI: 10.1016/j.ijmm.2018.12.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
33 Berger M, Aijaz I, Berger P, Dobrindt U, Koudelka G. Transcriptional and Translational Inhibitors Block SOS Response and Shiga Toxin Expression in Enterohemorrhagic Escherichia coli. Sci Rep 2019;9:18777. [PMID: 31827185 DOI: 10.1038/s41598-019-55332-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
34 Scheutz F, Sperandio V, Hovde CJ. Taxonomy Meets Public Health: The Case of Shiga Toxin-Producing Escherichia coli. Microbiol Spectr 2014;2. [DOI: 10.1128/microbiolspec.ehec-0019-2013] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
35 Wang C, Nie T, Lin F, Connerton IF, Lu Z, Zhou S, Hang H. Resistance mechanisms adopted by a Salmonella Typhimurium mutant against bacteriophage. Virus Res 2019;273:197759. [PMID: 31539557 DOI: 10.1016/j.virusres.2019.197759] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
36 Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL. Prophages mediate defense against phage infection through diverse mechanisms. ISME J 2016;10:2854-66. [PMID: 27258950 DOI: 10.1038/ismej.2016.79] [Cited by in Crossref: 155] [Cited by in F6Publishing: 118] [Article Influence: 25.8] [Reference Citation Analysis]
37 Imamovic L, Ballesté E, Martínez-Castillo A, García-Aljaro C, Muniesa M. Heterogeneity in phage induction enables the survival of the lysogenic population. Environ Microbiol 2016;18:957-69. [PMID: 26626855 DOI: 10.1111/1462-2920.13151] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
38 . Consider something viral in your search. Nat Rev Microbiol 2011;9:308-9. [PMID: 21612126 DOI: 10.1038/nrmicro2563] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
39 Downing T. Tackling Drug Resistant Infection Outbreaks of Global Pandemic Escherichia coli ST131 Using Evolutionary and Epidemiological Genomics. Microorganisms 2015;3:236-67. [PMID: 27682088 DOI: 10.3390/microorganisms3020236] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
40 Small JT, Weiss AA. Intestinal Enteroid Monolayers Model the Human Intestinal Environment for Escherichia coli Infection. J Bacteriol 2022;:e0062021. [PMID: 35389257 DOI: 10.1128/jb.00620-21] [Reference Citation Analysis]
41 Klumpp J, Loessner M. New research on bacteriophages and food safety. Advances in Microbial Food Safety. Elsevier; 2013. pp. 321-39. [DOI: 10.1533/9780857098740.4.321] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
42 Berger P, Kouzel IU, Berger M, Haarmann N, Dobrindt U, Koudelka GB, Mellmann A. Carriage of Shiga toxin phage profoundly affects Escherichia coli gene expression and carbon source utilization. BMC Genomics 2019;20:504. [PMID: 31208335 DOI: 10.1186/s12864-019-5892-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
43 Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 2012;287:22004-14. [PMID: 22528497 DOI: 10.1074/jbc.M112.357715] [Cited by in Crossref: 59] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
44 Daou N, Yu C, McClure R, Gudino C, Reed GW, Genco CA. Neisseria prophage repressor implicated in gonococcal pathogenesis. Infect Immun 2013;81:3652-61. [PMID: 23876804 DOI: 10.1128/IAI.00298-13] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
45 Carter MQ, Pham A, Du WX, He X. Differential induction of Shiga toxin in environmental Escherichia coli O145:H28 strains carrying the same genotype as the outbreak strains. Int J Food Microbiol 2021;339:109029. [PMID: 33360585 DOI: 10.1016/j.ijfoodmicro.2020.109029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Hu Y, Fu S, Zou G, Kerdsin A, Chen X, Dong X, Teng L, Li J. Genome analysis provides insight into hyper-virulence of Streptococcus suis LSM178, a human strain with a novel sequence type 1005. Sci Rep 2021;11:23919. [PMID: 34907269 DOI: 10.1038/s41598-021-03370-0] [Reference Citation Analysis]
47 Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 2013;5:a012674. [PMID: 24097899 DOI: 10.1101/cshperspect.a012674] [Cited by in Crossref: 114] [Cited by in F6Publishing: 92] [Article Influence: 12.7] [Reference Citation Analysis]
48 Wu SY, Park GY, Kim SH, Hulme J, An SS. Diminazene aceturate: an antibacterial agent for Shiga-toxin-producing Escherichia coli O157:H7. Drug Des Devel Ther 2016;10:3363-78. [PMID: 27789937 DOI: 10.2147/DDDT.S114832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
49 Ilyina TS. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria. Mol Genet Microbiol Virol 2015;30:1-9. [DOI: 10.3103/s0891416815010036] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
50 Loś JM, Loś M, Wegrzyn A, Wegrzyn G. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol Med Microbiol 2010;58:322-9. [PMID: 20070366 DOI: 10.1111/j.1574-695X.2009.00644.x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
51 Glinkowska M, Loś JM, Szambowska A, Czyz A, Całkiewicz J, Herman-Antosiewicz A, Wróbel B, Wegrzyn G, Wegrzyn A, Loś M. Influence of the Escherichia coli oxyR gene function on lambda prophage maintenance. Arch Microbiol 2010;192:673-83. [PMID: 20559623 DOI: 10.1007/s00203-010-0596-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
52 Fernandez-Brando RJ, Yamaguchi N, Tahoun A, McAteer SP, Gillespie T, Wang D, Argyle SA, Palermo MS, Gally DL. Type III Secretion-Dependent Sensitivity of Escherichia coli O157 to Specific Ketolides. Antimicrob Agents Chemother 2016;60:459-70. [PMID: 26525795 DOI: 10.1128/AAC.02085-15] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
53 Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J. Phage Therapy: What Have We Learned? Viruses 2018;10:E288. [PMID: 29843391 DOI: 10.3390/v10060288] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 13.5] [Reference Citation Analysis]
54 Nejman B, Nadratowska-Wesołowska B, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Replication of plasmids derived from Shiga toxin-converting bacteriophages in starved Escherichia coli. Microbiology (Reading) 2011;157:220-33. [PMID: 20829283 DOI: 10.1099/mic.0.042820-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
55 Askora A, Kawasaki T, Fujie M, Yamada T. Insights into the diversity of φRSM phages infecting strains of the phytopathogen Ralstonia solanacearum complex: regulation and evolution. Mol Genet Genomics 2014;289:589-98. [PMID: 24619102 DOI: 10.1007/s00438-014-0835-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
56 Lemire S, Figueroa-Bossi N, Bossi L. Bacteriophage crosstalk: coordination of prophage induction by trans-acting antirepressors. PLoS Genet 2011;7:e1002149. [PMID: 21731505 DOI: 10.1371/journal.pgen.1002149] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
57 Tong J, Nejman-Faleńczyk B, Bloch S, Węgrzyn A, Węgrzyn G, Donaldson LW. Ea22 Proteins from Lambda and Shiga Toxin-Producing Bacteriophages Balance Structural Diversity with Functional Similarity. ACS Omega 2020;5:12236-44. [PMID: 32548406 DOI: 10.1021/acsomega.0c00894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 McGannon CM, Fuller CA, Weiss AA. Different classes of antibiotics differentially influence shiga toxin production. Antimicrob Agents Chemother 2010;54:3790-8. [PMID: 20585113 DOI: 10.1128/AAC.01783-09] [Cited by in Crossref: 119] [Cited by in F6Publishing: 68] [Article Influence: 9.9] [Reference Citation Analysis]
59 Asakura M, Hinenoya A, Alam MS, Shima K, Zahid SH, Shi L, Sugimoto N, Ghosh AN, Ramamurthy T, Faruque SM, Nair GB, Yamasaki S. An inducible lambdoid prophage encoding cytolethal distending toxin (Cdt-I) and a type III effector protein in enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2007;104:14483-8. [PMID: 17726095 DOI: 10.1073/pnas.0706695104] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 2.9] [Reference Citation Analysis]
60 Silpe JE, Bassler BL. A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell 2019;176:268-280.e13. [PMID: 30554875 DOI: 10.1016/j.cell.2018.10.059] [Cited by in Crossref: 110] [Cited by in F6Publishing: 85] [Article Influence: 27.5] [Reference Citation Analysis]
61 Iversen H, L' Abée-Lund TM, Aspholm M, Arnesen LP, Lindbäck T. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction. Front Cell Infect Microbiol 2015;5:5. [PMID: 25692100 DOI: 10.3389/fcimb.2015.00005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
62 Anbalagan S, Chaussee MS. Transcriptional regulation of a bacteriophage encoded extracellular DNase (Spd-3) by Rgg in Streptococcus pyogenes. PLoS One 2013;8:e61312. [PMID: 23613830 DOI: 10.1371/journal.pone.0061312] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
63 Teng L, Lee S, Park D, Jeong KC. Genetic and Functional Analyses of Virulence Potential of an Escherichia coli O157:H7 Strain Isolated From Super-Shedder Cattle. Front Cell Infect Microbiol 2020;10:271. [PMID: 32582570 DOI: 10.3389/fcimb.2020.00271] [Reference Citation Analysis]
64 Matos RC, Lapaque N, Rigottier-Gois L, Debarbieux L, Meylheuc T, Gonzalez-Zorn B, Repoila F, Lopes Mde F, Serror P. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet 2013;9:e1003539. [PMID: 23754962 DOI: 10.1371/journal.pgen.1003539] [Cited by in Crossref: 125] [Cited by in F6Publishing: 108] [Article Influence: 13.9] [Reference Citation Analysis]
65 Carter MQ, Pham A, He X, Hnasko R. Genomic Insight into Natural Inactivation of Shiga Toxin 2 Production in an Environmental Escherichia coli Strain Producing Shiga Toxin 1. Foodborne Pathogens and Disease 2020;17:555-67. [DOI: 10.1089/fpd.2019.2767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Chakraborty D, Clark E, Mauro SA, Koudelka GB. Molecular Mechanisms Governing "Hair-Trigger" Induction of Shiga Toxin-Encoding Prophages. Viruses 2018;10:E228. [PMID: 29710828 DOI: 10.3390/v10050228] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
67 Corogeanu D, Willmes R, Wolke M, Plum G, Utermöhlen O, Krönke M. Therapeutic concentrations of antibiotics inhibit Shiga toxin release from enterohemorrhagic E. coli O104:H4 from the 2011 German outbreak. BMC Microbiol 2012;12:160. [PMID: 22853739 DOI: 10.1186/1471-2180-12-160] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 5.3] [Reference Citation Analysis]
68 Momtaz H, Jamshidi A. Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: serogroups, virulence factors, and antimicrobial resistance properties. Poult Sci 2013;92:1305-13. [PMID: 23571340 DOI: 10.3382/ps.2012-02542] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
69 Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci 2012;1253:16-36. [PMID: 22524423 DOI: 10.1111/j.1749-6632.2012.06517.x] [Cited by in Crossref: 343] [Cited by in F6Publishing: 313] [Article Influence: 34.3] [Reference Citation Analysis]
70 Torti JF, Cuervo P, Nardello A, Pizarro M. Epidemiology and Characterization of Shiga Toxin-Producing Escherichia Coli of Hemolytic Uremic Syndrome in Argentina. Cureus 2021;13:e17213. [PMID: 34540440 DOI: 10.7759/cureus.17213] [Reference Citation Analysis]
71 Nowicki D, Kobiela W, Węgrzyn A, Wegrzyn G, Szalewska-Pałasz A. ppGpp-dependent negative control of DNA replication of Shiga toxin-converting bacteriophages in Escherichia coli. J Bacteriol 2013;195:5007-15. [PMID: 23995636 DOI: 10.1128/JB.00592-13] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
72 Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 2007;31:637-56. [DOI: 10.1111/j.1574-6976.2007.00082.x] [Cited by in Crossref: 224] [Cited by in F6Publishing: 200] [Article Influence: 14.9] [Reference Citation Analysis]
73 Kelley WL. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol 2006;62:1228-38. [DOI: 10.1111/j.1365-2958.2006.05444.x] [Cited by in Crossref: 115] [Cited by in F6Publishing: 100] [Article Influence: 7.2] [Reference Citation Analysis]
74 Guo G, Du D, Yu Y, Zhang Y, Qian Y, Zhang W. Pan-genome analysis of Streptococcus suis serotype 2 revealed genomic diversity among strains of different virulence. Transbound Emerg Dis 2021;68:637-47. [PMID: 32654396 DOI: 10.1111/tbed.13725] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
75 Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J 2016;10:2744-54. [PMID: 27015004 DOI: 10.1038/ismej.2016.47] [Cited by in Crossref: 166] [Cited by in F6Publishing: 135] [Article Influence: 27.7] [Reference Citation Analysis]
76 Narajczyk M, Barańska S, Wegrzyn A, Wegrzyn G. Switch from theta to sigma replication of bacteriophage lambda DNA: factors involved in the process and a model for its regulation. Mol Genet Genomics 2007;278:65-74. [PMID: 17377819 DOI: 10.1007/s00438-007-0228-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
77 Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A. Bacterial Stress Responses during Host Infection. Cell Host Microbe 2016;20:133-43. [PMID: 27512901 DOI: 10.1016/j.chom.2016.07.009] [Cited by in Crossref: 123] [Cited by in F6Publishing: 100] [Article Influence: 24.6] [Reference Citation Analysis]
78 Kunsmann L, Rüter C, Bauwens A, Greune L, Glüder M, Kemper B, Fruth A, Wai SN, He X, Lloubes R, Schmidt MA, Dobrindt U, Mellmann A, Karch H, Bielaszewska M. Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci Rep 2015;5:13252. [PMID: 26283502 DOI: 10.1038/srep13252] [Cited by in Crossref: 77] [Cited by in F6Publishing: 73] [Article Influence: 11.0] [Reference Citation Analysis]
79 García-Pastor L, Sánchez-Romero MA, Gutiérrez G, Puerta-Fernández E, Casadesús J. Formation of phenotypic lineages in Salmonella enterica by a pleiotropic fimbrial switch. PLoS Genet 2018;14:e1007677. [PMID: 30252837 DOI: 10.1371/journal.pgen.1007677] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
80 Hemmatinezhad B, Khamesipour F, Mohammadi M, Safarpoor Dehkordi F, Mashak Z. Microbiological Investigation of O-Serogroups, Virulence Factors and Antimicrobial Resistance Properties of Shiga Toxin-Producing Escherichia Coli Isolated from Ostrich, Turkey and Quail Meats: Characterization of Escherichia Coli in Poultry Meat. J Food Saf 2015;35:491-500. [DOI: 10.1111/jfs.12199] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
81 Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010;1:147. [PMID: 21266997 DOI: 10.1038/ncomms1146] [Cited by in Crossref: 353] [Cited by in F6Publishing: 318] [Article Influence: 32.1] [Reference Citation Analysis]
82 Bloch S, Nejman-Faleńczyk B, Łoś JM, Barańska S, Łepek K, Felczykowska A, Łoś M, Węgrzyn G, Węgrzyn A. Genes from the exo-xis region of λ and Shiga toxin-converting bacteriophages influence lysogenization and prophage induction. Arch Microbiol 2013;195:693-703. [PMID: 23979561 DOI: 10.1007/s00203-013-0920-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
83 Łoś M, Kuzio J, Mcconnell MR, Kropinski AM, Węgrzyn G, Christie GE. Lysogenic Conversion in Bacteria of Importance to the Food Industry. In: Sabour PM, Griffiths MW, editors. Bacteriophages in the Control of Food- and Waterborne Pathogens. Washington: ASM Press; 2010. pp. 157-98. [DOI: 10.1128/9781555816629.ch9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
84 Barik S, Mandal NC. Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N-cI- Prophages. Int J Mol Sci 2020;21:E1667. [PMID: 32121308 DOI: 10.3390/ijms21051667] [Reference Citation Analysis]
85 Jian H, Xiao X, Wang F. Role of filamentous phage SW1 in regulating the lateral flagella of Shewanella piezotolerans strain WP3 at low temperatures. Appl Environ Microbiol 2013;79:7101-9. [PMID: 24038680 DOI: 10.1128/AEM.01675-13] [Cited by in Crossref: 27] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
86 Villysson A, Tontanahal A, Karpman D. Microvesicle Involvement in Shiga Toxin-Associated Infection. Toxins (Basel) 2017;9:E376. [PMID: 29156596 DOI: 10.3390/toxins9110376] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
87 Terajima J, Izumiya H, Hara-Kudo Y, Ohnishi M. Shiga Toxin (Verotoxin)-producing 
Escherichia coli and Foodborne Disease: 
A Review. Food Saf (Tokyo) 2017;5:35-53. [PMID: 32231928 DOI: 10.14252/foodsafetyfscj.2016029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
88 Alonso A, Pucciarelli MG, Figueroa-Bossi N, García-del Portillo F. Increased excision of the Salmonella prophage ST64B caused by a deficiency in Dam methylase. J Bacteriol 2005;187:7901-11. [PMID: 16291663 DOI: 10.1128/JB.187.23.7901-7911.2005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
89 Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021;10:404. [PMID: 33805526 DOI: 10.3390/pathogens10040404] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
90 Nowicki D, Maciąg-Dorszyńska M, Kobiela W, Herman-Antosiewicz A, Węgrzyn A, Szalewska-Pałasz A, Węgrzyn G. Phenethyl isothiocyanate inhibits shiga toxin production in enterohemorrhagic Escherichia coli by stringent response induction. Antimicrob Agents Chemother 2014;58:2304-15. [PMID: 24492371 DOI: 10.1128/AAC.02515-13] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
91 Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, García E, Mitchell TJ. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 2009;191:4854-62. [PMID: 19502408 DOI: 10.1128/JB.01272-08] [Cited by in Crossref: 56] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
92 Bloch S, Nejman-Faleńczyk B, Dydecka A, Łoś JM, Felczykowska A, Węgrzyn A, Węgrzyn G. Different expression patterns of genes from the exo-xis region of bacteriophage λ and Shiga toxin-converting bacteriophage Ф24B following infection or prophage induction in Escherichia coli. PLoS One 2014;9:e108233. [PMID: 25310402 DOI: 10.1371/journal.pone.0108233] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
93 Mitarai N, Brown S, Sneppen K. Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli. J Bacteriol 2016;198:1783-93. [PMID: 27068593 DOI: 10.1128/JB.00965-15] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
94 Petty NK, Evans TJ, Fineran PC, Salmond GP. Biotechnological exploitation of bacteriophage research. Trends Biotechnol 2007;25:7-15. [PMID: 17113664 DOI: 10.1016/j.tibtech.2006.11.003] [Cited by in Crossref: 112] [Cited by in F6Publishing: 92] [Article Influence: 7.0] [Reference Citation Analysis]
95 Pacheco AR, Sperandio V. Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol 2012;2:81. [PMID: 22919672 DOI: 10.3389/fcimb.2012.00081] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 7.3] [Reference Citation Analysis]
96 Stecher B, Maier L, Hardt W. 'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 2013;11:277-84. [DOI: 10.1038/nrmicro2989] [Cited by in Crossref: 197] [Cited by in F6Publishing: 181] [Article Influence: 21.9] [Reference Citation Analysis]
97 Xiaoli L, Figler HM, Goswami Banerjee K, Hayes CS, Dudley EG. Non-pathogenic Escherichia coli Enhance Stx2a Production of E. coli O157:H7 Through Both bamA-Dependent and Independent Mechanisms. Front Microbiol 2018;9:1325. [PMID: 29973923 DOI: 10.3389/fmicb.2018.01325] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
98 Harris SM, Yue WF, Olsen SA, Hu J, Means WJ, McCormick RJ, Du M, Zhu MJ. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7. Int J Food Microbiol 2012;159:186-92. [PMID: 23107496 DOI: 10.1016/j.ijfoodmicro.2012.09.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
99 Hernandez-Doria JD, Sperandio V. Bacteriophage Transcription Factor Cro Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli. Cell Host Microbe 2018;23:607-617.e6. [PMID: 29746832 DOI: 10.1016/j.chom.2018.04.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
100 Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 2009;5:e1000408. [PMID: 19412337 DOI: 10.1371/journal.ppat.1000408] [Cited by in Crossref: 160] [Cited by in F6Publishing: 145] [Article Influence: 12.3] [Reference Citation Analysis]
101 Xu X, McAteer SP, Tree JJ, Shaw DJ, Wolfson EB, Beatson SA, Roe AJ, Allison LJ, Chase-Topping ME, Mahajan A, Tozzoli R, Woolhouse ME, Morabito S, Gally DL. Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli. PLoS Pathog 2012;8:e1002672. [PMID: 22615557 DOI: 10.1371/journal.ppat.1002672] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 4.8] [Reference Citation Analysis]
102 Govind R, Vediyappan G, Rolfe RD, Dupuy B, Fralick JA. Bacteriophage-mediated toxin gene regulation in Clostridium difficile. J Virol 2009;83:12037-45. [PMID: 19776116 DOI: 10.1128/JVI.01256-09] [Cited by in Crossref: 62] [Cited by in F6Publishing: 42] [Article Influence: 4.8] [Reference Citation Analysis]
103 Wang Q, Kan B, Wang R. Isolation and characterization of the new mosaic filamentous phage VFJ Φ of Vibrio cholerae. PLoS One 2013;8:e70934. [PMID: 23936475 DOI: 10.1371/journal.pone.0070934] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
104 Boyd EF, Carpenter MR, Chowdhury N. Mobile effector proteins on phage genomes. Bacteriophage 2012;2:139-48. [PMID: 23275865 DOI: 10.4161/bact.21658] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
105 Loś JM, Golec P, Wegrzyn G, Wegrzyn A, Loś M. Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl Environ Microbiol 2008;74:5113-20. [PMID: 18586961 DOI: 10.1128/AEM.00306-08] [Cited by in Crossref: 62] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
106 Liu C, Hong Q, Chang RYK, Kwok PCL, Chan H. Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics 2022;11:570. [DOI: 10.3390/antibiotics11050570] [Reference Citation Analysis]
107 Spira B, Ospino K. Diversity in E. coli (p)ppGpp Levels and Its Consequences. Front Microbiol 2020;11:1759. [PMID: 32903406 DOI: 10.3389/fmicb.2020.01759] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
108 Lengeling A, Mahajan A, Gally DL. Bacteriophages as pathogens and immune modulators? mBio 2013;4:e00868-13. [PMID: 24222490 DOI: 10.1128/mBio.00868-13] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
109 Auchtung JM, Lee CA, Garrison KL, Grossman AD. Identification and characterization of the immunity repressor (ImmR) that controls the mobile genetic element ICEBs1 of Bacillus subtilis. Mol Microbiol 2007;64:1515-28. [PMID: 17511812 DOI: 10.1111/j.1365-2958.2007.05748.x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 4.5] [Reference Citation Analysis]
110 Iversen H, Lindbäck T, L'Abée-Lund TM, Roos N, Aspholm M, Stenfors Arnesen L. The gut bacterium Bacteroides thetaiotaomicron influences the virulence potential of the enterohemorrhagic Escherichia coli O103:H25. PLoS One 2015;10:e0118140. [PMID: 25719195 DOI: 10.1371/journal.pone.0118140] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
111 Mozaffari P, Berizi E, Hosseinzadeh S, Derakhshan Z, Taghadosi V, Montaseri Z, Götz F. Isolation and characterization of Escherichia coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Res 2022;:198754. [PMID: 35346752 DOI: 10.1016/j.virusres.2022.198754] [Reference Citation Analysis]
112 Thorpe CM, Pulsifer AR, Osburne MS, Vanaja SK, Leong JM. Citrobacter rodentium(ϕStx2dact), a murine infection model for enterohemorrhagic Escherichia coli. Curr Opin Microbiol 2021;65:183-90. [PMID: 34929548 DOI: 10.1016/j.mib.2021.11.013] [Reference Citation Analysis]
113 Torres-Barceló C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infect 2018;7:168. [PMID: 30302018 DOI: 10.1038/s41426-018-0169-z] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 12.8] [Reference Citation Analysis]
114 Stella AE, Luz D, Piazza RMF, Spira B. ppGpp and cytotoxicity diversity in Shiga toxin-producing Escherichia coli (STEC) isolates. Epidemiol Infect 2017;145:2204-11. [PMID: 28587697 DOI: 10.1017/S0950268817001091] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
115 Wang H, Naseer N, Chen Y, Zhu AY, Kuai X, Galagedera N, Liu Z, Zhu J. OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Infect Immun 2017;85:e00929-16. [PMID: 28138024 DOI: 10.1128/IAI.00929-16] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
116 Ishimaru K, Sasaki M, Narimatsu H, Arimizu Y, Gotoh Y, Nakamura K, Hayashi T, Ogura Y. Escherichia coli O8:H8 Carrying a Novel Variant of the Heat-Labile Enterotoxin LT2 Gene Caused Outbreaks of Diarrhea. Open Forum Infect Dis 2020;7:ofaa021. [PMID: 32016129 DOI: 10.1093/ofid/ofaa021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Britton RA, Versalovic J. Probiotics and gastrointestinal infections. Interdiscip Perspect Infect Dis 2008;2008:290769. [PMID: 19277100 DOI: 10.1155/2008/290769] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
118 Chen S, Soehnlen M, Blom J, Terrapon N, Henrissat B, Walker ED. Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains. PLoS One 2019;14:e0222648. [PMID: 31600234 DOI: 10.1371/journal.pone.0222648] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
119 Tang F, Bossers A, Harders F, Lu C, Smith H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics 2013;101:336-44. [PMID: 23587535 DOI: 10.1016/j.ygeno.2013.04.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
120 Schüller S. Shiga toxin interaction with human intestinal epithelium. Toxins (Basel) 2011;3:626-39. [PMID: 22069729 DOI: 10.3390/toxins3060626] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 6.4] [Reference Citation Analysis]
121 Gymoese P, Kiil K, Torpdahl M, Østerlund MT, Sørensen G, Olsen JE, Nielsen EM, Litrup E. WGS based study of the population structure of Salmonella enterica serovar Infantis. BMC Genomics 2019;20:870. [PMID: 31730461 DOI: 10.1186/s12864-019-6260-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
122 Veses-Garcia M, Liu X, Rigden DJ, Kenny JG, McCarthy AJ, Allison HE. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 2015;81:8118-25. [PMID: 26386055 DOI: 10.1128/AEM.02034-15] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 4.1] [Reference Citation Analysis]
123 Shinhara A, Matsui M, Hiraoka K, Nomura W, Hirano R, Nakahigashi K, Tomita M, Mori H, Kanai A. Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli. BMC Genomics 2011;12:428. [PMID: 21864382 DOI: 10.1186/1471-2164-12-428] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 4.1] [Reference Citation Analysis]
124 Lefebvre B, Diarra MS, Vincent C, Moisan H, Malouin F. Relative Cytotoxicity of Escherichia coli O157:H7 Isolates from Beef Cattle and Humans. Foodborne Pathogens and Disease 2009;6:357-64. [DOI: 10.1089/fpd.2008.0188] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
125 Klai N, Sellamuthu B. Bacteriophages isolated from hospital wastewater and its role in controlling drug-resistant pathogens. Current Developments in Biotechnology and Bioengineering. Elsevier; 2020. pp. 327-76. [DOI: 10.1016/b978-0-12-819722-6.00010-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Lainhart W, Stolfa G, Koudelka GB. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J Bacteriol 2009;191:5116-22. [PMID: 19502393 DOI: 10.1128/JB.00508-09] [Cited by in Crossref: 83] [Cited by in F6Publishing: 44] [Article Influence: 6.4] [Reference Citation Analysis]
127 Cirz RT, O'Neill BM, Hammond JA, Head SR, Romesberg FE. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol 2006;188:7101-10. [PMID: 17015649 DOI: 10.1128/JB.00807-06] [Cited by in Crossref: 162] [Cited by in F6Publishing: 88] [Article Influence: 10.1] [Reference Citation Analysis]
128 Fernandez-Lopez R, Del Campo I, Revilla C, Cuevas A, de la Cruz F. Negative feedback and transcriptional overshooting in a regulatory network for horizontal gene transfer. PLoS Genet 2014;10:e1004171. [PMID: 24586200 DOI: 10.1371/journal.pgen.1004171] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
129 Nickels BE. A new twist on a classic paradigm: illumination of a genetic switch in Vibrio cholerae phage CTX Phi. J Bacteriol 2009;191:6779-81. [PMID: 19749052 DOI: 10.1128/JB.01150-09] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
130 Pasechnek A, Rabinovich L, Stadnyuk O, Azulay G, Mioduser J, Argov T, Borovok I, Sigal N, Herskovits AA. Active Lysogeny in Listeria Monocytogenes Is a Bacteria-Phage Adaptive Response in the Mammalian Environment. Cell Rep 2020;32:107956. [PMID: 32726621 DOI: 10.1016/j.celrep.2020.107956] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
131 Ichimura K, Shimizu T, Matsumoto A, Hirai S, Yokoyama E, Takeuchi H, Yahiro K, Noda M. Nitric oxide-enhanced Shiga toxin production was regulated by Fur and RecA in enterohemorrhagic Escherichia coli O157. Microbiologyopen 2017;6. [PMID: 28294553 DOI: 10.1002/mbo3.461] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
132 Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013;4:354-65. [PMID: 23611873 DOI: 10.4161/viru.24498] [Cited by in Crossref: 238] [Cited by in F6Publishing: 197] [Article Influence: 26.4] [Reference Citation Analysis]
133 Tyler JS, Beeri K, Reynolds JL, Alteri CJ, Skinner KG, Friedman JH, Eaton KA, Friedman DI. Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. PLoS Pathog 2013;9:e1003236. [PMID: 23555250 DOI: 10.1371/journal.ppat.1003236] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 5.8] [Reference Citation Analysis]
134 Kamruzzaman M, Robins WP, Bari SM, Nahar S, Mekalanos JJ, Faruque SM. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun 2014;82:3636-43. [PMID: 24935981 DOI: 10.1128/IAI.01699-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
135 Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2015;197:410-9. [PMID: 25404701 DOI: 10.1128/JB.02230-14] [Cited by in Crossref: 133] [Cited by in F6Publishing: 81] [Article Influence: 16.6] [Reference Citation Analysis]
136 Blanco-Picazo P, Fernández-Orth D, Brown-Jaque M, Miró E, Espinal P, Rodríguez-Rubio L, Muniesa M, Navarro F. Unravelling the consequences of the bacteriophages in human samples. Sci Rep 2020;10:6737. [PMID: 32317653 DOI: 10.1038/s41598-020-63432-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
137 Busschaert P, Frans I, Crauwels S, Zhu B, Willems K, Bossier P, Michiels C, Verstrepen K, Lievens B, Rediers H. Comparative genome sequencing to assess the genetic diversity and virulence attributes of 15 Vibrio anguillarum isolates. J Fish Dis 2015;38:795-807. [PMID: 25073650 DOI: 10.1111/jfd.12290] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
138 Mallick EM, McBee ME, Vanguri VK, Melton-Celsa AR, Schlieper K, Karalius BJ, O'Brien AD, Butterton JR, Leong JM, Schauer DB. A novel murine infection model for Shiga toxin-producing Escherichia coli. J Clin Invest 2012;122:4012-24. [PMID: 23041631 DOI: 10.1172/JCI62746] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
139 Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 2015;13:641-50. [PMID: 26373372 DOI: 10.1038/nrmicro3527] [Cited by in Crossref: 200] [Cited by in F6Publishing: 158] [Article Influence: 33.3] [Reference Citation Analysis]
140 Chen JC, Carlson BA, Sofos JN, Smith GC, Belk KE, Nightingale KK. High-throughput small molecule screening reveals structurally diverse compounds that inhibit the growth of Escherichia coli O157:H7 in vitro. J Food Prot 2011;74:2148-56. [PMID: 22186057 DOI: 10.4315/0362-028X.JFP-11-010] [Reference Citation Analysis]