BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shutov L, Kruglikov I, Gryshchenko O, Khomula E, Viatchenko-Karpinski V, Belan P, Voitenko N. The effect of nimodipine on calcium homeostasis and pain sensitivity in diabetic rats. Cell Mol Neurobiol 2006;26:1541-57. [PMID: 16838100 DOI: 10.1007/s10571-006-9107-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 0.8] [Reference Citation Analysis]
Number Citing Articles
1 Singhal K, Sandhir R. L-type calcium channel blocker ameliorates diabetic encephalopathy by modulating dysregulated calcium homeostasis: Beneficial Effect of CCB in Diabetic Encephalopathy. Journal of Neuroscience Research 2015;93:296-308. [DOI: 10.1002/jnr.23478] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
2 Ferhatovic L, Banozic A, Kostic S, Kurir TT, Novak A, Vrdoljak L, Heffer M, Sapunar D, Puljak L. Expression of Calcium/Calmodulin-Dependent Protein Kinase II and Pain-Related Behavior in Rat Models of Type 1 and Type 2 Diabetes. Anesthesia & Analgesia 2013;116:712-21. [DOI: 10.1213/ane.0b013e318279b540] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.1] [Reference Citation Analysis]
3 Khomula EV, Ferrari LF, Araldi D, Levine JD. Sexual Dimorphism in a Reciprocal Interaction of Ryanodine and IP3 Receptors in the Induction of Hyperalgesic Priming. J Neurosci. 2017;37:2032-2044. [PMID: 28115480 DOI: 10.1523/jneurosci.2911-16.2017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
4 Berti-Mattera LN, Kern TS, Siegel RE, Nemet I, Mitchell R. Sulfasalazine blocks the development of tactile allodynia in diabetic rats. Diabetes 2008;57:2801-8. [PMID: 18633115 DOI: 10.2337/db07-1274] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
5 Baba H, Petrenko AB, Fujiwara N. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats. Brain Res 2016;1648:445-58. [PMID: 27543338 DOI: 10.1016/j.brainres.2016.08.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
6 Hagenacker T, Ledwig D, Büsselberg D. Feedback mechanisms in the regulation of intracellular calcium ([Ca2+]i) in the peripheral nociceptive system: role of TRPV-1 and pain related receptors. Cell Calcium 2008;43:215-27. [PMID: 17673288 DOI: 10.1016/j.ceca.2007.05.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
7 Spitzer MJ, Reeh PW, Sauer SK. Mechanisms of potassium- and capsaicin-induced axonal calcitonin gene-related peptide release: involvement of L- and T-type calcium channels and TRPV1 but not sodium channels. Neuroscience 2008;151:836-42. [PMID: 18178321 DOI: 10.1016/j.neuroscience.2007.10.030] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
8 Khomula EV, Viatchenko-Karpinski VY, Borisyuk AL, Duzhyy DE, Belan PV, Voitenko NV. Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. Biochim Biophys Acta 2013;1832:636-49. [PMID: 23376589 DOI: 10.1016/j.bbadis.2013.01.017] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 4.3] [Reference Citation Analysis]
9 Calcutt NA. Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms? Pain 2020;161:S65-86. [PMID: 32999525 DOI: 10.1097/j.pain.0000000000001922] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
10 Harding EK, Fung SW, Bonin RP. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front Neural Circuits 2020;14:31. [PMID: 32595458 DOI: 10.3389/fncir.2020.00031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
11 Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 2010;47:130-9. [PMID: 20034667 DOI: 10.1016/j.ceca.2009.11.008] [Cited by in Crossref: 82] [Cited by in F6Publishing: 82] [Article Influence: 6.3] [Reference Citation Analysis]
12 Khomula EV, Araldi D, Levine JD. In Vitro Nociceptor Neuroplasticity Associated with In Vivo Opioid-Induced Hyperalgesia. J Neurosci 2019;39:7061-73. [PMID: 31300521 DOI: 10.1523/JNEUROSCI.1191-19.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
13 Araldi D, Khomula EV, Ferrari LF, Levine JD. Fentanyl Induces Rapid Onset Hyperalgesic Priming: Type I at Peripheral and Type II at Central Nociceptor Terminals. J Neurosci 2018;38:2226-45. [PMID: 29431655 DOI: 10.1523/JNEUROSCI.3476-17.2018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
14 Khomula EV, Borisyuk AL, Viatchenko-Karpinski VY, Briede A, Belan PV, Voitenko NV. Nociceptive neurons differentially express fast and slow T-type Ca²⁺ currents in different types of diabetic neuropathy. Neural Plast 2014;2014:938235. [PMID: 24693454 DOI: 10.1155/2014/938235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
15 Lee-Kubli CA, Calcutt NA. Painful neuropathy: Mechanisms. Handb Clin Neurol 2014;126:533-57. [PMID: 25410243 DOI: 10.1016/B978-0-444-53480-4.00034-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
16 Kostyuk EP. Transmission of nociceptive signalling and mechanisms underlying its modulation. Neurophysiology 2007;39:430-4. [DOI: 10.1007/s11062-008-9003-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]