BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Davies BW, Bogard RW, Young TS, Mekalanos JJ. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell. 2012;149:358-370. [PMID: 22500802 DOI: 10.1016/j.cell.2012.01.053] [Cited by in Crossref: 259] [Cited by in F6Publishing: 230] [Article Influence: 25.9] [Reference Citation Analysis]
Number Citing Articles
1 Campeotto I, Zhang Y, Mladenov MG, Freemont PS, Gründling A. Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family. J Biol Chem 2015;290:2888-901. [PMID: 25505271 DOI: 10.1074/jbc.M114.621789] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
2 Kranzusch PJ. cGAS and CD-NTase enzymes: structure, mechanism, and evolution. Curr Opin Struct Biol 2019;59:178-87. [PMID: 31593902 DOI: 10.1016/j.sbi.2019.08.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
3 Yoon SH, Waters CM. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Curr Opin Microbiol 2021;60:96-103. [PMID: 33640793 DOI: 10.1016/j.mib.2021.01.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Minato Y, Fassio SR, Wolfe AJ, Häse CC. Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae. Microbiology (Reading) 2013;159:792-802. [PMID: 23429745 DOI: 10.1099/mic.0.064865-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
5 Miyakawa S, Okui T, Shiraishi T, Yoshihara T, Hirayama M, Satomi Y, Hamada T, Nishida M, Akimoto C, Sato S. Development of novel highly sensitive methods to detect endogenous cGAMP in cells and tissue. J Immunol Methods 2020;480:112751. [PMID: 31982420 DOI: 10.1016/j.jim.2020.112751] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Blokesch M. Growing away from monocultures - interdependent growth conditions for studying antibacterial and antiphage systems. Environ Microbiol Rep 2021;13:42-4. [PMID: 33124162 DOI: 10.1111/1758-2229.12899] [Reference Citation Analysis]
7 Lian Y, Duffy KJ, Yang J. STING Activation and its Application in Immuno-Oncology. CTMC 2019;19:2205-27. [DOI: 10.2174/1568026619666191010155903] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
8 Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020;38:A83-92. [DOI: 10.1016/j.vaccine.2019.06.031] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
9 Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules 2020;25:E2462. [PMID: 32466317 DOI: 10.3390/molecules25102462] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
10 Hallberg ZF, Wang XC, Wright TA, Nan B, Ad O, Yeo J, Hammond MC. Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3', 3'-cGAMP). Proc Natl Acad Sci U S A 2016;113:1790-5. [PMID: 26839412 DOI: 10.1073/pnas.1515287113] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 8.3] [Reference Citation Analysis]
11 Altindis E, Fu Y, Mekalanos JJ. Proteomic analysis of Vibrio cholerae outer membrane vesicles. Proc Natl Acad Sci U S A 2014;111:E1548-56. [PMID: 24706774 DOI: 10.1073/pnas.1403683111] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 9.3] [Reference Citation Analysis]
12 Sakib SN, Reddi G, Almagro-Moreno S. Environmental role of pathogenic traits in Vibrio cholerae. J Bacteriol 2018;200:e00795-17. [PMID: 29581410 DOI: 10.1128/JB.00795-17] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
13 Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F, Fröhlich KS, Schröger L, Bramkamp M, Drescher K, Papenfort K. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat Commun 2020;11:6067. [PMID: 33247102 DOI: 10.1038/s41467-020-19890-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Howard MF, Bina XR, Bina JE. Indole Inhibits ToxR Regulon Expression in Vibrio cholerae. Infect Immun 2019;87:e00776-18. [PMID: 30617203 DOI: 10.1128/IAI.00776-18] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
15 Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 2014;7:a016246. [PMID: 25301932 DOI: 10.1101/cshperspect.a016246] [Cited by in Crossref: 193] [Cited by in F6Publishing: 180] [Article Influence: 24.1] [Reference Citation Analysis]
16 Orr MW, Lee VT. Differential Radial Capillary Action of Ligand Assay (DRaCALA) for High-Throughput Detection of Protein-Metabolite Interactions in Bacteria. Methods Mol Biol 2017;1535:25-41. [PMID: 27914071 DOI: 10.1007/978-1-4939-6673-8_3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
17 Vashi N, Bakhoum SF. The Evolution of STING Signaling and Its Involvement in Cancer. Trends Biochem Sci 2021;46:446-60. [PMID: 33461879 DOI: 10.1016/j.tibs.2020.12.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Li L, Yin Q, Kuss P, Maliga Z, Millán JL, Wu H, Mitchison TJ. Hydrolysis of 2'3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol 2014;10:1043-8. [PMID: 25344812 DOI: 10.1038/nchembio.1661] [Cited by in Crossref: 174] [Cited by in F6Publishing: 160] [Article Influence: 21.8] [Reference Citation Analysis]
19 Wang B, Wang Z, Javornik U, Xi Z, Plavec J. Computational and NMR spectroscopy insights into the conformation of cyclic di-nucleotides. Sci Rep 2017;7:16550. [PMID: 29185472 DOI: 10.1038/s41598-017-16794-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
20 Høyland-Kroghsbo NM. Cyclic Nucleotide Signaling: A Second Messenger of Death. Cell Host Microbe 2019;26:567-8. [PMID: 31726022 DOI: 10.1016/j.chom.2019.10.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Schwede F, Genieser HG, Rentsch A. The Chemistry of the Noncanonical Cyclic Dinucleotide 2'3'-cGAMP and Its Analogs. Handb Exp Pharmacol 2017;238:359-84. [PMID: 27392950 DOI: 10.1007/164_2015_43] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
22 Severin GB, Ramliden MS, Hawver LA, Wang K, Pell ME, Kieninger AK, Khataokar A, O'Hara BJ, Behrmann LV, Neiditch MB, Benning C, Waters CM, Ng WL. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci U S A 2018;115:E6048-55. [PMID: 29891656 DOI: 10.1073/pnas.1801233115] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
23 An SQ, Ryan RP. Combating chronic bacterial infections by manipulating cyclic nucleotide-regulated biofilm formation. Future Med Chem 2016;8:949-61. [PMID: 27304227 DOI: 10.4155/fmc-2015-0002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
24 Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N, David CN, McGee CE, Sempowski GD, Shterev I, McKinnon K, Bachelder EM, Ainslie KM, Ting JP. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release 2018;270:1-13. [PMID: 29170142 DOI: 10.1016/j.jconrel.2017.11.030] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 11.8] [Reference Citation Analysis]
25 Dubensky TW Jr, Kanne DB, Leong ML. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther Adv Vaccines 2013;1:131-43. [PMID: 24757520 DOI: 10.1177/2051013613501988] [Cited by in Crossref: 100] [Cited by in F6Publishing: 92] [Article Influence: 12.5] [Reference Citation Analysis]
26 Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 2013;4:e00282-13. [PMID: 23716572 DOI: 10.1128/mBio.00282-13] [Cited by in Crossref: 121] [Cited by in F6Publishing: 86] [Article Influence: 13.4] [Reference Citation Analysis]
27 Zheng C, Ma Y, Wang X, Xie Y, Ali MK, He J. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis. Front Microbiol 2015;6:908. [PMID: 26441857 DOI: 10.3389/fmicb.2015.00908] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
28 Commichau FM, Heidemann JL, Ficner R, Stülke J. Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. J Bacteriol 2019;201:e00462-18. [PMID: 30224435 DOI: 10.1128/JB.00462-18] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
29 Wang Z, Zhao C, Wang C, Zhang H, Ma D, Zhang Q, Wen X, Li L, Xi Z. Synthesis and biological evaluation of all possible inosine-mixed cyclic dinucleotides that activate different hSTING variants. Bioorg Med Chem 2021;29:115899. [PMID: 33285409 DOI: 10.1016/j.bmc.2020.115899] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 O'Neill LA. Immunology. Sensing the dark side of DNA. Science 2013;339:763-4. [PMID: 23413341 DOI: 10.1126/science.1234724] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
31 Hernández-Morales R, Becerra A, Lazcano A. Alarmones as Vestiges of a Bygone RNA World. J Mol Evol 2019;87:37-51. [PMID: 30604017 DOI: 10.1007/s00239-018-9883-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
32 Wu J, Zhao L, Hu H, Li W, Li Y. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Med Res Rev 2020;40:1117-41. [DOI: 10.1002/med.21649] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
33 Wigren E, Liang ZX, Römling U. Finally! The structural secrets of a HD-GYP phosphodiesterase revealed. Mol Microbiol 2014;91:1-5. [PMID: 24236493 DOI: 10.1111/mmi.12463] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
34 Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 2013;3:a010298. [PMID: 24003243 DOI: 10.1101/cshperspect.a010298] [Cited by in Crossref: 118] [Cited by in F6Publishing: 105] [Article Influence: 13.1] [Reference Citation Analysis]
35 Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses. Part II. Biochemistry (Mosc) 2021;86:449-70. [PMID: 33941066 DOI: 10.1134/S0006297921040064] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization. PLoS Pathog 2016;12:e1005570. [PMID: 27070545 DOI: 10.1371/journal.ppat.1005570] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
37 Poulin MB, Kuperman LL. Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate. Front Microbiol 2021;12:730980. [PMID: 34566936 DOI: 10.3389/fmicb.2021.730980] [Reference Citation Analysis]
38 Mehne FM, Schröder-Tittmann K, Eijlander RT, Herzberg C, Hewitt L, Kaever V, Lewis RJ, Kuipers OP, Tittmann K, Stülke J. Control of the diadenylate cyclase CdaS in Bacillus subtilis: an autoinhibitory domain limits cyclic di-AMP production. J Biol Chem 2014;289:21098-107. [PMID: 24939848 DOI: 10.1074/jbc.M114.562066] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
39 Römling U, Liang ZX, Dow JM. Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. J Bacteriol 2017;199:e00790-16. [PMID: 28031279 DOI: 10.1128/JB.00790-16] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 5.6] [Reference Citation Analysis]
40 Ritchie C, Cordova AF, Hess GT, Bassik MC, Li L. SLC19A1 Is an Importer of the Immunotransmitter cGAMP. Mol Cell 2019;75:372-381.e5. [PMID: 31126740 DOI: 10.1016/j.molcel.2019.05.006] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 26.3] [Reference Citation Analysis]
41 Zhou W, Whiteley AT, Kranzusch PJ. Analysis of human cGAS activity and structure. Methods Enzymol 2019;625:13-40. [PMID: 31455523 DOI: 10.1016/bs.mie.2019.04.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Lolicato M, Bucchi A, Arrigoni C, Zucca S, Nardini M, Schroeder I, Simmons K, Aquila M, DiFrancesco D, Bolognesi M, Schwede F, Kashin D, Fishwick CW, Johnson AP, Thiel G, Moroni A. Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nat Chem Biol 2014;10:457-62. [PMID: 24776929 DOI: 10.1038/nchembio.1521] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
43 Das B. Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 2014;5:650. [PMID: 25506341 DOI: 10.3389/fmicb.2014.00650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
44 Dey B, Bishai WR. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin Immunol 2014;26:486-96. [PMID: 25303934 DOI: 10.1016/j.smim.2014.09.002] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 6.4] [Reference Citation Analysis]
45 Das B, Pazhani GP, Sarkar A, Mukhopadhyay AK, Nair GB, Ramamurthy T. Molecular evolution and functional divergence of Vibrio cholerae: . Current Opinion in Infectious Diseases 2016;29:520-7. [DOI: 10.1097/qco.0000000000000306] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
46 Feirer N, Fuqua C. Pterin function in bacteria. Pteridines 2017;28:23-36. [DOI: 10.1515/pterid-2016-0012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
47 Platt DJ, Lawrence D, Rodgers R, Schriefer L, Qian W, Miner CA, Menos AM, Kennedy EA, Peterson ST, Stinson WA, Baldridge MT, Miner JJ. Transferrable protection by gut microbes against STING-associated lung disease. Cell Rep 2021;35:109113. [PMID: 33979608 DOI: 10.1016/j.celrep.2021.109113] [Reference Citation Analysis]
48 Andrade WA, Firon A, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Trieu-Cuot P, Golenbock DT, Kaminski PA. Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production. Cell Host Microbe 2016;20:49-59. [PMID: 27414497 DOI: 10.1016/j.chom.2016.06.003] [Cited by in Crossref: 71] [Cited by in F6Publishing: 62] [Article Influence: 14.2] [Reference Citation Analysis]
49 Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013;339:786-91. [PMID: 23258413 DOI: 10.1126/science.1232458] [Cited by in Crossref: 1933] [Cited by in F6Publishing: 1862] [Article Influence: 193.3] [Reference Citation Analysis]
50 Balasubramanian D, Murcia S, Ogbunugafor CB, Gavilan R, Almagro-Moreno S. Cholera dynamics: lessons from an epidemic. J Med Microbiol 2021;70. [PMID: 33416465 DOI: 10.1099/jmm.0.001298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Li Y, Ludford PT 3rd, Fin A, Rovira AR, Tor Y. Enzymatic Syntheses and Applications of Fluorescent Cyclic Dinucleotides. Chemistry 2020;26:6076-84. [PMID: 32157755 DOI: 10.1002/chem.202001194] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
52 Nelson JW, Sudarsan N, Phillips GE, Stav S, Lünse CE, McCown PJ, Breaker RR. Control of bacterial exoelectrogenesis by c-AMP-GMP. Proc Natl Acad Sci U S A 2015;112:5389-94. [PMID: 25848023 DOI: 10.1073/pnas.1419264112] [Cited by in Crossref: 67] [Cited by in F6Publishing: 52] [Article Influence: 9.6] [Reference Citation Analysis]
53 Schaffert L, Schneiker-Bekel S, Dymek S, Droste J, Persicke M, Busche T, Brandt D, Pühler A, Kalinowski J. Essentiality of the Maltase AmlE in Maltose Utilization and Its Transcriptional Regulation by the Repressor AmlR in the Acarbose-Producing Bacterium Actinoplanes sp. SE50/110. Front Microbiol 2019;10:2448. [PMID: 31736895 DOI: 10.3389/fmicb.2019.02448] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Mudgal S, Manikandan K, Mukherjee A, Krishnan A, Sinha KM. Cyclic di-AMP: Small molecule with big roles in bacteria. Microb Pathog 2021;161:105264. [PMID: 34715302 DOI: 10.1016/j.micpath.2021.105264] [Reference Citation Analysis]
55 Kellenberger CA, Sales-Lee J, Pan Y, Gassaway MM, Herr AE, Hammond MC. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer. RNA Biol 2015;12:1189-97. [PMID: 26114964 DOI: 10.1080/15476286.2015.1062970] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
56 Brosse A, Guillier M. Bacterial Small RNAs in Mixed Regulatory Networks. Microbiol Spectr 2018;6. [PMID: 29916348 DOI: 10.1128/microbiolspec.RWR-0014-2017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
57 Sun S, Pandelia ME. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Biochemistry 2020;59:2340-50. [PMID: 32496757 DOI: 10.1021/acs.biochem.0c00257] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
58 Hsiao A, Zhu J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020;11:1582-99. [PMID: 33172314 DOI: 10.1080/21505594.2020.1845039] [Reference Citation Analysis]
59 Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS. Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP). J Biol Chem 2015;290:16393-402. [PMID: 25957408 DOI: 10.1074/jbc.M115.641340] [Cited by in Crossref: 54] [Cited by in F6Publishing: 37] [Article Influence: 7.7] [Reference Citation Analysis]
60 Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE. Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2',3' cGAMP Signaling. Mol Cell 2015;59:891-903. [PMID: 26300263 DOI: 10.1016/j.molcel.2015.07.022] [Cited by in Crossref: 122] [Cited by in F6Publishing: 112] [Article Influence: 17.4] [Reference Citation Analysis]
61 Sun Q, Lv Y, Zhang C, Wu W, Zhang R, Zhu C, Li YY, Yuan H, Zhu J, Zhu D. Efficient preparation of c-di-AMP at gram-scale using an immobilized Vibrio cholerae dinucleotide cyclase DncV. Enzyme Microb Technol 2021;143:109700. [PMID: 33375968 DOI: 10.1016/j.enzmictec.2020.109700] [Reference Citation Analysis]
62 Fei N, Häussinger D, Blümli S, Laventie BJ, Bizzini LD, Zimmermann K, Jenal U, Gillingham D. Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides. Chem Commun (Camb) 2014;50:8499-502. [PMID: 24946836 DOI: 10.1039/c4cc01919a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
63 Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 2013;135:4906-9. [PMID: 23488798 DOI: 10.1021/ja311960g] [Cited by in Crossref: 184] [Cited by in F6Publishing: 163] [Article Influence: 20.4] [Reference Citation Analysis]
64 Wang J, Lu SF, Wan B, Ming SL, Li GL, Su BQ, Liu JY, Wei YS, Yang GY, Chu BB. Maintenance of cyclic GMP-AMP homeostasis by ENPP1 is involved in pseudorabies virus infection. Mol Immunol 2018;95:56-63. [PMID: 29407577 DOI: 10.1016/j.molimm.2018.01.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
65 Klemm E, Dougan G. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics. Cell Host Microbe 2016;19:599-610. [PMID: 27173928 DOI: 10.1016/j.chom.2016.04.015] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
66 Orr MW, Galperin MY, Lee VT. Sustained sensing as an emerging principle in second messenger signaling systems. Curr Opin Microbiol 2016;34:119-26. [PMID: 27700990 DOI: 10.1016/j.mib.2016.08.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
67 Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018;6. [PMID: 30003867 DOI: 10.1128/microbiolspec.RWR-0002-2017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
68 Vercruysse M, Köhrer C, Davies BW, Arnold MF, Mekalanos JJ, RajBhandary UL, Walker GC. The highly conserved bacterial RNase YbeY is essential in Vibrio cholerae, playing a critical role in virulence, stress regulation, and RNA processing. PLoS Pathog 2014;10:e1004175. [PMID: 24901994 DOI: 10.1371/journal.ppat.1004175] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 5.6] [Reference Citation Analysis]
69 DuPai CD, Cunningham AL, Conrado AR, Wilke CO, Davies BW. TsrA Regulates Virulence and Intestinal Colonization in Vibrio cholerae. mSphere 2020;5:e01014-20. [PMID: 33298574 DOI: 10.1128/mSphere.01014-20] [Reference Citation Analysis]
70 Zhu D, Wang L, Shang G, Liu X, Zhu J, Lu D, Wang L, Kan B, Zhang JR, Xiang Y. Structural biochemistry of a Vibrio cholerae dinucleotide cyclase reveals cyclase activity regulation by folates. Mol Cell 2014;55:931-7. [PMID: 25201413 DOI: 10.1016/j.molcel.2014.08.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
71 Orr MW, Weiss CA, Severin GB, Turdiev H, Kim SK, Turdiev A, Liu K, Tu BP, Waters CM, Winkler WC, Lee VT. A Subset of Exoribonucleases Serve as Degradative Enzymes for pGpG in c-di-GMP Signaling. J Bacteriol 2018;200:e00300-18. [PMID: 30249708 DOI: 10.1128/JB.00300-18] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
72 Tam JC, Jacques DA. Intracellular immunity: finding the enemy within--how cells recognize and respond to intracellular pathogens. J Leukoc Biol 2014;96:233-44. [PMID: 24899588 DOI: 10.1189/jlb.4RI0214-090R] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
73 Mankan AK, Müller M, Witte G, Hornung V. Cyclic Dinucleotides in the Scope of the Mammalian Immune System. Handb Exp Pharmacol 2017;238:269-89. [PMID: 28181006 DOI: 10.1007/164_2016_5002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
74 Margolis SR, Wilson SC, Vance RE. Evolutionary Origins of cGAS-STING Signaling. Trends in Immunology 2017;38:733-43. [DOI: 10.1016/j.it.2017.03.004] [Cited by in Crossref: 101] [Cited by in F6Publishing: 89] [Article Influence: 20.2] [Reference Citation Analysis]
75 Zaver SA, Woodward JJ. Cyclic dinucleotides at the forefront of innate immunity. Curr Opin Cell Biol 2020;63:49-56. [PMID: 31958669 DOI: 10.1016/j.ceb.2019.12.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
76 Nelson JW, Breaker RR. The lost language of the RNA World. Sci Signal 2017;10:eaam8812. [PMID: 28611182 DOI: 10.1126/scisignal.aam8812] [Cited by in Crossref: 61] [Cited by in F6Publishing: 50] [Article Influence: 12.2] [Reference Citation Analysis]
77 McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. Riboswitch diversity and distribution. RNA 2017;23:995-1011. [PMID: 28396576 DOI: 10.1261/rna.061234.117] [Cited by in Crossref: 220] [Cited by in F6Publishing: 180] [Article Influence: 44.0] [Reference Citation Analysis]
78 Shanahan CA, Gaffney BL, Jones RA, Strobel SA. Identification of c-di-GMP derivatives resistant to an EAL domain phosphodiesterase. Biochemistry 2013;52:365-77. [PMID: 23256840 DOI: 10.1021/bi301510v] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
79 Johnson RM, McDonough KA. Cyclic nucleotide signaling in Mycobacterium tuberculosis: an expanding repertoire. Pathog Dis 2018;76. [PMID: 29905867 DOI: 10.1093/femspd/fty048] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
80 Gründling A, Lee VT. Old concepts, new molecules and current approaches applied to the bacterial nucleotide signalling field. Philos Trans R Soc Lond B Biol Sci 2016;371:20150503. [PMID: 27672152 DOI: 10.1098/rstb.2015.0503] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
81 Almagro-moreno S, Taylor RK. Cholera: Environmental Reservoirs and Impact on Disease Transmission. In: Atlas RM, Maloy S, editors. One Health. Washington: ASM Press; 2014. pp. 149-65. [DOI: 10.1128/9781555818432.ch10] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
82 Pal C, Chakraborty TK. Synthesis of Amide-Linked Cyclic Dinucleotide Analogues with Pyrimidine Bases. Asian J Org Chem 2017;6:1421-7. [DOI: 10.1002/ajoc.201700260] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
83 Hancks DC, Hartley MK, Hagan C, Clark NL, Elde NC. Overlapping Patterns of Rapid Evolution in the Nucleic Acid Sensors cGAS and OAS1 Suggest a Common Mechanism of Pathogen Antagonism and Escape. PLoS Genet 2015;11:e1005203. [PMID: 25942676 DOI: 10.1371/journal.pgen.1005203] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 7.0] [Reference Citation Analysis]
84 Gao J, Tao J, Liang W, Zhao M, Du X, Cui S, Duan H, Kan B, Su X, Jiang Z. Identification and characterization of phosphodiesterases that specifically degrade 3'3'-cyclic GMP-AMP. Cell Res 2015;25:539-50. [PMID: 25837739 DOI: 10.1038/cr.2015.40] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 7.1] [Reference Citation Analysis]
85 Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner KH, Dove SL, Narasimhan G, Lory S, Mathee K. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res 2014;42:979-98. [PMID: 24157832 DOI: 10.1093/nar/gkt942] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
86 Yum S, Li M, Fang Y, Chen ZJ. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci U S A 2021;118:e2100225118. [PMID: 33785602 DOI: 10.1073/pnas.2100225118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
87 Millman A, Melamed S, Amitai G, Sorek R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol 2020;5:1608-15. [PMID: 32839535 DOI: 10.1038/s41564-020-0777-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
88 Pérez-Reytor D, Plaza N, Espejo RT, Navarrete P, Bastías R, Garcia K. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios. Front Microbiol 2016;7:2160. [PMID: 28123382 DOI: 10.3389/fmicb.2016.02160] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
89 Meehan RE, Torgerson CD, Gaffney BL, Jones RA, Strobel SA. Nuclease-Resistant c-di-AMP Derivatives That Differentially Recognize RNA and Protein Receptors. Biochemistry 2016;55:837-49. [PMID: 26789423 DOI: 10.1021/acs.biochem.5b00965] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
90 Kellenberger CA, Chen C, Whiteley AT, Portnoy DA, Hammond MC. RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP. J Am Chem Soc 2015;137:6432-5. [PMID: 25965978 DOI: 10.1021/jacs.5b00275] [Cited by in Crossref: 83] [Cited by in F6Publishing: 71] [Article Influence: 11.9] [Reference Citation Analysis]
91 Reguera G, Kashefi K. The electrifying physiology of Geobacter bacteria, 30 years on. Adv Microb Physiol 2019;74:1-96. [PMID: 31126529 DOI: 10.1016/bs.ampbs.2019.02.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 9.7] [Reference Citation Analysis]
92 Minato Y, Fassio SR, Häse CC. Malonate inhibits virulence gene expression in Vibrio cholerae. PLoS One 2013;8:e63336. [PMID: 23675480 DOI: 10.1371/journal.pone.0063336] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
93 Sabareesh V, Manikandan K, Sinha KM. Understanding dissociation of cyclic dinucleotide ions by electrospray mass spectrometry. International Journal of Mass Spectrometry 2014;364:9-15. [DOI: 10.1016/j.ijms.2014.03.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
94 Li N, Zheng Y, Shi M, Xue Y, Zhang T, Ji S, Yang M. TcpP L152A Constitutively Activating Virulence Gene Expression in Vibrio cholerae. Curr Microbiol 2019;76:583-9. [PMID: 30826907 DOI: 10.1007/s00284-019-01659-y] [Reference Citation Analysis]
95 Pant A, Das B, Bhadra RK. CTX phage of Vibrio cholerae: Genomics and applications. Vaccine 2020;38 Suppl 1:A7-A12. [PMID: 31272871 DOI: 10.1016/j.vaccine.2019.06.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
96 Novotná B, Holá L, Staś M, Gutten O, Smola M, Zavřel M, Vavřina Z, Buděšínský M, Liboska R, Chevrier F, Dobiaš J, Boura E, Rulíšek L, Birkuš G. Enzymatic Synthesis of 3'-5', 3'-5' Cyclic Dinucleotides, Their Binding Properties to the Stimulator of Interferon Genes Adaptor Protein, and Structure/Activity Correlations. Biochemistry 2021;60:3714-27. [PMID: 34788017 DOI: 10.1021/acs.biochem.1c00692] [Reference Citation Analysis]
97 Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 2017;15:271-84. [PMID: 28163311 DOI: 10.1038/nrmicro.2016.190] [Cited by in Crossref: 350] [Cited by in F6Publishing: 297] [Article Influence: 70.0] [Reference Citation Analysis]
98 Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther 2014;25:265-84. [PMID: 24512150 DOI: 10.1089/hum.2014.001] [Cited by in Crossref: 136] [Cited by in F6Publishing: 125] [Article Influence: 17.0] [Reference Citation Analysis]
99 Kranzusch PJ, Lee ASY, Wilson SC, Solovykh MS, Vance RE, Berger JM, Doudna JA. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell 2014;158:1011-21. [PMID: 25131990 DOI: 10.1016/j.cell.2014.07.028] [Cited by in Crossref: 74] [Cited by in F6Publishing: 65] [Article Influence: 9.3] [Reference Citation Analysis]
100 Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther 2021;6:170. [PMID: 33927185 DOI: 10.1038/s41392-021-00554-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Novotná B, Vaneková L, Zavřel M, Buděšínský M, Dejmek M, Smola M, Gutten O, Tehrani ZA, Pimková Polidarová M, Brázdová A, Liboska R, Štěpánek I, Vavřina Z, Jandušík T, Nencka R, Rulíšek L, Bouřa E, Brynda J, Páv O, Birkuš G. Enzymatic Preparation of 2'-5',3'-5'-Cyclic Dinucleotides, Their Binding Properties to Stimulator of Interferon Genes Adaptor Protein, and Structure/Activity Correlations. J Med Chem 2019;62:10676-90. [PMID: 31715099 DOI: 10.1021/acs.jmedchem.9b01062] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
102 Li F, Cimdins A, Rohde M, Jänsch L, Kaever V, Nimtz M, Römling U. DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in Escherichia coli ECOR31. mBio 2019;10:e02492-18. [PMID: 30837338 DOI: 10.1128/mBio.02492-18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
103 Galperin MY. What bacteria want. Environ Microbiol 2018;20:4221-9. [PMID: 30187651 DOI: 10.1111/1462-2920.14398] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
104 Zhang X, Bai XC, Chen ZJ. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity 2020;53:43-53. [PMID: 32668227 DOI: 10.1016/j.immuni.2020.05.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 24.0] [Reference Citation Analysis]
105 Lim J, Kim HY. Novel Applications of Biocatalysis to Stereochemistry Determination of 2'3'-cGAMP Bisphosphorothioate (2'3'-cGSASMP). ACS Omega 2020;5:14173-9. [PMID: 32566885 DOI: 10.1021/acsomega.0c01942] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
106 Ming Z, Wang W, Xie Y, Ding P, Chen Y, Jin D, Sun Y, Xia B, Yan L, Lou Z. Crystal structure of the novel di-nucleotide cyclase from Vibrio cholerae (DncV) responsible for synthesizing a hybrid cyclic GMP-AMP. Cell Res 2014;24:1270-3. [PMID: 25245040 DOI: 10.1038/cr.2014.123] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
107 Schaap P. Cyclic di-nucleotide signaling enters the eukaryote domain. IUBMB Life 2013;65:897-903. [PMID: 24136904 DOI: 10.1002/iub.1212] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
108 Krasteva PV, Sondermann H. Versatile modes of cellular regulation via cyclic dinucleotides. Nat Chem Biol 2017;13:350-9. [PMID: 28328921 DOI: 10.1038/nchembio.2337] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 11.8] [Reference Citation Analysis]
109 Hengge R, Häussler S, Pruteanu M, Stülke J, Tschowri N, Turgay K. Recent Advances and Current Trends in Nucleotide Second Messenger Signaling in Bacteria. J Mol Biol 2019;431:908-27. [PMID: 30668970 DOI: 10.1016/j.jmb.2019.01.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
110 McFarland AP, Luo S, Ahmed-Qadri F, Zuck M, Thayer EF, Goo YA, Hybiske K, Tong L, Woodward JJ. Sensing of Bacterial Cyclic Dinucleotides by the Oxidoreductase RECON Promotes NF-κB Activation and Shapes a Proinflammatory Antibacterial State. Immunity 2017;46:433-45. [PMID: 28329705 DOI: 10.1016/j.immuni.2017.02.014] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 12.2] [Reference Citation Analysis]
111 Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer 2020;19:133. [PMID: 32854711 DOI: 10.1186/s12943-020-01250-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
112 Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Mol Cell 2020;77:709-722.e7. [PMID: 31932165 DOI: 10.1016/j.molcel.2019.12.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 19.0] [Reference Citation Analysis]
113 Li Y, James SJ, Wyllie DH, Wynne C, Czibula A, Bukhari A, Pye K, Bte Mustafah SM, Fajka-Boja R, Szabo E, Angyal A, Hegedus Z, Kovacs L, Hill AVS, Jefferies CA, Wilson HL, Yongliang Z, Kiss-Toth E. TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages. Proc Natl Acad Sci U S A 2019;116:16479-88. [PMID: 31346090 DOI: 10.1073/pnas.1901090116] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
114 Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, Pei ZM. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res 2014;42:8243-57. [PMID: 24981511 DOI: 10.1093/nar/gku569] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 9.9] [Reference Citation Analysis]
115 Wright TA, Jiang L, Park JJ, Anderson WA, Chen G, Hallberg ZF, Nan B, Hammond MC. Second messengers and divergent HD-GYP phosphodiesterases regulate 3',3'-cGAMP signaling. Mol Microbiol 2020;113:222-36. [PMID: 31665539 DOI: 10.1111/mmi.14412] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
116 Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 2016;52:9327-42. [PMID: 27339003 DOI: 10.1039/c6cc03439j] [Cited by in Crossref: 56] [Cited by in F6Publishing: 23] [Article Influence: 9.3] [Reference Citation Analysis]
117 Almagro-Moreno S, Taylor RK. Cholera: Environmental Reservoirs and Impact on Disease Transmission. Microbiol Spectr 2013;1. [PMID: 26184966 DOI: 10.1128/microbiolspec.OH-0003-2012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.9] [Reference Citation Analysis]
118 Fatma S, Chakravarti A, Zeng X, Huang RH. Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3',2'-cGAMP as the second messenger. Nat Commun 2021;12:6381. [PMID: 34737303 DOI: 10.1038/s41467-021-26738-2] [Reference Citation Analysis]
119 Gatsios A, Kim CS, Crawford JM. Escherichia coli small molecule metabolism at the host-microorganism interface. Nat Chem Biol 2021;17:1016-26. [PMID: 34552219 DOI: 10.1038/s41589-021-00807-5] [Reference Citation Analysis]
120 Wagner EGH, Romby P. Small RNAs in Bacteria and Archaea. Elsevier; 2015. pp. 133-208. [DOI: 10.1016/bs.adgen.2015.05.001] [Cited by in Crossref: 313] [Cited by in F6Publishing: 268] [Article Influence: 44.7] [Reference Citation Analysis]
121 Xiao G, Tang H, Zhang S, Ren H, Dai J, Lai L, Lu C, Yao H, Fan H, Wu Z. Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model. Vet Microbiol 2017;199:111-9. [PMID: 28110777 DOI: 10.1016/j.vetmic.2016.12.034] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
122 Ning H, Wang L, Zhou J, Lu Y, Kang J, Ding T, Shen L, Xu Z, Bai Y. Recombinant BCG With Bacterial Signaling Molecule Cyclic di-AMP as Endogenous Adjuvant Induces Elevated Immune Responses After Mycobacterium tuberculosis Infection. Front Immunol 2019;10:1519. [PMID: 31333655 DOI: 10.3389/fimmu.2019.01519] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
123 Kato K, Ishii R, Hirano S, Ishitani R, Nureki O. Structural Basis for the Catalytic Mechanism of DncV, Bacterial Homolog of Cyclic GMP-AMP Synthase. Structure 2015;23:843-50. [PMID: 25865248 DOI: 10.1016/j.str.2015.01.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
124 Hornung V, Hartmann R, Ablasser A, Hopfner KP. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol. 2014;14:521-528. [PMID: 25033909 DOI: 10.1038/nri3719] [Cited by in Crossref: 146] [Cited by in F6Publishing: 140] [Article Influence: 18.3] [Reference Citation Analysis]
125 Waters CM. Au naturale: use of biologically derived cyclic di-nucleotides for cancer immunotherapy. Open Biol 2021;11:210277. [PMID: 34905701 DOI: 10.1098/rsob.210277] [Reference Citation Analysis]
126 Manneh-Roussel J, Haycocks JRJ, Magán A, Perez-Soto N, Voelz K, Camilli A, Krachler AM, Grainger DC. cAMP Receptor Protein Controls Vibrio cholerae Gene Expression in Response to Host Colonization. mBio 2018;9:e00966-18. [PMID: 29991587 DOI: 10.1128/mBio.00966-18] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
127 Lowey B, Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT, Antine SP, Cabrera VJ, Kashin D, Niemann P, Jain M, Schwede F, Mekalanos JJ, Shao S, Lee ASY, Kranzusch PJ. CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection. Cell 2020;182:38-49.e17. [PMID: 32544385 DOI: 10.1016/j.cell.2020.05.019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 12.5] [Reference Citation Analysis]
128 Bai Y, Yang J, Eisele LE, Underwood AJ, Koestler BJ, Waters CM, Metzger DW, Bai G. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J Bacteriol 2013;195:5123-32. [PMID: 24013631 DOI: 10.1128/JB.00769-13] [Cited by in Crossref: 89] [Cited by in F6Publishing: 64] [Article Influence: 9.9] [Reference Citation Analysis]
129 Danchin A, Ouzounis C, Tokuyasu T, Zucker JD. No wisdom in the crowd: genome annotation in the era of big data - current status and future prospects. Microb Biotechnol 2018;11:588-605. [PMID: 29806194 DOI: 10.1111/1751-7915.13284] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
130 Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, Qadri F, Thomson NR. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Sci Rep 2019;9:5865. [PMID: 30971707 DOI: 10.1038/s41598-019-41883-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
131 Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ. Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell 2018;174:300-311.e11. [PMID: 30007416 DOI: 10.1016/j.cell.2018.06.026] [Cited by in Crossref: 94] [Cited by in F6Publishing: 90] [Article Influence: 31.3] [Reference Citation Analysis]
132 Tschowri N. Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species. J Bacteriol 2016;198:47-54. [PMID: 26216850 DOI: 10.1128/JB.00423-15] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
133 Boyd EF, Carpenter MR, Chowdhury N, Cohen AL, Haines-Menges BL, Kalburge SS, Kingston JJ, Lubin JB, Ongagna-Yhombi SY, Whitaker WB. Post-Genomic Analysis of Members of the Family Vibrionaceae. Microbiol Spectr 2015;3. [PMID: 26542048 DOI: 10.1128/microbiolspec.VE-0009-2014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
134 Bogard RW, Davies BW, Mekalanos JJ. MetR-regulated Vibrio cholerae metabolism is required for virulence. mBio 2012;3:e00236-12. [PMID: 23015737 DOI: 10.1128/mBio.00236-12] [Cited by in Crossref: 29] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
135 Whiteley AT, Garelis NE, Peterson BN, Choi PH, Tong L, Woodward JJ, Portnoy DA. c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol Microbiol 2017;104:212-33. [PMID: 28097715 DOI: 10.1111/mmi.13622] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 11.8] [Reference Citation Analysis]
136 Gao J, Tao J, Liang W, Jiang Z. Cyclic (di)nucleotides: the common language shared by microbe and host. Curr Opin Microbiol 2016;30:79-87. [PMID: 26871480 DOI: 10.1016/j.mib.2015.12.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
137 Agostoni M, Montgomery BL. Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life (Basel) 2014;4:745-69. [PMID: 25411927 DOI: 10.3390/life4040745] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
138 Burdette DL, Vance RE. STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol. 2013;14:19-26. [PMID: 23238760 DOI: 10.1038/ni.2491] [Cited by in Crossref: 291] [Cited by in F6Publishing: 289] [Article Influence: 32.3] [Reference Citation Analysis]
139 Paijo J, Kaever V, Kalinke U. cGAMP Quantification in Virus-Infected Human Monocyte-Derived Cells by HPLC-Coupled Tandem Mass Spectrometry. Methods Mol Biol 2017;1656:153-66. [PMID: 28808968 DOI: 10.1007/978-1-4939-7237-1_9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
140 Lv Y, Sun Q, Wang X, Lu Y, Li Y, Yuan H, Zhu J, Zhu D. Highly Efficient Preparation of Cyclic Dinucleotides via Engineering of Dinucleotide Cyclases in Escherichia coli. Front Microbiol 2019;10:2111. [PMID: 31572324 DOI: 10.3389/fmicb.2019.02111] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
141 He J, Yin W, Galperin MY, Chou SH. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res 2020;48:2807-29. [PMID: 32095817 DOI: 10.1093/nar/gkaa112] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 11.5] [Reference Citation Analysis]
142 Dorman MJ, Kane L, Domman D, Turnbull JD, Cormie C, Fazal MA, Goulding DA, Russell JE, Alexander S, Thomson NR. The history, genome and biology of NCTC 30: a non-pandemic Vibrio cholerae isolate from World War One. Proc Biol Sci 2019;286:20182025. [PMID: 30966987 DOI: 10.1098/rspb.2018.2025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
143 Majzoub K, Wrensch F, Baumert TF. The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses 2019;11:E758. [PMID: 31426357 DOI: 10.3390/v11080758] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
144 Hee CS, Habazettl J, Schmutz C, Schirmer T, Jenal U, Grzesiek S. Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP. Proc Natl Acad Sci U S A 2020;117:17211-20. [PMID: 32611811 DOI: 10.1073/pnas.2001232117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
145 Wang C, Hao M, Qi Q, Dang J, Dong X, Lv S, Xiong L, Gao H, Jia G, Chen Y, Hartig JS, Li C. Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel-Crafts Reactions in Water. Angew Chem Int Ed Engl 2020;59:3444-9. [PMID: 31825550 DOI: 10.1002/anie.201912962] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
146 Barth ZK, Netter Z, Angermeyer A, Bhardwaj P, Seed KD. A Family of Viral Satellites Manipulates Invading Virus Gene Expression and Can Affect Cholera Toxin Mobilization. mSystems 2020;5:e00358-20. [PMID: 33051375 DOI: 10.1128/mSystems.00358-20] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
147 Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, Tuschl T, Patel DJ. Cyclic [G(2',5')pA(3',5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013;153:1094-107. [PMID: 23647843 DOI: 10.1016/j.cell.2013.04.046] [Cited by in Crossref: 490] [Cited by in F6Publishing: 462] [Article Influence: 54.4] [Reference Citation Analysis]
148 Roux N, Spagnolo J, de Bentzmann S. Neglected but amazingly diverse type IVb pili. Res Microbiol 2012;163:659-73. [PMID: 23103334 DOI: 10.1016/j.resmic.2012.10.015] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
149 Druzhinin SY, Tran NT, Skalenko KS, Goldman SR, Knoblauch JG, Dove SL, Nickels BE. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq. PLoS Genet 2015;11:e1005348. [PMID: 26131907 DOI: 10.1371/journal.pgen.1005348] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
150 Danilchanka O, Mekalanos JJ. Cyclic dinucleotides and the innate immune response. Cell 2013;154:962-70. [PMID: 23993090 DOI: 10.1016/j.cell.2013.08.014] [Cited by in Crossref: 121] [Cited by in F6Publishing: 125] [Article Influence: 13.4] [Reference Citation Analysis]
151 Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner KP, Ludwig J, Hornung V. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 2013;498:380-4. [PMID: 23722158 DOI: 10.1038/nature12306] [Cited by in Crossref: 703] [Cited by in F6Publishing: 677] [Article Influence: 78.1] [Reference Citation Analysis]
152 Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018;9:2686. [PMID: 30473684 DOI: 10.3389/fmicb.2018.02686] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
153 Kellenberger CA, Wilson SC, Hickey SF, Gonzalez TL, Su Y, Hallberg ZF, Brewer TF, Iavarone AT, Carlson HK, Hsieh YF, Hammond MC. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. Proc Natl Acad Sci U S A 2015;112:5383-8. [PMID: 25848022 DOI: 10.1073/pnas.1419328112] [Cited by in Crossref: 90] [Cited by in F6Publishing: 77] [Article Influence: 12.9] [Reference Citation Analysis]
154 Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021;9:917. [PMID: 34452042 DOI: 10.3390/vaccines9080917] [Reference Citation Analysis]
155 Braun F, Recalde A, Bähre H, Seifert R, Albers SV. Putative Nucleotide-Based Second Messengers in the Archaeal Model Organisms Haloferax volcanii and Sulfolobus acidocaldarius. Front Microbiol 2021;12:779012. [PMID: 34880846 DOI: 10.3389/fmicb.2021.779012] [Reference Citation Analysis]
156 Pavlova N, Kaloudas D, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene 2019;708:38-48. [PMID: 31128223 DOI: 10.1016/j.gene.2019.05.036] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
157 Das B, Nair GB, Bhadra RK. Acquisition and dissemination mechanisms of CTXΦ in Vibrio cholerae: New paradigm for dif residents. World J Med Genet 2014; 4(2): 27-33 [DOI: 10.5496/wjmg.v4.i2.27] [Reference Citation Analysis]
158 Burroughs AM, Zhang D, Schäffer DE, Iyer LM, Aravind L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res 2015;43:10633-54. [PMID: 26590262 DOI: 10.1093/nar/gkv1267] [Cited by in Crossref: 86] [Cited by in F6Publishing: 76] [Article Influence: 12.3] [Reference Citation Analysis]
159 Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013;339:826-30. [PMID: 23258412 DOI: 10.1126/science.1229963] [Cited by in Crossref: 1038] [Cited by in F6Publishing: 983] [Article Influence: 103.8] [Reference Citation Analysis]
160 Rubin EJ, Herrera CM, Crofts AA, Trent MS. PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Chemother 2015;59:2051-61. [PMID: 25605366 DOI: 10.1128/AAC.05052-14] [Cited by in Crossref: 51] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
161 Wang M, Chaudhuri R, Ong WWS, Sintim HO. c-di-GMP Induces COX-2 Expression in Macrophages in a STING-Independent Manner. ACS Chem Biol 2021;16:1663-70. [PMID: 34478263 DOI: 10.1021/acschembio.1c00342] [Reference Citation Analysis]
162 Moore S, Thomson N, Mutreja A, Piarroux R. Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones. Clin Microbiol Infect 2014;20:373-9. [PMID: 24575898 DOI: 10.1111/1469-0691.12610] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
163 Ma Y, Xu H, Sun B, Du S, Cui S, Zhang L, Ding N, Yang D. pH-Responsive Oxygen and Hydrogen Peroxide Self-Supplying Nanosystem for Photodynamic and Chemodynamic Therapy of Wound Infection. ACS Appl Mater Interfaces 2021;13:59720-30. [PMID: 34889592 DOI: 10.1021/acsami.1c19681] [Reference Citation Analysis]
164 Hallberg ZF, Chan CH, Wright TA, Kranzusch PJ, Doxzen KW, Park JJ, Bond DR, Hammond MC. Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. Elife 2019;8:e43959. [PMID: 30964001 DOI: 10.7554/eLife.43959] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
165 Deng MJ, Tao J, E C, Ye ZY, Jiang Z, Yu J, Su XD. Novel Mechanism for Cyclic Dinucleotide Degradation Revealed by Structural Studies of Vibrio Phosphodiesterase V-cGAP3. J Mol Biol 2018;430:5080-93. [PMID: 30365951 DOI: 10.1016/j.jmb.2018.10.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
166 Karanja CW, Yeboah KS, Sintim HO. Identification of a Mycobacterium tuberculosis Cyclic Dinucleotide Phosphodiesterase Inhibitor. ACS Infect Dis 2021;7:309-17. [PMID: 33492938 DOI: 10.1021/acsinfecdis.0c00444] [Reference Citation Analysis]
167 Nguyen AN, Jacq A. Small RNAs in the Vibrionaceae: an ocean still to be explored. Wiley Interdiscip Rev RNA 2014;5:381-92. [PMID: 24458378 DOI: 10.1002/wrna.1218] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
168 Römling U. Cyclic di-GMP Signaling in Salmonella enterica serovar Typhimurium. In: Chou S, Guiliani N, Lee VT, Römling U, editors. Microbial Cyclic Di-Nucleotide Signaling. Cham: Springer International Publishing; 2020. pp. 395-425. [DOI: 10.1007/978-3-030-33308-9_24] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Khan S, Godfrey V, Zaki MH. Cytosolic Nucleic Acid Sensors in Inflammatory and Autoimmune Disorders. Int Rev Cell Mol Biol 2019;344:215-53. [PMID: 30798989 DOI: 10.1016/bs.ircmb.2018.10.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
170 Toffano-Nioche C, Nguyen AN, Kuchly C, Ott A, Gautheret D, Bouloc P, Jacq A. Transcriptomic profiling of the oyster pathogen Vibrio splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the Vibrio genus. RNA 2012;18:2201-19. [PMID: 23097430 DOI: 10.1261/rna.033324.112] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
171 Kinzie CR, Steele AD, Pasciolla SM, Wuest WM. Synthesis of cyclic dimeric methyl morpholinoside—a common synthetic precursor to cyclic dinucleotide analogs. Tetrahedron Letters 2014;55:4966-8. [DOI: 10.1016/j.tetlet.2014.07.038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
172 Zhao Z, Wu Z, Zhang J. Crystal structure of the YajQ-family protein XC_3703 from Xanthomonas campestris pv. campestris. Acta Crystallogr F Struct Biol Commun 2016;72:720-5. [PMID: 27599864 DOI: 10.1107/S2053230X16013017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
173 Hengge R, Gründling A, Jenal U, Ryan R, Yildiz F. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers. J Bacteriol 2016;198:15-26. [PMID: 26055111 DOI: 10.1128/JB.00331-15] [Cited by in Crossref: 82] [Cited by in F6Publishing: 55] [Article Influence: 13.7] [Reference Citation Analysis]
174 Launer-Felty KD, Strobel SA. Enzymatic synthesis of cyclic dinucleotide analogs by a promiscuous cyclic-AMP-GMP synthetase and analysis of cyclic dinucleotide responsive riboswitches. Nucleic Acids Res 2018;46:2765-76. [PMID: 29514227 DOI: 10.1093/nar/gky137] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
175 Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020;10:561296. [PMID: 33123494 DOI: 10.3389/fcimb.2020.561296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
176 Du XX, Su XD. Detection of Cyclic Dinucleotides by STING. Methods Mol Biol 2017;1657:59-69. [PMID: 28889286 DOI: 10.1007/978-1-4939-7240-1_6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
177 Tarashima NS, Kumanomido Y, Nakashima K, Tanaka Y, Minakawa N. Synthesis of a Cyclic Dinucleotide Analogue with Ambiguous Bases, 5-Aminoimidazole-4-carboxamide. J Org Chem 2021;86:15004-10. [PMID: 34652132 DOI: 10.1021/acs.joc.1c01706] [Reference Citation Analysis]
178 Wang C, Hao M, Qi Q, Chen Y, Hartig JS. Chemical synthesis, purification, and characterization of 3'-5'-linked canonical cyclic dinucleotides (CDNs). Methods Enzymol 2019;625:41-59. [PMID: 31455536 DOI: 10.1016/bs.mie.2019.04.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
179 Ren A, Wang XC, Kellenberger CA, Rajashankar KR, Jones RA, Hammond MC, Patel DJ. Structural basis for molecular discrimination by a 3',3'-cGAMP sensing riboswitch. Cell Rep 2015;11:1-12. [PMID: 25818298 DOI: 10.1016/j.celrep.2015.03.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
180 Cong X, Yuan Z, Du Y, Wu B, Lu D, Wu X, Zhang Y, Li F, Wei B, Li J, Wu J, Xu S, Wang J, Qi J, Shang G, Gu L. Crystal structures of porcine STINGCBD-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins. J Biol Chem 2019;294:11420-32. [PMID: 31167783 DOI: 10.1074/jbc.RA119.007367] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
181 Wang YC, Chin KH, Tu ZL, He J, Jones CJ, Sanchez DZ, Yildiz FH, Galperin MY, Chou SH. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 2016;7:12481. [PMID: 27578558 DOI: 10.1038/ncomms12481] [Cited by in Crossref: 67] [Cited by in F6Publishing: 53] [Article Influence: 11.2] [Reference Citation Analysis]
182 Zhao Z, Ma Z, Wang B, Guan Y, Su XD, Jiang Z. Mn2+ Directly Activates cGAS and Structural Analysis Suggests Mn2+ Induces a Noncanonical Catalytic Synthesis of 2'3'-cGAMP. Cell Rep 2020;32:108053. [PMID: 32814054 DOI: 10.1016/j.celrep.2020.108053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
183 Chen ZH, Schaap P. Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum. J Bacteriol 2016;198:27-31. [PMID: 26013485 DOI: 10.1128/JB.00321-15] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
184 Altindis E, Dong T, Catalano C, Mekalanos J. Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. mBio 2015;6:e00075. [PMID: 25759499 DOI: 10.1128/mBio.00075-15] [Cited by in Crossref: 63] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
185 Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM, Vance RE, Valdivia RH. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 2013;4:e00018-13. [PMID: 23631912 DOI: 10.1128/mBio.00018-13] [Cited by in Crossref: 141] [Cited by in F6Publishing: 92] [Article Influence: 15.7] [Reference Citation Analysis]
186 Tao J, Zhou X, Jiang Z. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life. 2016;68:858-870. [PMID: 27706894 DOI: 10.1002/iub.1566] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 9.3] [Reference Citation Analysis]
187 Shi H, Wu J, Chen ZJ, Chen C. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proc Natl Acad Sci U S A 2015;112:8947-52. [PMID: 26150511 DOI: 10.1073/pnas.1507317112] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 5.4] [Reference Citation Analysis]
188 Wang C, Sinn M, Stifel J, Heiler AC, Sommershof A, Hartig JS. Synthesis of All Possible Canonical (3'-5'-Linked) Cyclic Dinucleotides and Evaluation of Riboswitch Interactions and Immune-Stimulatory Effects. J Am Chem Soc 2017;139:16154-60. [PMID: 29056046 DOI: 10.1021/jacs.7b06141] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
189 Saito-Tarashima N, Kinoshita M, Igata Y, Kashiwabara Y, Minakawa N. Replacement of oxygen with sulfur on the furanose ring of cyclic dinucleotides enhances the immunostimulatory effect via STING activation. RSC Med Chem 2021;12:1519-24. [PMID: 34671735 DOI: 10.1039/d1md00114k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Lambert B, Dassanayake M, Oh DH, Garrett SB, Lee SY, Pettis GS. A novel phase variant of the cholera pathogen shows stress-adaptive cryptic transcriptomic signatures. BMC Genomics 2016;17:914. [PMID: 27842489 DOI: 10.1186/s12864-016-3233-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
191 Yi G, Brendel VP, Shu C, Li P, Palanathan S, Cheng Kao C. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLoS One 2013;8:e77846. [PMID: 24204993 DOI: 10.1371/journal.pone.0077846] [Cited by in Crossref: 119] [Cited by in F6Publishing: 114] [Article Influence: 13.2] [Reference Citation Analysis]
192 Shyp V, Dubey BN, Böhm R, Hartl J, Nesper J, Vorholt JA, Hiller S, Schirmer T, Jenal U. Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus. Nat Microbiol 2021;6:59-72. [PMID: 33168988 DOI: 10.1038/s41564-020-00809-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
193 Hu D, Liu B, Feng L, Ding P, Guo X, Wang M, Cao B, Reeves PR, Wang L. Origins of the current seventh cholera pandemic. Proc Natl Acad Sci U S A 2016;113:E7730-9. [PMID: 27849586 DOI: 10.1073/pnas.1608732113] [Cited by in Crossref: 83] [Cited by in F6Publishing: 57] [Article Influence: 13.8] [Reference Citation Analysis]
194 Cordova AF, Ritchie C, Böhnert V, Li L. Human SLC46A2 Is the Dominant cGAMP Importer in Extracellular cGAMP-Sensing Macrophages and Monocytes. ACS Cent Sci 2021;7:1073-88. [PMID: 34235268 DOI: 10.1021/acscentsci.1c00440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
195 Zhao X, Zhang Y, Huang X. Pathogenicity-island-encoded regulatory RNAs regulate bacterial virulence and pathogenesis. Microb Pathog 2018;125:196-204. [PMID: 30227229 DOI: 10.1016/j.micpath.2018.09.028] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
196 Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 2013;51:226-35. [PMID: 23747010 DOI: 10.1016/j.molcel.2013.05.022] [Cited by in Crossref: 479] [Cited by in F6Publishing: 462] [Article Influence: 53.2] [Reference Citation Analysis]
197 Marinho FV, Benmerzoug S, Oliveira SC, Ryffel B, Quesniaux VFJ. The Emerging Roles of STING in Bacterial Infections. Trends Microbiol 2017;25:906-18. [PMID: 28625530 DOI: 10.1016/j.tim.2017.05.008] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 9.8] [Reference Citation Analysis]
198 Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ, Kranzusch PJ. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 2019;567:194-9. [PMID: 30787435 DOI: 10.1038/s41586-019-0953-5] [Cited by in Crossref: 104] [Cited by in F6Publishing: 82] [Article Influence: 34.7] [Reference Citation Analysis]
199 Severin GB, Waters CM. Pyrimidines and Cyclic Trinucleotides Join the Second Messenger Symphony. Cell Host Microbe 2019;25:471-3. [PMID: 30974077 DOI: 10.1016/j.chom.2019.03.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
200 Liu Y, Liu B, Xu T, Wang Q, Li W, Wu J, Zheng X, Liu B, Liu R, Liu X, Guo X, Feng L, Wang L. A fructose/H+ symporter controlled by a LacI-type regulator promotes survival of pandemic Vibrio cholerae in seawater. Nat Commun 2021;12:4649. [PMID: 34330925 DOI: 10.1038/s41467-021-24971-3] [Reference Citation Analysis]
201 Gao P, Patel DJ. V-cGAPs: attenuators of 3'3'-cGAMP signaling. Cell Res 2015;25:529-30. [PMID: 25906992 DOI: 10.1038/cr.2015.48] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
202 Latoscha A, Wörmann ME, Tschowri N. Nucleotide second messengers in Streptomyces. Microbiology (Reading) 2019;165:1153-65. [PMID: 31535967 DOI: 10.1099/mic.0.000846] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
203 Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013;77:1-52. [PMID: 23471616 DOI: 10.1128/MMBR.00043-12] [Cited by in Crossref: 998] [Cited by in F6Publishing: 598] [Article Influence: 110.9] [Reference Citation Analysis]
204 Bryant AJ, Pham A, Gogoi H, Mitchell CR, Pais F, Jin L. The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulm Circ 2021;11:2045894021996574. [PMID: 33738095 DOI: 10.1177/2045894021996574] [Reference Citation Analysis]
205 Ikuo M, Nagano G, Saito Y, Mao H, Sekimizu K, Kaito C. Inhibition of exotoxin production by mobile genetic element SCCmec-encoded psm-mec RNA is conserved in staphylococcal species. PLoS One 2014;9:e100260. [PMID: 24926994 DOI: 10.1371/journal.pone.0100260] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
206 Li Y, Wilson HL, Kiss-Toth E. Regulating STING in health and disease. J Inflamm (Lond) 2017;14:11. [PMID: 28596706 DOI: 10.1186/s12950-017-0159-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
207 Murphy SG, Johnson BA, Ledoux CM, Dörr T. Vibrio cholerae's mysterious Seventh Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation. PLoS Genet 2021;17:e1009624. [PMID: 34153031 DOI: 10.1371/journal.pgen.1009624] [Reference Citation Analysis]
208 Li L. Host-Pathogen interactions: Nucleotide circles of life and death. Nat Chem Biol 2017;13:130-1. [PMID: 28103224 DOI: 10.1038/nchembio.2289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
209 Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 2013;3:1355-61. [PMID: 23707065 DOI: 10.1016/j.celrep.2013.05.009] [Cited by in Crossref: 418] [Cited by in F6Publishing: 394] [Article Influence: 46.4] [Reference Citation Analysis]
210 DuPai CD, Wilke CO, Davies BW. A Comprehensive Coexpression Network Analysis in Vibrio cholerae. mSystems 2020;5:e00550-20. [PMID: 32636337 DOI: 10.1128/mSystems.00550-20] [Reference Citation Analysis]
211 Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 2015;112:E5048-57. [PMID: 26305945 DOI: 10.1073/pnas.1507245112] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 11.3] [Reference Citation Analysis]
212 Johnson BM, Uchimura T, Gallovic MD, Thamilarasan M, Chou WC, Gibson SA, Deng M, Tam JW, Batty CJ, Williams J, Matsushima GK, Bachelder EM, Ainslie KM, Markovic-Plese S, Ting JP. STING Agonist Mitigates Experimental Autoimmune Encephalomyelitis by Stimulating Type I IFN-Dependent and -Independent Immune-Regulatory Pathways. J Immunol 2021;206:2015-28. [PMID: 33820855 DOI: 10.4049/jimmunol.2001317] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Gomez-gil B, Thompson CC, Matsumura Y, Sawabe T, Iida T, Christen R, Thompson F, Sawabe T. The Famlily Vibrionaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin: Springer Berlin Heidelberg; 2014. pp. 659-747. [DOI: 10.1007/978-3-642-38922-1_225] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
214 Corrigan RM, Gründling A. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 2013;11:513-24. [PMID: 23812326 DOI: 10.1038/nrmicro3069] [Cited by in Crossref: 236] [Cited by in F6Publishing: 209] [Article Influence: 26.2] [Reference Citation Analysis]
215 Xiao TS, Fitzgerald KA. The cGAS-STING pathway for DNA sensing. Mol Cell 2013;51:135-9. [PMID: 23870141 DOI: 10.1016/j.molcel.2013.07.004] [Cited by in Crossref: 89] [Cited by in F6Publishing: 88] [Article Influence: 9.9] [Reference Citation Analysis]
216 Zeng L, Kang R, Zhu S, Wang X, Cao L, Wang H, Billiar TR, Jiang J, Tang D. ALK is a therapeutic target for lethal sepsis. Sci Transl Med 2017;9:eaan5689. [PMID: 29046432 DOI: 10.1126/scitranslmed.aan5689] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 12.8] [Reference Citation Analysis]
217 Johnson CN. Fitness factors in vibrios: a mini-review. Microb Ecol 2013;65:826-51. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
218 Baranova DE, Willsey GG, Levinson KJ, Smith C, Wade J, Mantis NJ. Transcriptional profiling of Vibrio cholerae O1 following exposure to human anti- lipopolysaccharide monoclonal antibodies. Pathog Dis 2020;78:ftaa029. [PMID: 32589220 DOI: 10.1093/femspd/ftaa029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
219 Shang M, Lu K, Guan W, Cao S, Ren M, Zhou C. 2',3'-Cyclic GMP-AMP Dinucleotides for STING-Mediated Immune Modulation: Principles, Immunotherapeutic Potential, and Synthesis. ChemMedChem 2021. [PMID: 34807508 DOI: 10.1002/cmdc.202100671] [Reference Citation Analysis]
220 Kang KN, Klein DR, Kazi MI, Guérin F, Cattoir V, Brodbelt JS, Boll JM. Colistin heteroresistance in Enterobacter cloacae is regulated by PhoPQ-dependent 4-amino-4-deoxy-l-arabinose addition to lipid A. Mol Microbiol 2019;111:1604-16. [PMID: 30873646 DOI: 10.1111/mmi.14240] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
221 Che X, Zhang J, Zhu Y, Yang L, Quan H, Gao YQ. Structural Flexibility and Conformation Features of Cyclic Dinucleotides in Aqueous Solutions. J Phys Chem B 2016;120:2670-80. [PMID: 26878265 DOI: 10.1021/acs.jpcb.5b11531] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
222 Purcell EB, Tamayo R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev 2016;40:753-73. [PMID: 27354347 DOI: 10.1093/femsre/fuw013] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
223 Yadav M, Pal K, Sen U. Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication. Biochem J 2019;476:3333-53. [PMID: 31647518 DOI: 10.1042/BCJ20190399] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
224 Knauf GA, Cunningham AL, Kazi MI, Riddington IM, Crofts AA, Cattoir V, Trent MS, Davies BW. Exploring the Antimicrobial Action of Quaternary Amines against Acinetobacter baumannii. mBio 2018;9:e02394-17. [PMID: 29437928 DOI: 10.1128/mBio.02394-17] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
225 Römling U, Galperin MY. Discovery of the Second Messenger Cyclic di-GMP. Methods Mol Biol 2017;1657:1-8. [PMID: 28889281 DOI: 10.1007/978-1-4939-7240-1_1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
226 Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 2013;110:9084-9. [PMID: 23671116 DOI: 10.1073/pnas.1300595110] [Cited by in Crossref: 179] [Cited by in F6Publishing: 157] [Article Influence: 19.9] [Reference Citation Analysis]
227 Fu Y, Waldor MK, Mekalanos JJ. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 2013;14:652-63. [PMID: 24331463 DOI: 10.1016/j.chom.2013.11.001] [Cited by in Crossref: 168] [Cited by in F6Publishing: 146] [Article Influence: 21.0] [Reference Citation Analysis]
228 Roembke BT, Zhou J, Zheng Y, Sayre D, Lizardo A, Bernard L, Sintim HO. A cyclic dinucleotide containing 2-aminopurine is a general fluorescent sensor for c-di-GMP and 3',3'-cGAMP. Mol Biosyst 2014;10:1568-75. [PMID: 24705858 DOI: 10.1039/c3mb70518h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
229 Fang P, Guo M. The Nature's Clever Trick for Making Cyclic Dinucleotide. Structure 2015;23:801-2. [PMID: 25955098 DOI: 10.1016/j.str.2015.04.011] [Reference Citation Analysis]
230 Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 2015;97:189-204. [PMID: 25869574 DOI: 10.1111/mmi.13026] [Cited by in Crossref: 96] [Cited by in F6Publishing: 84] [Article Influence: 13.7] [Reference Citation Analysis]
231 Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y, Chaudhary V, Yuen KS, Ho TH, Chan CP, Zhang Y, Kok KH, Yang W, Chan CP, Jin DY. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Res 2018;46:4054-71. [PMID: 29547894 DOI: 10.1093/nar/gky186] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
232 Müller M, Hopfner KP, Witte G. c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett 2015;589:45-51. [PMID: 25435171 DOI: 10.1016/j.febslet.2014.11.022] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
233 Huber M, Fröhlich KS, Radmer J, Papenfort K. Switching fatty acid metabolism by an RNA-controlled feed forward loop. Proc Natl Acad Sci U S A 2020;117:8044-54. [PMID: 32193348 DOI: 10.1073/pnas.1920753117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
234 Jenson J, Chen ZJ. Bacteria sting viral invaders. Nature 2020;586:363-4. [PMID: 32989308 DOI: 10.1038/d41586-020-02712-8] [Reference Citation Analysis]
235 Wang X, Cole CG, DuPai CD, Davies BW. Protein Aggregation is Associated with Acinetobacter baumannii Desiccation Tolerance. Microorganisms 2020;8:E343. [PMID: 32121206 DOI: 10.3390/microorganisms8030343] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
236 Keller H, Weickhmann AK, Bock T, Wöhnert J. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches. RNA 2018;24:1390-402. [PMID: 30006500 DOI: 10.1261/rna.067470.118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
237 Gundlach J, Dickmanns A, Schröder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C, Hammer E, Schwede F, Kaever V, Tittmann K, Stülke J, Ficner R. Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. J Biol Chem 2015;290:3069-80. [PMID: 25433025 DOI: 10.1074/jbc.M114.619619] [Cited by in Crossref: 55] [Cited by in F6Publishing: 38] [Article Influence: 6.9] [Reference Citation Analysis]
238 Angeloni J, Dong Y, Wang Z, Cao M. Bacterial second messenger 3',5'-cyclic diguanylate attracts Caenorhabditis elegans and suppresses its immunity. Commun Biol 2020;3:700. [PMID: 33219258 DOI: 10.1038/s42003-020-01436-9] [Reference Citation Analysis]
239 Govande AA, Duncan-Lowey B, Eaglesham JB, Whiteley AT, Kranzusch PJ. Molecular basis of CD-NTase nucleotide selection in CBASS anti-phage defense. Cell Rep 2021;35:109206. [PMID: 34077735 DOI: 10.1016/j.celrep.2021.109206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]