1
|
Lavecchia di Tocco F, Cannistraro S, Bizzarri AR. A PEG-based strategy to improve detection of clinical microRNA 155 by bio-Field Effect Transistor in high ionic strength environment. Talanta 2025; 292:127881. [PMID: 40073819 DOI: 10.1016/j.talanta.2025.127881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
microRNAs are small oligonucleotides involved in post-transcriptional gene regulation whose alteration is found in several diseases, including cancer, and therefore their detection is crucial for diagnosis, prognosis, and treatment purposes. Field-Effect Transistor-based biosensors (bioFETs) represent a promising technology for the clinical detection of microRNAs. However, one of the main challenges associated with this technology is the Debye screening, becoming significant at the high ionic strengths required for effective hybridization. We aimed at detecting oncogenic microRNA-155 by using a bioFET system using as capture element a complementary RNA probe (antimiR-155) combined with the introduction of PEG molecules (20 kDa, PEG20), at an ionic strength of 300 mM. We optimized the co-immobilization ratio between antimiR-155 and PEG20 and assessed its impact on the interactions between the oligonucleotides. The kinetics can be well described by the Langmuir-Freundlich isotherm with an affinity constant within the range typical of nucleic acid interactions. The introduction of PEG20 significantly enhanced the detection sensitivity of miR-155 by reaching a level of less than 200 pM, together with excellent discrimination against other clinically relevant microRNAs. Our findings demonstrate that the incorporation of PEG20 constitutes an effective strategy to mitigate the Debye screening effects and facilitates bioFET-based clinical applications at physiological ionic strengths.
Collapse
Affiliation(s)
- Francesco Lavecchia di Tocco
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy; Department of Biomedical Sciences and Technologies, Università Roma Tre, Viale Guglielmo Marconi, 00144 Rome, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Dietrich S, Dollinger A, Wieser A, Haisch C. Optimization of MALDI Matrices and Their Preparation for the MALDI-TOF MS Analysis of Oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10061. [PMID: 40342176 PMCID: PMC12059521 DOI: 10.1002/rcm.10061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
RATIONALE The reproducibility of the analysis of oligonucleotides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) remains a significant challenge. This is mainly attributed to factors such as the choice and application of the matrix, as well as the inhomogeneity of the sample spots. Although previous studies have explored various parameters, such as ionic and sugar-based matrices, and different spotting methods, none have comprehensively integrated these factors into a unified approach. METHODS Various matrices for the analysis of oligonucleotides and the effects of diverse variables, including different matrices, solvent compositions, additives, and application techniques, on the analytical performance of these matrices were investigated. Mass spectrometry analysis was conducted by a MALDI-TOF MS in linear negative mode. RESULTS Our research systematically evaluates the combined effects of diverse variables to enhance the analytical performance of MALDI-TOF MS in oligonucleotide analysis. We focused on the standard deviation of mass-to-charge ratios and the signal-to-noise (S/N) ratios. Out of 48 samples, only 19 met the S/N criteria, which is that the signals must be detectable over the whole mass range of interest (4-10 kDa). CONCLUSIONS The ionic matrix 6-aza-2-thiothymine (ATT) with 1-methylimidazole resulted consistently in a reduced standard deviation and achieved high mass precisions. Additionally, we observed that the S/N ratios and mass precision of 3-hydroxypicolinic acid (3-HPA) varied significantly depending on the solvent composition and the presence of additives.
Collapse
Affiliation(s)
- Susanne Dietrich
- Chair of Analytical ChemistryTUM School of Natural Sciences, Technical University of MunichMunichGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPImmunology, Infection and Pandemic ResearchFrankfurtGermany
| | - Anja Dollinger
- Chair of Analytical ChemistryTUM School of Natural Sciences, Technical University of MunichMunichGermany
- Institute of Infectious Diseases and Tropical MedicineLMU University Hospital, LMU MunichMunichGermany
| | - Andreas Wieser
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPImmunology, Infection and Pandemic ResearchFrankfurtGermany
- Institute of Infectious Diseases and Tropical MedicineLMU University Hospital, LMU MunichMunichGermany
- German Center for Infection Research (DZIF), Partner SiteMunichGermany
- Max von Pettenkofer Institute, Faculty of MedicineLudwig‐Maximilians University MunichMunichGermany
| | - Christoph Haisch
- Chair of Analytical ChemistryTUM School of Natural Sciences, Technical University of MunichMunichGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPImmunology, Infection and Pandemic ResearchFrankfurtGermany
| |
Collapse
|
3
|
Qian J, Zhang B, Liu C, Xue Y, Zhou H, Huang L, Zheng S, Chen M, Fu YQ. Reconfigurable acoustic tweezer for precise tracking and in-situ sensing of trace miRNAs in tumor cells. Biosens Bioelectron 2025; 282:117505. [PMID: 40288310 DOI: 10.1016/j.bios.2025.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) have emerged as critical biomarkers for early cancer diagnosis and monitoring. However, their isolation from clinical samples typically yields only trace amounts, significantly limiting the sensitivity and efficiency of cancer detection. To address this challenge, we present a octangular reconfigurable acoustic tweezer (ORAT) as an integrated platform for precise tumor cell tracking and in-situ detection of trace miRNAs. By simultaneously modulating multidirectional acoustic signals and parameters, the ORAT dynamically reshapes the acoustic field, enabling precise control over manipulation areas, particle spacing, array angles, distribution patterns, and node rotation. This device allows selective particle manipulation across entire regions or specific areas through adaptive adjustments of the microchamber boundary. Notably, the ORAT achieves rapid and accurate localization and labeling of rare tumor cells within a large population of normal cells. Furthermore, it enhances the sensitivity of CRISPR/Cas-based miRNA detection in digital microdroplets by three orders of magnitude, if compared to that of the conventional tube-based method. With its versatile capabilities, the ORAT holds remarkable promise for advancing nucleic acid analysis in a wide range of cancers and related diseases.
Collapse
Affiliation(s)
- Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bowei Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chuanmin Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuhang Xue
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
4
|
Zhang W, Song Y, Deng D, Liu M, Chen H, Zhang W, Lei H, Li Z, Luo L. Exponential rolling circle amplification-hybridization chain reaction (EXRCA-HCR) for AgNPs@gel-enhanced fluorescence ultrasensitive detection of miRNA-21. Anal Chim Acta 2025; 1358:344095. [PMID: 40374247 DOI: 10.1016/j.aca.2025.344095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/17/2025]
Abstract
MicroRNA (miRNA) is a common tumor marker, whose abnormal expression is often closely related to the occurrence of various diseases. However, the conventional method for detecting miRNA is qRT-PCR, requiring additional reverse transcription steps, well-trained professionals, and expensive thermal cycling equipment. In this work, we propose a novel isothermal amplification technique (exponential rolling circle amplification-hybridization chain reaction, EXRCA-HCR) for AgNPs@gel-enhanced fluorescence specific and ultrasensitive detection of miRNA-21. This novel technique consists of rolling circle amplification (RCA), exponential isothermal amplification reaction (EXPAR) and hybridization chain reaction (HCR). Combining these three amplification methods, EXRCA-HCR provides a unique cascade amplification strategy, inheriting the advantages of linear amplification and exponential amplification. Under optimal conditions, this novel EXRCA-HCR exhibits a wide fluorescent detection range from 200 fM to 200 nM for miRNA-21, with low detection limit of 21.47 fM. By introducing AgNPs@gel, the fabricated paper-based fluorosensor based on EXRCA-HCR provides a simple and rapid visual detection of miRNA-21. This research puts forward a promising approach for detecting miRNA-21, which can be applied for early diagnosis.
Collapse
Affiliation(s)
- Wenjiao Zhang
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yuchen Song
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Meiyin Liu
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Wanyi Zhang
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hong Lei
- College of Sciences, Shanghai University, Shanghai, 200444, PR China; Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai, 200444, PR China
| | - Zhiguo Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, Guangdong, PR China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai, 200444, PR China; Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Vinken M, Grimm D, Baatout S, Baselet B, Beheshti A, Braun M, Carstens AC, Casaletto JA, Cools B, Costes SV, De Meulemeester P, Doruk B, Eyal S, Ferreira MJS, Miranda S, Hahn C, Helvacıoğlu Akyüz S, Herbert S, Krepkiy D, Lichterfeld Y, Liemersdorf C, Krüger M, Marchal S, Ritz J, Schmakeit T, Stenuit H, Tabury K, Trittel T, Wehland M, Zhang YS, Putt KS, Zhang ZY, Tagle DA. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv 2025; 81:108574. [PMID: 40180136 PMCID: PMC12048243 DOI: 10.1016/j.biotechadv.2025.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Human settlements on the Moon, crewed missions to Mars and space tourism will become a reality in the next few decades. Human presence in space, especially for extended periods of time, will therefore steeply increase. However, despite more than 60 years of spaceflight, the mechanisms underlying the effects of the space environment on human physiology are still not fully understood. Animals, ranging in complexity from flies to monkeys, have played a pioneering role in understanding the (patho)physiological outcome of critical environmental factors in space, in particular altered gravity and cosmic radiation. The use of animals in biomedical research is increasingly being criticized because of ethical reasons and limited human relevance. Driven by the 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, major efforts have been focused in the past decades on the development of alternative methods that fully bypass animal testing or so-called new approach methodologies. These new approach methodologies range from simple monolayer cultures of individual primary or stem cells all up to bioprinted 3D organoids and microfluidic chips that recapitulate the complex cellular architecture of organs. Other approaches applied in life sciences in space research contribute to the reduction of animal experimentation. These include methods to mimic space conditions on Earth, such as microgravity and radiation simulators, as well as tools to support the processing, analysis or application of testing results obtained in life sciences in space research, including systems biology, live-cell, high-content and real-time analysis, high-throughput analysis, artificial intelligence and digital twins. The present paper provides an in-depth overview of such methods to replace or reduce animal testing in life sciences in space research.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Baatout
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Bjorn Baselet
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Afshin Beheshti
- Center of Space Biomedicine, McGowan Institute for Regenerative Medicine, and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Markus Braun
- German Space Agency, German Aerospace Center, Bonn, Germany
| | | | - James A Casaletto
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Ben Cools
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Sylvain V Costes
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Phoebe De Meulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bartu Doruk
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Silvana Miranda
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Christiane Hahn
- European Space Agency, Human and Robotic Exploration Programmes, Human Exploration Science team, Noordwijk, the Netherlands
| | - Sinem Helvacıoğlu Akyüz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Herbert
- Space Systems, Airbus Defence and Space, Immenstaad am Bodensee, Germany
| | - Dmitriy Krepkiy
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yannick Lichterfeld
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jette Ritz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Theresa Schmakeit
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hilde Stenuit
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Torsten Trittel
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yu Shrike Zhang
- Division of Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA; Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Danilo A Tagle
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Jin ZY, Ling ZQ. PAQR4: From spatial regulation of cell signaling to physiological homeostasis and diseases. Biochim Biophys Acta Rev Cancer 2025; 1880:189314. [PMID: 40194713 DOI: 10.1016/j.bbcan.2025.189314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Progestin and adipoQ receptor family member 4 (PAQR4) gene is a recently discovered seven-transmembrane protein-coding gene that belongs to the PAQR family. An increasing amount of evidence suggests that PAQR4 is upregulated in multiple tumors and participates in tumor progression and chemotherapy resistance via different signaling pathways; PAQR4 regulates cellular ceramide homeostasis by influencing sphingolipid metabolism and glycerol metabolism, and plays a significant role in adipose tissue remodeling. Meanwhile, it is known that the differential expression of PAQR4 is associated with the occurrence of various diseases and is a potential biomarker and therapeutic target. This article conducts a systematic review of the subcellular localization of PAQR4, its topological structure characteristics, and its functions in cancer occurrence, metabolic diseases, and fertility, and provides clues for the future research and translational application of PAQR4.
Collapse
Affiliation(s)
- Zi-Yan Jin
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Postgraduate Training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
7
|
Liu Z, Ye B, Ye H, Zhong Q, Kong J, Zhou X, Ma C, Liu A. L-borneol regulates rno-miR-127/ PODXL2 to promote hair follicle stem cells to repair skin wounds. Int Immunopharmacol 2025; 158:114847. [PMID: 40378434 DOI: 10.1016/j.intimp.2025.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/22/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Hair follicle stem cells (HFSCs) can quickly activate and migrate to the wound site, differentiating into epidermal stem cells to facilitate early epithelialization. During the wound healing process, microRNAs (miRNAs) function coordinately. Chinese medicine borneol is derived from the Cinnamomum camphora plant, and its principal component, L-borneol, is renowned for its potential in facilitating skin wound healing. However, it remains unclear whether L-borneol can stimulate HFSCs to differentiate into epidermal cells or whether miRNAs are involved in this process. In the current study, HFSCs were isolated from the vibrissae of rats and identified based on the expression of CD34, Integrin-β1 and keratin type 1 cytoskeletal 15(CK15). We observed that stimulation with L-borneol significantly increased the differentiation marker K14 in HFSCs, suggesting that L-borneol could promote the differentiation of HFSCs into basal layer cells. On this basis, we transfected and confirmed that rno-miR-127 inhibitor could promote the differentiation of HFSCs. Furthermore, we demonstrated that PODXL2 is a target gene of rno-miR-127 through dual-luciferase reporter assays and confirmed that the rno-miR-127 mimic could inhibit the expression of PODXL2. To further elucidate the targeting relationship, we constructed the siPODXL2 fragment using siRNA technology, demonstrating that reducing PODXL2 expression can inhibit the differentiation of HFSCs into basal layer cells. Finally, a rat full-thickness skin defect model illustrated L-borneol-mediated negative regulation of PODXL2 by rno-miR-127, promoting skin injury repair through HFSCs.
Collapse
Affiliation(s)
- Zike Liu
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Baolin Ye
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Haoxiang Ye
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Qing Zhong
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Jiecheng Kong
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Xianxi Zhou
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Chunmei Ma
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Aijun Liu
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
8
|
Qian Y, Liu C, Zeng X, Li LC. RNAa: Mechanisms, therapeutic potential, and clinical progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102494. [PMID: 40125270 PMCID: PMC11930103 DOI: 10.1016/j.omtn.2025.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
RNA activation (RNAa), a gene regulatory mechanism mediated by small activating RNAs (saRNAs) and microRNAs (miRNAs), has significant implications for therapeutic applications. Unlike small interfering RNA (siRNA), which is known for gene silencing in RNA interference (RNAi), synthetic saRNAs can stably upregulate target gene expression at the transcriptional level through the assembly of the RNA-induced transcriptional activation (RITA) complex. Moreover, the dual functionality of endogenous miRNAs in RNAa (hereafter referred to as mi-RNAa) reveals their complex role in cellular processes and disease pathology. Emerging studies suggest saRNAs' potential as a novel therapeutic modality for diseases such as metabolic disorders, hearing loss, tumors, and Alzheimer's. Notably, MTL-CEBPA, the first saRNA drug candidate, shows promise in hepatocellular carcinoma treatment, while RAG-01 is being explored for non-muscle-invasive bladder cancer, highlighting clinical advancements in RNAa. This review synthesizes our current understanding of the mechanisms of RNAa and highlights recent advancements in the study of mi-RNAa and the therapeutic development of saRNAs.
Collapse
Affiliation(s)
- Yukang Qian
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Cody Liu
- Univeristy of California, Davis, Davis, CA 95616, USA
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Long-Cheng Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
- Ractigen Therapeutics, Nantong, Jiangsu 226400, China
| |
Collapse
|
9
|
Lu Y, Chen A, Liao M, Tao R, Wen S, Zhang S, Li C. Development of a microRNA-Based age estimation model using whole-blood microRNA expression profiling. Noncoding RNA Res 2025; 12:81-91. [PMID: 40144340 PMCID: PMC11938159 DOI: 10.1016/j.ncrna.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Age estimation is a critical aspect of human identification. Traditional methods, reliant on morphological examinations, are often suitable for living subjects. However, there are relatively few studies on age estimation based on biological samples, such as blood. Recent advancements have concentrated on DNA methylation for forensic age prediction. However, to explore further possibilities, this study investigated microRNAs (miRNAs) as alternative molecular markers for age estimation. Peripheral blood samples from 127 healthy individuals were analyzed for miRNA expression using small RNA sequencing. Lasso regression selected 103 candidate miRNAs, and Shapley additive explanations (SHAP) analysis identified 38 key miRNAs significant for age prediction. Five machine learning models were developed, with the elastic net model achieving the best performance (MAE of 4.08 years) on the testing set, surpassing current miRNA age estimation results. Additionally, we observed significant changes in the expression levels of miRNAs in healthy individuals aged 48-52 years. This study demonstrated the potential of blood miRNA biomarkers in age prediction and provides a set of miRNA markers for developing more accurate age prediction methods.
Collapse
Affiliation(s)
- Yanfang Lu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030009, China
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Mengxiao Liao
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Shubo Wen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| |
Collapse
|
10
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025; 145:1323-1344. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
11
|
Liao Y, Zhang W, Huang Z, Yang L, Lu M. Diagnostic and prognostic value of miR-146b-5p in acute pancreatitis. Hereditas 2025; 162:93. [PMID: 40450371 DOI: 10.1186/s41065-025-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025] Open
Abstract
OBJECTIVE MicroRNAs hold great potential as biomarkers for assessing the progression of acute pancreatitis (AP). This study aimed to explore the value of miR-146b-5p in the diagnosis and prognosis of AP patients. METHODS 110 AP patients were included and divided into 40 severe AP (SAP) patients and 70 non-SAP patients based on disease severity. Serum miR-146b-5p levels were measured using RT-qPCR. The diagnostic value of miR-146b-5p was evaluated utilizing ROC curves. Pearson correlation coefficient was employed to analyze the correlations between APACHEII, BISAP, and MCTSI scores and miR-146b-5p levels. The AP cell model was constructed by treating AR42J cells with deoxycholic acid (DCA), the proliferative capacity of cells was measured with CCK-8, apoptosis was measured by flow cytometry, and IL-6 and IL-8 protein levels were analyzed by ELISA. RESULTS Serum miR-146b-5p levels were decreased in SAP and unfavorable patients. Serum miR-146b-5p was able to effectively differentiate between SAP and non-SAP patients, and also effectively differentiate between unfavorable and favorable patients. MiR-146b-5p levels were significantly negatively correlated with APACHEII score (r=-0.6676), BISAP score (r=-0.5696), and MCTSI score (r=-0.5857). Furthermore, in the AP cell model, miR-146b-5p expression was down-regulated, proliferative capacity was diminished, apoptosis was increased, and IL-6 and IL-8 levels were elevated, but overexpression of miR-146b-5p partially reversed these changes. CONCLUSION miR-146b-5p expression is down-regulated in the serum of SAP patients and cells, and it has a good diagnostic effect. It may be a potential biomarker and therapeutic target for AP.
Collapse
Affiliation(s)
- Ying Liao
- Department of Critical Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341100, China
| | - Weiwei Zhang
- Department of Critical Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341100, China
| | - Zhenfei Huang
- Department of Critical Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341100, China
| | - Liu Yang
- Department of Critical Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341100, China
| | - Mingjin Lu
- Supply Room, The Fifth People's Hospital of Ganzhou, No. 666, Dongjiangyuan Avenue, Shuixi Town, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| |
Collapse
|
12
|
Zhang F, Dai W, Zhang M, Dong H, Zhang X. Programmed Fluorescence-Encoding DNA Nanoflowers for Cell-Specific-Target Multiplexed MicroRNA Imaging. Anal Chem 2025; 97:10588-10596. [PMID: 40374562 DOI: 10.1021/acs.analchem.4c06960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The precise identification and differentiation of multiple microRNAs (miRNAs) with high spatial resolution in specific cells remain a significant challenge, primarily due to the limited availability of spectrally distinguishable fluorophores and the absence of cell-specific recognition capabilities. In this study, we introduce a programmed fluorescence-encoding DNA nanoflower (CNFs) system based on the self-assembly of rolling circle amplification (RCA), enabling multiplexed miRNA imaging in living cells. The CNFs system is rationally designed to consist of three key components: a CD63 aptamer region, dual fluorophore encoding regions, and an miRNA recognition region. The polyvalent tandem CD63 aptamer enhances the cellular targeting specificity and endocytic uptake efficiency. By controlling dual fluorophores and three levels of intensity within encoding regions, it generates 9 distinct barcodes for labeling multiple targets. Additionally, when conjugated with molecular beacons (MBs), CNFs facilitate the simultaneous detection of multiplexed intracellular miRNAs. Using this CNFs system, we successfully evaluated the expression profiles of nine miRNAs in breast cancer. Overall, we expect that this CNFs system will be a valuable tool for disease-related multiplex miRNAs biomarker imaging in specific cells and the exploration of miRNAs' molecular regulation mechanisms.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
13
|
Pagliarini M, Guidi L, Ciacci C, Saltarelli R, Orciani M, Martino M, Albertini MC, Arnaldi G, Ambrogini P. Circulating Neuronal Exosome Cargo as Biomarkers of Neuroplasticity in Cushing's Syndrome. Mol Neurobiol 2025:10.1007/s12035-025-05069-z. [PMID: 40413304 DOI: 10.1007/s12035-025-05069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
The hippocampus is the main target of glucocorticoids (GCs) in the brain since it contains the greatest concentration of the specific receptors. GCs are among the factors modulating adult hippocampal neurogenesis (AHN), which occurs in mammalians, including humans. Prolonged exposure to high GC levels triggers AHN impairment and induces affective and cognitive deficits, consistently with hippocampal neurogenesis functions. Cushing's syndrome (CS) is a rare endocrine disorder characterized by persistently elevated GC levels, namely, cortisol, that also results in affective disorders and impairment of hippocampus-associated memory, suggesting a disruption of hippocampal neurogenesis. Players of adult neurogenesis process, such as Neural Stem/Progenitor Cells and differentiating neuronal cells, release exosomes able to cross brain blood barrier, reaching the peripheral blood. MicroRNAs are known to be selectively enriched in neuronal exosomes and to play a crucial role in adult neurogenesis regulation. The main question addressed in this exploratory study was whether neuroplasticity-related microRNAs (miRNAs), carried by neuronal-derived exosomes in peripheral blood, could reflect alterations in neurogenic processes associated with Cushing's syndrome. Hence, in the present work, we measured the content in selected miRNAs of neuronally derived exosomes in peripheral blood of patients affected by endogenous and active CS and age and sex-matched healthy subjects. The human miRNAs (miR-126, miR-9, miR-223, miR-34a, miR-124a, and miR-146a) were quantified by RT-qPCR. All the miRNAs analyzed were significantly differentially expressed in CS patients as compared to healthy subjects. Our findings support the following: (i) patients with Cushing's syndrome (CS) may exhibit a putative dysregulation of neurogenesis that could underlie the early-onset impairment of affective and cognitive functions; (ii) the exosomal cargo may represent a potential biomarker for monitoring functional and dysfunctional neuroplasticity processes in adult humans. Additional studies are needed to confirm and expand upon the findings across a wider cohort of patients.
Collapse
Affiliation(s)
- Marica Pagliarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
- Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University "Politecnica Delle Marche", 60126, Ancona, Italy
| | - Marianna Martino
- Department of Clinical and Molecular Sciences-Division of Endocrinology and Metabolic Diseases, (DISCLIMO), University "Politecnica Delle Marche", 60126, Ancona, Italy
| | | | - Giorgio Arnaldi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro" (PROMISE), University of Palermo, 90127, Palermo, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| |
Collapse
|
14
|
Wang S, Cheng W, Wang X, Wu Z, Su J. Progress of microneedle targeted modulation technology in the reconstruction of immune microenvironment in diabetic wounds. Eur J Med Res 2025; 30:405. [PMID: 40394697 PMCID: PMC12090542 DOI: 10.1186/s40001-025-02667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
Wound healing in diabetic patients is mainly hindered by a combination of long-term glycosylation, persistent inflammatory response, and immunosuppressive state. The interaction of these factors not only results in considerable prolongation of the wound healing process but also elevates the likelihood of recurrent ulcer development, profoundly affecting patients' quality of life. Traditional treatments, including surgical debridement, anti-infection, dressing application, vascular intervention, and glycaemic control, can only relieve some symptoms. However, they are often ineffective in addressing the underlying cause of impaired wound healing. It is of concern that the importance of the immune microenvironment in diabetic wound healing has not yet been fully appreciated and investigated, and the homeostasis of the immune microenvironment is crucial for promoting cell proliferation, angiogenesis, and tissue repair. However, this microenvironment is often dysregulated in the diabetic state. This paper reviews the key factors leading to dysregulation of the immune microenvironment, including immune cell dysfunction, abnormal cytokine expression, and disruption of key signalling pathways, and introduces an innovative silicone-based microneedle drug delivery method, which takes advantage of microneedle's precise targeting and highly efficient drug loading capacity to deliver drugs with immunomodulatory functions directly to the wound in a sustained manner, activate the corresponding signalling pathways, promote the polarization of M1 macrophages into the M2 phenotype, and stimulate neovascularization, providing a low inflammatory and pro-angiogenic immune microenvironment for diabetic wound healing, which provides a new therapeutic idea and means for diabetic wound healing.
Collapse
Affiliation(s)
- Shunsheng Wang
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Wei Cheng
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Zhuofan Wu
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Jiandong Su
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China.
| |
Collapse
|
15
|
Takahashi K, Sato Y, Hasegawa H, Katano H, Suzuki T. Histomorphological variations in progressive multifocal leukoencephalopathy correlated with JCV replication in brain lesions: insights from 91 patients. Acta Neuropathol Commun 2025; 13:106. [PMID: 40390121 PMCID: PMC12087142 DOI: 10.1186/s40478-025-02027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 05/01/2025] [Indexed: 05/21/2025] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by JC polyomavirus (JCV). The histopathology of PML is morphologically diverse and characterized by the classical triad of demyelination, enlarged oligodendroglial nuclei, and bizarre astrocytes. Pathological diagnostic criteria for PML require both the classical triad and viral detection in brain tissue. However, the frequency of this triad in surgical pathology specimens and its correlation with disease progression and viral loads remain unclear. In this study, 117 brain tissues from 91 pathologically confirmed PML patients were investigated. PML histopathology was found to be spatially and temporally pleomorphic, and not all brain tissues exhibited the complete classical triad. The sensitivity of quantitative PCR for detecting JCV in brain tissues was 100%, whereas that of immunohistochemistry (IHC) was 83.5-87.8%. Viral loads in biopsy samples were significantly higher than those in autopsy samples and decreased over time after disease onset. To systematically characterize PML lesions from the outer border to the demyelinated center, we developed a histological classification based on the classical triad and macrophage infiltration. This classification correlated with viral loads, with subtypes characterized by abundant enlarged oligodendroglial nuclei at the demyelination border exhibiting the highest levels of JCV DNA. Pathological variability was influenced by spatial and temporal factors rather than by underlying diseases, although PML associated with acquired immunodeficiency syndrome exhibited more severe demyelination. In conclusion, histomorphological variability in PML reflects viral replication activity, emphasizing the importance of comprehensive pathological evaluation. Combining histomorphology, tissue-based PCR for viral DNA detection, and IHC for viral antigens is crucial for assessing disease progression. Early brain biopsy from the demyelination border offers the best opportunity for a definitive diagnosis of PML and may guide therapy targeting active lesions.
Collapse
Affiliation(s)
- Kenta Takahashi
- Department of Infectious Disease Pathology, National Institute of Infectious Diseases, Japan Institute for Health Security, Shinjuku, Tokyo, Japan
| | - Yuko Sato
- Department of Infectious Disease Pathology, National Institute of Infectious Diseases, Japan Institute for Health Security, Shinjuku, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Infectious Disease Pathology, National Institute of Infectious Diseases, Japan Institute for Health Security, Shinjuku, Tokyo, Japan
- Influenza Research Center, National Institute of Infectious Diseases, Japan Institute for Health Security, Musashimurayama, Tokyo, Japan
| | - Harutaka Katano
- Department of Infectious Disease Pathology, National Institute of Infectious Diseases, Japan Institute for Health Security, Shinjuku, Tokyo, Japan.
| | - Tadaki Suzuki
- Department of Infectious Disease Pathology, National Institute of Infectious Diseases, Japan Institute for Health Security, Shinjuku, Tokyo, Japan.
- Department of Infectious Disease Pathobiology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
16
|
Hu X, Sun H, Shan L, Ma C, Quan H, Zhang Y, Zhang J, Fan Z, Tang Y, Deng L. Unraveling Disease-Associated PIWI-Interacting RNAs with a Contrastive Learning Methods. J Chem Inf Model 2025; 65:4687-4697. [PMID: 40263714 DOI: 10.1021/acs.jcim.5c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small, non-coding RNAs predominantly expressed in the germ cells of animals and play a crucial role in maintaining genomic integrity, mediating transposon suppression, and ensuring gene stability. Beyond their functions in reproductive cells, piRNAs also play roles in various human diseases, including cancer, suggesting their potential as significant biomarkers critical for disease diagnosis and treatment. Wet-lab methods to identify piRNA-disease associations require substantial resources and are often hit-or-miss. With advancements in computational technologies, an increasing number of researchers are employing computational methods to efficiently predict potential piRNA-disease associations. The sparsity of data in piRNA-disease association studies significantly limits model performance improvement. In this study, we propose a novel computational model, iPiDA_CL, to predict potential piRNA-disease associations through contrastive learning methods, which do not require negative samples. The model represents piRNA-disease association pairs as a bipartite graph and computes the initial embeddings of piRNAs and diseases using Gaussian kernel similarity, with features updated via LightGCN. Based on the siamese network framework, iPiDA_CL constructs online and target networks and employs data augmentation in the target network to build a contrastive learning objective that optimizes model parameters without introducing negative samples. Finally, cross-prediction methods are used to calculate specific piRNA-disease association scores. A series of experimental results demonstrate that iPiDA_CL surpasses state-of-the-art methods in both performance and computational efficiency. The application of iPiDA_CL to the miRNA-disease association dataset underscores its versatility across various ncRNA-disease association task. Furthermore, a case study highlights iPiDA_CL as an efficient and promising tool for predicting piRNA-disease associations.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Hao Sun
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Linchao Shan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Chenxi Ma
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Hanming Quan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Yuanpeng Zhang
- School of software, Xinjiang University, Urumqi 830049, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92161, United States
| | - Ziyu Fan
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| | - Yongjun Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410083, China
| | - Lei Deng
- School of Computer Science and Engineering, Center South University, Changsha 410083, China
| |
Collapse
|
17
|
Sullivan R, Becker JA, Samsing F. Integrative analysis of the microRNA and mRNA response of barramundi (Lates calcarifer) under acute cold stress and Vibrio harveyi challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105385. [PMID: 40354847 DOI: 10.1016/j.dci.2025.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Barramundi (Lates calcarifer) are emerging as a key species in warm-water aquaculture worldwide; however, disease outbreaks caused by Vibrio spp. are impeding industry expansion. Climate change is expected to exacerbate this issue by intensifying extreme weather events, including unusually cold temperatures, thereby increasing the risk of disease. In this study, we investigated the combined effect of cold stress and V. harveyi infection on the early transcriptome (mRNA) and microRNA responses of juvenile barramundi to enhance our understanding of host-pathogen interactions. High levels of differential gene expression were observed in fish subjected to cold stress (22 °C) post-infection with V. harveyi, with 3231 differentially expressed genes and an extensive pro-inflammatory immune response. In contrast, most differentially expressed microRNAs were associated with fish infected with V. harveyi housed under optimal temperature conditions (30 °C). MicroRNAs play a crucial role in regulating gene expression, typically through downregulation of target mRNAs. The significant upregulation of miRNAs in barramundi kept at 30 °C, and the lack of miRNA upregulation in cold stressed fish, suggests that cold stress impaired the immune-regulatory capacity of affected fish, resulting in a hyper-inflammatory response that may account for the increased mortality observed. This study is the first dual study of the transcriptome and microRNA response of barramundi to V. harveyi infection and expands understanding of the innate immune response in barramundi and the regulatory role of microRNAs in teleost fish.
Collapse
Affiliation(s)
- Roisin Sullivan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia; Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Joy A Becker
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Francisca Samsing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia.
| |
Collapse
|
18
|
Avendaño-Portugal C, Montaño-Samaniego M, Guttman-Bazbaz R, Bravo-Estupiñan DM, Ibáñez-Hernández M. Therapeutic Applications of Poly-miRNAs and miRNA Sponges. Int J Mol Sci 2025; 26:4535. [PMID: 40429680 PMCID: PMC12111552 DOI: 10.3390/ijms26104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play crucial roles in regulating gene expression, and their dysregulation is implicated in various human diseases. Over the years, several research groups have identified miRNAs as promising therapeutic targets for intervention. Therapeutic strategies involve either overexpression or knockdown of specific miRNAs. This review aims to provide a comprehensive overview of synthetic poly-miRNAs and miRNA sponges, highlighting their therapeutic applications. It begins with an introduction to miRNAs and their role in human diseases, followed by a detailed discussion on synthetic poly-miRNAs and miRNA sponges by exploring their application in cardiovascular, inflammatory, autoimmune, and metabolic disorders, as well as in cancer therapy. Additionally, strategies for targeted delivery, challenges, and limitations of these therapies are addressed.
Collapse
Affiliation(s)
- Cynthia Avendaño-Portugal
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
| | - Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
- Laboratorio de Técnicas Fototérmicas, Departamento de Ciencias Básicas, Unidad Politécnica Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico
| | - Raquel Guttman-Bazbaz
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Av. Lomas Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, State of Mexico, Mexico;
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
- Laboratorio de Quimiosensibilidad Tumoral, Facultad de Microbiología, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio and Plan de Ayala, Col. Sto Tomás, Miguel Hidalgo, Mexico City 11340, Mexico; (C.A.-P.); (M.M.-S.); (D.M.B.-E.)
| |
Collapse
|
19
|
Mo L, Yuan R, Tang S, Hong Y, Yang C, Lin W. A transformable DNA nanomachine serving as both walker and track for sensitive miRNA detection in living cells and tissues. Talanta 2025; 295:128300. [PMID: 40354716 DOI: 10.1016/j.talanta.2025.128300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
DNA walkers are powerful nanomachines for biosensing and bioimaging, yet their application in microRNA detection faces significant challenges. Current DNA walker designs often involve complex structures with separate walker and track components, leading to reduced efficiency and potential interference in cellular environments. Here, we developed a self-propelled multi-leg walker (SMW) where autocatalytic hairpin assembly (ACHA) components are anchored on a DNA nanowire to create an initial track structure. Upon target recognition, catalytic hairpin assembly (CHA) reactions dynamically transform sections of track into multi-leg walkers with newly generated triggers. ACHA reactions are then initiated by these triggers, driving the walker to move autonomously along the unreacted track while generating amplified fluorescent signals. The SMW demonstrated excellent performance with a detection limit of 2.9 pM for miR-21, successfully distinguishing cancer cells from normal cells and enabling microRNA detection in clinical tissue samples. This innovative design strategy opens new possibilities for developing simplified yet efficient DNA nanomachines for broader biomedical applications.
Collapse
Affiliation(s)
- Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Rongzheng Yuan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shiya Tang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yan Hong
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
20
|
De Clercq E. The magic bullet: a tribute to Fritz Eckstein. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-9. [PMID: 40326535 DOI: 10.1080/15257770.2025.2500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The first encounter I ever had with Fritz Eckstein was in 1969 at Stanford University to discuss a polyribonucleotide in which the phosphate was replaced by thiophosphate groups, engendering increased interferon induction (i.e. antiviral activity). His research work then focused on the versatility of oligonucleotides as potential therapeutics. Spanning a period of several decades, various other leads of research were undertaken, i.e. 2'- and 3'-amino or -azido-substituted deoxyribonucleoside analogs, hammerhead ribozymes, small non-coding mRNAs (siRNAs, miRNAs) for monitoring gene therapy, and thiophosphate-substituted nucleotide analogs to be used in RNA and DNA sequencing. This exemplary scientific career generated not one but a multitude of magic bullets for biomedical research and application.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
21
|
Charmine P, Venkatesan V, Geminiganesan S, Ekambaram S, Nammalwar BR, Parameswari RP, Mohana Priya CD. Deciphering the urinary microRNAs landscape in nephrotic syndrome: implications as prognostic marker-a non-invasive study. Int Urol Nephrol 2025:10.1007/s11255-025-04546-7. [PMID: 40327253 DOI: 10.1007/s11255-025-04546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Nephrotic syndrome is a complex renal condition characterized by abnormal protein permeability into the urine space, leading to edema and renal failure. Recent research suggests that deregulation of microRNAs contributes to the pathogenesis of this disease. MicroRNAs are small, non-coding RNA molecules that regulate gene expression by binding to complementary messenger RNA sequences. In this study, we employed bioinformatics techniques to analyze microRNA expression in urine samples from nephrotic syndrome patients and healthy control participants. Our results revealed a significant disruption of microRNA expression profiles in patients with nephrotic syndrome, indicating that these microRNAs may play a crucial role in the disease. This study highlights the potential of urinary microRNAs as biomarkers for nephrotic syndrome and warrants further investigation into their functional significance in the disease pathogenesis.
Collapse
Grants
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
- Ref No: BT/PR30523/ BIC/101/1121/2018 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Pricilla Charmine
- Faculty of Clinical Research, SRIHER, No.1 Ramachandra Nagar, Porur, Chennai, 600116, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, SRIHER, No.1 Ramachandra Nagar, Porur, Chennai, 600116, India
| | - Sangeetha Geminiganesan
- Department of Paediatric Nephrology, Kauvery Hospital Chennai - Radial Road, No. 2/473, Radial Road, Kovilambakkam, Chennai, 600 129, India
| | - Sudha Ekambaram
- Pediatric Nephrologist, Greams Lane, 21, Greams Road, Thousand Lights West, Thousand Lights, Chennai, Tamil Nadu, 600006, India
| | - B R Nammalwar
- Dr. Mehta's Hospital, No.2/1,2, 3, Mc Nichols Road 3rd Ln, Chetpet, Chennai, Tamil Nadu, 600031, India
| | - R P Parameswari
- Saveetha University, Thandalam, Kanchipuram - Chennai Road, Chennai, Tamil Nadu, 602105, India
| | - C D Mohana Priya
- Department of Human Genetics, SRIHER, No.1 Ramachandra Nagar, Porur, Chennai, 600116, India.
| |
Collapse
|
22
|
Sharma DS, Jamwal VL, Siddharth PHS, Angurana SL, Gandhi SG, Rath D. Electrochemical microfluidic biosensors for the detection of cancer biomarker miRNAs. Talanta 2025; 294:128282. [PMID: 40339339 DOI: 10.1016/j.talanta.2025.128282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Cancer is a formidable adversary in contemporary healthcare. Routine screening and early diagnosis are crucial for favourable therapeutic outcomes. Publications, clinical trials, and patent landscape analysis suggest miRNA as promising biomarkers for diagnosis and prognosis of various cancers. This review intends to shed a holistic view of the current and futuristic methods for electrochemical biosensing platforms, using miRNA as biomarkers, coupled with microfluidics, machine learning techniques, and portable electronic devices. Electrochemical biosensors are thoroughly reviewed as they are promising candidate in the design and development of such devices where there is an in-depth exploration of the existing molecular techniques and sophisticated electrochemical biosensing strategies developed for the detection of miRNAs. Additionally, the review will critically analyze diverse signal enhancement strategies and microfluidic platforms specifically tailored for the detection of miRNA. Practical examples of such integrated electrochemical microfluidic biosensors are thoroughly cited along with the prospect of integration of these techniques with portable electronics, highlighting the future potential of highly integrated and accessible diagnostic solutions. Furthermore, the review will also encompass an assessment of the ongoing clinical trials investigating the utility of miRNA as cancer biomarker in diagnostic settings. Moreover, by assessing existing patents, the review shall provide a nuanced understanding of the intellectual property landscape, identifying key players, emerging technologies, and potential future directions. Our review with a 360-degree updated view on molecular biology components, electrochemical biosensors, engineering device design, clinical trials and patent landscape would appeal to researchers, engineers and clinicians working in the area of cancer molecular diagnosis.
Collapse
Affiliation(s)
- Dakshita Snud Sharma
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - Vijay Lakshmi Jamwal
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - P H Sai Siddharth
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India
| | - Shabab Lalit Angurana
- Radiation Oncology, All India Institute of Medical Sciences, Vijaypur, Jammu, 184 120, Jammu and Kashmir, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu, 180 001, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| | - Dharitri Rath
- Department of Chemical Engineering, Indian Institute of Technology Jammu (IIT), Jagti, Jammu, 181 221, Jammu and Kashmir, India.
| |
Collapse
|
23
|
Suri K, Hosur V, Panchakshari R, Amiji MM. A Multimodal Therapeutic Strategy for Inflammatory Bowel Disease Using MicroRNA-146a Mimic Encapsulated in Lipid Nanoparticles. Mol Pharm 2025. [PMID: 40324972 DOI: 10.1021/acs.molpharmaceut.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Dysregulated microRNAs (miRNAs) have significant potential as diagnostic tools for various chronic diseases; however, their therapeutic applications remain largely unexplored. Given their capacity to regulate multiple pathways, miRNAs are promising candidates for treating pleiotropic diseases, such as inflammatory bowel disease (IBD). In our study, we conducted a comprehensive review of the literature of miRNA-146 levels in the inflamed tissues of IBD patients and murine colitis models. Initially, we quantified the expression of miRNA-146a and miRNA-146b in the colons of mice using the dextran sodium sulfate (DSS)-inducedacute model of IBD. We selected miRNA-146a for further study due to its anti-inflammatory properties and potential relevance in IBD treatment. We hypothesized that a macrophage model of inflammation would be well-suited to studying the effects of this miRNA. Subsequently, we investigated the use of lipid nanoparticles (LNPs) for the targeted delivery of miRNA-146a to macrophages, which play a key role in IBD. Our results indicated that miRNA-146a levels increased in the DSS model and LNP-mediated delivery effectively downregulated genes associated with inflammation. These findings highlight the critical role of miRNA-146a in modulating IBD and suggest that LNP-based delivery could be a promising therapeutic strategy for managing inflammatory responses.
Collapse
Affiliation(s)
- Kanika Suri
- Takeda Development Center Americas, Cambridge, Massachusetts 02142, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Rohit Panchakshari
- Takeda Development Center Americas, Cambridge, Massachusetts 02142, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
24
|
Sharon Y, Ben-David G, Nisgav Y, Amarilyo G, Shapira G, Israel-Elgali I, Pillar S, Pillar N, Shomron N, Kramer M. MicroRNAs as Biomarkers for Uveitis in Juvenile Idiopathic Arthritis. Ocul Immunol Inflamm 2025; 33:589-595. [PMID: 39561030 DOI: 10.1080/09273948.2024.2428417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Uveitis associated with juvenile idiopathic arthritis (JIA-U) is a clinically silent vision-impairing disease. Early detection and aggressive treatment are crucial for optimal visual outcome. Alterations in levels of microRNAs (miRNAs) are characteristic of autoimmune diseases. The present clinical study sought to explore the expression of miRNAs in JIA-U and their potential role as a predictive biomarker. METHODS MiRNA expression profiling was performed on peripheral blood mononuclear cells derived from pediatric patients with JIA, JIA-U, or other types of uveitis using the high-throughput small-RNA sequencing (on Next Generation Sequencing (NGS)). Patient- and disease-related data were retrieved from the medical files. Main outcome measure was the differential expression of miRNAs among the groups. RESULTS The cohort included 35 patients; 20 children with JIA-U (8 with active disease), 10 with JIA without ocular involvement, and 5 with other types of uveitis (4 with active disease). Mean age was 8.6 years; 83% were female. Nineteen patients (54%) received immunomodulatory treatment. The expression of miR-4485-3p was significantly increased in patients with JIA-U compared to patients with JIA alone (p < 0.05), with no difference between patients with active or inactive uveitis. The expression in patients with uveitis of other etiologies was similar to the expression in JIA-U patients. CONCLUSIONS This study demonstrates a differential expression profile of a specific miRNA in JIA patients with and without uveitis. If verified in larger studies, the findings may assist to identify JIA patients at risk to develop uveitis and to improve early detection of disease activity.
Collapse
Affiliation(s)
- Yael Sharon
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ben-David
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Nisgav
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Gil Amarilyo
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatric Rheumatology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Guy Shapira
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Israel-Elgali
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Pillar
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Kramer
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Liu S, Wu J, Jiang H, Zhou Y, Huang X, Wang Y, Xie Z, Liao Z, Ding Z, Liu J, Hu X, Mao H, Liu S, Chen B. CircFBLN2 regulates duck myoblast proliferation and differentiation through miR-22-5p and MEF2C interaction. Poult Sci 2025; 104:105063. [PMID: 40120247 PMCID: PMC11987613 DOI: 10.1016/j.psj.2025.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
The growth and development of duck skeletal muscle significantly affect duck meat production, making it essential to understand the molecular mechanisms underlying these processes. Circular RNAs (circRNAs) and microRNAs (miRNAs) are identified in many species and play essential roles in the regulation of myogenic processes; however, research on circRNAs and miRNAs involved in the duck skeletal muscle development is limited. In prior whole-transcriptome RNA sequencing study, we identified differential expression of miR-22-5p and the novel circular RNA circFBLN2, which arises from the second exon of the FBLN2 gene, in duck primary myoblasts (DPMs). In this study, we confirmed the circular structure of circFBLN2 and explored its expression patterns and functional implications in myogenesis. To elucidate the function of circFBLN2 in the myogenic processes of duck, we conducted experiments involving both the silencing and overexpression of circFBLN2 in DPMs. Our findings indicated that circFBLN2 inhibits DPM proliferation while promoting their differentiation. Conversely, when miR-22-5p was silenced and overexpressed, it exhibited opposing effects by promoting the proliferation of DPMs and inhibiting their differentiation. These results suggest a complex dynamic interplay between circFBLN2 and miR-22-5p in the regulation of DPMs proliferation and differentiation. Additionally, our results revealed that both circFBLN2 and myocyte enhancer factor 2 C (MEF2C) act as sponges for miR-22-5p, as demonstrated by binding predictions and dual-luciferase reporter assays. These results offer novel perspectives on the regulatory pathways underlying the duck embryonic skeletal muscle development, underscoring the pivotal function of circFBLN2 in the regulation of miR-22-5p expression. This research deepens our comprehension of the molecular underpinnings of avian myogenesis, potentially paving the way for more effective approaches to bolster growth and development of livestock.
Collapse
Affiliation(s)
- Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuwen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yuxiang Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhanbin Xie
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Zurong Liao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhenxvan Ding
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
26
|
Hu Y, Liu X, Yuan Z, He J, Ma R, Wang Y, Yi G. Induction of necroptosis in lung adenocarcinoma by miR‑10b‑5p through modulation of the PKP3/RIPK3/MLKL cascade. Oncol Rep 2025; 53:56. [PMID: 40116080 PMCID: PMC11963748 DOI: 10.3892/or.2025.8889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/20/2025] [Indexed: 03/23/2025] Open
Abstract
Globally, lung adenocarcinoma (LUAD) remains the leading cause of cancer‑related mortality, highlighting the urgent need for innovative therapeutic approaches. Necroptosis has been recognized as a crucial mechanism for inhibiting cancer progression. Research has revealed a significant association between microRNA (miRNA)‑mediated necroptosis and tumor progression. The present study aimed to elucidate the role and underlying mechanisms of miR‑10b‑5p in regulating necroptosis in the context of LUAD. In an investigation of LUAD, miRNA sequencing was conducted on both LUAD and adjacent non‑tumor tissues, followed by the integration of external database information to identify specific target miRNAs. The expression of miR‑10b‑5p was verified in LUAD tissues and corresponding adjacent non‑cancerous tissues using immunohistochemistry. In vitro experiments, utilizing LUAD cell lines engineered to modulate miR‑10b‑5p levels, assessed its effects on cellular activities and necroptosis. The inhibition of PKP3 by miR‑10b‑5p was determined using a dual luciferase reporter system. Furthermore, alterations in miR‑10b‑5p levels were found to affect PKP3 expression and inhibit the RIPK3/MLKL signaling pathway, as evidenced by western blot analysis in LUAD cell lines. The effect of PKP3 knockdown on cell activity and necroptosis in LUAD cell lines with low miR‑10b‑5p expression levels was assessed using cell function assays. Finally, a nude mouse xenograft model was used to investigate the effect of miR‑10b‑5p on LUAD growth in vivo and its specific mechanism of action. It has been revealed that miR‑10b‑5p levels are significantly elevated in LUAD specimens. Further investigations demonstrated that an increase in miR‑10b‑5p enhances the proliferation of LUAD cells and suppresses the progression of necroptosis, as evidenced by in vitro experiments. Through dual luciferase reporter assays, PKP3 was confirmed as a direct target negatively regulated by miR‑10b‑5p, leading to reduced expression levels. Western blot analysis indicated that miR‑10b‑5p inhibits the RIPK3/MLKL pathway activation through downregulation of PKP3, which leads to increased cell proliferation and decreased necroptosis. However, knockdown of PKP3 reversed the inhibitory effect of miR‑10b‑5p inhibitors on cellular activity and inhibited necrosis by suppressing the RIPK3/MLKL signalling pathway. In addition, animal model studies demonstrated that inhibition of miR‑10b‑5p activated the RIPK3/MLKL pathway by promoting PKP3 expression and significantly reduced LUAD growth by promoting necroptosis. In conclusion, our studies have revealed that the miR‑10b‑5p functions as a tumorigenic factor, enhancing various cellular activities in LUAD cells and suppressing necroptosis by specifically targeting PKP3, thereby inhibiting activation of the RIPK3/MLKL pathway. Importantly, interventions using inhibitors that specifically target miR‑10b‑5p have shown significant success in impeding the progression of LUAD by promoting necroptosis in both cellular and animal models. Thus, targeting miR‑10b‑5p holds considerable potential as a therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Ying Hu
- Department of Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xin Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ziheng Yuan
- Department of Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jianping He
- Department of Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Health Centre, Kunming, Yunnan 650032, P.R. China
| | - Run Ma
- Department of Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yuming Wang
- Department of Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Genfa Yi
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
27
|
Wang A, Yang Y, Zhang Y, Xue C, Cheng Y, Zhang Y, Zhang W, Zhao M, Zhang J. Insecticide-induced sublethal effect in the fall armyworm is mediated by miR-9993/miR-2a-3p - FPPS/JHAMT - JH molecular module. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106400. [PMID: 40262877 DOI: 10.1016/j.pestbp.2025.106400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
The sublethal effect of insecticides can affect the population dynamics of pests by changing the physiological or behavioral changes, which poses a serious threat to the sustainable control of crop pests in the field. However, the molecular regulation mechanism that mediates the sublethal effect of insecticides on crop pests remains unsolved. Here, we show that the sublethal effect of spinetoram and cyantraniliprole on Spodoptera frugiperda is mediated by the molecular module of microRNA-9993/microRNA-2a-3p - farnesyl diphosphate synthase gene (FPPS)/juvenile hormone (JH) acid methyltransferase gene (JHAMT) - JH. Spinetoram prolonged the duration of larvae and pupae, decreased the weight of pupae, while cyantraniliprole prolonged the duration of larvae and decreased the emergence rate. Similarly, injection of the juvenile hormone analogue (JHA) methoprene significantly prolonged the developmental duration of larvae and pupae, decreased the pupal weight and emergence rate. This sublethal phenotypic change was due to the upregulation of key JH synthesis genes, including FPPS and JHAMT, mediated by spinetoram and cyantraniliprole, resulting in an increase in JH titer. Furthermore, it was confirmed by small RNA sequencing, dual luciferase analysis and agomir-miRNA injection, miR-9993 and miR-2a-3p that it could bind FPPS and JHAMT respectively, and regulated the expression level of FPPS and JHAMT to affect the titer of JH, thus changing the phenotype of S. frugiperda. Collectively, these results provide insights into the mechanism of insecticide regulation of sublethal effects of pests, expand our understanding of development-related miRNAs, and reveal key factors involved in JH signaling pathways that support sublethal effects of insecticides.
Collapse
Affiliation(s)
- Aiyu Wang
- Institute of Industrial Crops, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yinjie Cheng
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, China
| | - Yifei Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, China
| | - Wenjuan Zhang
- Shandong Green Blue Biotechnology Co., Ltd., Taian 271000, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
28
|
Yuan P, Li H, Zhang H, Fan S, Dai Y, Jia J, Shen J, Zhang Y, Li H, Sun G, Liu X, Tian Y, Kang X, Zhao Y, Li G. miR-200b-3p affects the proliferation and differentiation of chicken preadipocytes by modulating SESN1 expression through competition with CircADGRF5. Poult Sci 2025; 104:105068. [PMID: 40132317 PMCID: PMC11984591 DOI: 10.1016/j.psj.2025.105068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Excessive deposition of abdominal fat in chickens has a significant impact on the poultry industry, and there is increasing evidence that non-coding RNAs play a crucial role in fat development. In our previous RNA-seq study, miR-200b-3p was found to be differentially expressed during different developmental periods of fat in Gushi chickens. In this study, we report that miR-200b-3p can directly bind to the 3'UTR region of SESN1 to promote proliferation and inhibit differentiation of preadipocytes. Overexpression of SESN1 inhibits preadipocyte proliferation and promotes differentiation. In contrast, inhibition of SESN1 resulted in the opposite outcome. Interestingly, we also identified the circADGRF5/miR-200b-3p/SESN1 ceRNA network involved in the developmental process of preadipocytes. Furthermore, we validated a novel circRNA, circADGRF5, in this report and found that it regulates SESN1 expression through competitive binding with miR-200b-3p. In conclusion, these data suggest that miR-200b-3p directly targets SESN1 to regulate the proliferation and differentiation of preadipocytes, and circADGRF5 regulates SESN1 expression through competitive binding with miR-200b-3p.
Collapse
Affiliation(s)
- Pengtao Yuan
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Hongtai Li
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Hongyuan Zhang
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Shengxin Fan
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yaqi Dai
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Jiyu Jia
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Jingqi Shen
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yanhua Zhang
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Hong Li
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Guirong Sun
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Xiaojun Liu
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yadong Tian
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Xiangtao Kang
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, 450001, PR China.
| | - Guoxi Li
- The Shennong Laboratory, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| |
Collapse
|
29
|
Rai RP, Syed A, Elgorban AM, Abid I, Wong LS, Khan MS, Khatoon J, Prasad KN, Ghoshal UC. Expressions of selected microRNAs in gastric cancer patients and their association with Helicobacter pylori and its cag pathogenicity island. Microb Pathog 2025; 202:107442. [PMID: 40049249 DOI: 10.1016/j.micpath.2025.107442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Helicobacter pylori infection and the resulting inflammation of the stomach are widely recognized as the primary risk factors for the development of gastric cancer (human health). Despite numerous attempts, the correlation between various virulence factors of H. pylori and stomach cancer remains mainly unexplained. The cag pathogenicity island (cagPAI) is a widely recognized indicator of virulence in H. pylori. MicroRNAs play crucial roles in a wide range of biological and pathological processes and dysregulated expressions of miRNAs have been detected in numerous cancer types. However, research on the correlation between H. pylori infection and its cagPAI, as well as the differential expression of microRNAs in gastric cancer, is lacking. AIM The aim of this study was to examine the differential expression of miRNAs in 80 patients with gastric cancer, specifically in connection to the presence of H. pylori and its cag pathogenicity island (cagPAI). METHODS Biopsies of 80 gastric cancer patients were collected and used for H. pylori DNA isolation and tissue miRNA isolation, and further analyzed for cagPAI and miRNA expression and their association. RESULTS Elevated levels of miR-21, miR-155, and miR-223 were detected in malignant tissues. The expression of miR-21 and miR-223 was considerably elevated in biopsies that tested positive for H. pylori, whereas the expression of miR-34a was reduced. H. pylori cagPAI samples that are functionally intact exhibit greater expression of miR-21 and miR-223 compared to cagPAI samples that are partially deleted, in both normal and malignant tissues. CONCLUSION Thus, the novelty of our study lies in its focus on the differential expression of specific miRNAs in relation to the functional integrity of the cagPAI in H. pylori-infected gastric cancer patients, offering a more detailed understanding of the interplay between H. pylori virulence factors and miRNA regulation than previous studies.
Collapse
Affiliation(s)
- Ravi Prakash Rai
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia.
| | - Islem Abid
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia.
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Mohd Sajid Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| | - Jahanarah Khatoon
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
| | - Kashi N Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Uday Chand Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow, India.
| |
Collapse
|
30
|
Nazir A, Nazir A, Afzaal U, Aman S, Sadiq SUR, Akah OZ, Jamal MSW, Hassan SZ. Advancements in Biomarkers for Early Detection and Risk Stratification of Cardiovascular Diseases-A Literature Review. Health Sci Rep 2025; 8:e70878. [PMID: 40432692 PMCID: PMC12106349 DOI: 10.1002/hsr2.70878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/16/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction CVDs is a leading cause of morbidity, mortality, and healthcare expenditure worldwide. Identifying individuals at risk or in the incipient stages of disease is instrumental in enabling timely interventions, preventive measures, and tailored treatment regimens. The landscape of CVDs is complicated by their heterogeneity, encompassing a spectrum of conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. In recent years, the integration of biomarkers into cardiovascular medicine has emerged as a paradigm-shifting approach with the potential to revolutionize early detection and risk stratification. By synthesizing a multitude of studies, we aim to provide a comprehensive resource that illuminates the transformative potential of biomarkers in ushering in a new era of precision cardiovascular medicine. Aim To identify the biomarkers for the detection and diagnosis of CVDs. Materials and Methods This review examines key studies from 2015 to the present that investigate the impact of cardiac biomarkers on cardiovascular outcomes. Data were gathered from PubMed, Cochrane Library, and Embase to ensure a comprehensive analysis. The review focuses on various cardiac biomarkers, assessing their levels and changes in relation to cardiovascular health, with special emphasis on advanced biomarkers such as proteomic and metabolomic markers in cardiovascular disease (CVD) diagnosis. Peer-reviewed studies published in English that evaluated the diagnostic, prognostic, or therapeutic role of cardiac biomarkers were included, with priority given to clinical trials, cohort studies, systematic reviews, and meta-analyses providing quantitative biomarker data. Studies unrelated to cardiac biomarkers, case reports, editorials, conference abstracts, and those with small sample sizes or insufficient methodological rigor were excluded. The review also accounts for potential confounding factors and research limitations, ensuring a balanced assessment of the literature. By synthesizing data from academic papers, clinical reports, and research articles, this study provides a comprehensive evaluation of the evolving role of cardiac biomarkers in CVD diagnosis and risk stratification. Results Biomarkers play a pivotal role in cardiovascular disease risk prediction, diagnosis, and treatment by providing dynamic biological insights. High-sensitivity cardiac troponins (hs-cTn) enhance myocardial injury detection, while circulating microRNAs (miR-208, miR-499) serve as early indicators of myocardial infarction and heart failure. Lipoprotein(a) [Lp(a)] predicts long-term cardiovascular risk, and inflammatory biomarkers such as C-reactive protein (CRP) and interleukin-6 (IL-6) are linked to adverse outcomes. Multi-biomarker panels, such as hs-cTn with B-type natriuretic peptide (BNP), improve heart failure prognosis, while metabolomic profiling enables precision medicine. Additionally, biomarkers like BNP and NT-proBNP facilitate real-time therapeutic monitoring. These findings underscore the critical role of biomarkers in refining risk stratification, improving diagnostic accuracy, and enabling personalized treatment strategies in cardiovascular medicine. Conclusion The advancement of cardiovascular biomarkers has significantly enhanced early detection, risk stratification, and personalized treatment. Emerging biomarkers, including genetic variants, metabolomics, microRNAs, and imaging-based markers, provide deeper insights into disease mechanisms. Integrating multi-omic approaches with artificial intelligence may further refine predictive accuracy and therapeutic decision-making. However, clinical translation requires rigorous validation through large-scale, multicenter studies to ensure reliability and applicability across diverse populations. Standardization, cost-effectiveness assessments, and the development of biomarker panels are essential for clinical adoption. Future research should focus on bridging discovery and implementation, advancing precision medicine to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Awais Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Usama Afzaal
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Shafaq Aman
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- St John of God Midland HospitalsAustralia
| | | | | | | | - Syed Zawahir Hassan
- Division of Cardiovascular PreventionHouston Methodist DeBakey Heart & Vascular CenterHoustonUSA
| |
Collapse
|
31
|
Cabral LGDS, Martins IM, Paulo EPDA, Pomini KT, Poyet JL, Maria DA. Molecular Mechanisms in the Carcinogenesis of Oral Squamous Cell Carcinoma: A Literature Review. Biomolecules 2025; 15:621. [PMID: 40427514 PMCID: PMC12109257 DOI: 10.3390/biom15050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) plays a crucial role in the development, progression, and metastasis of oral squamous cell carcinoma (OSCC). The TME comprises various cellular and acellular components, including immune cells, stromal cells, cytokines, extracellular matrix, and the oral microbiome, all of which dynamically interact with tumor cells to influence their behavior. Immunosuppression is a key feature of the OSCC TME, with regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) contributing to an environment that allows tumor cells to evade immune surveillance and supports angiogenesis. The oral microbiome also plays a pivotal role in OSCC pathogenesis, as dysbiosis, or imbalances in the microbiota, can lead to chronic inflammation, which promotes carcinogenesis through the production of pro-inflammatory cytokines and reactive oxygen species (ROS). Pathogens like Porphyromonas gingivalis and Fusobacterium nucleatum have, hence, been implicated in OSCC-driven tumor progression, as they induce inflammation, activate oncogenic pathways, and modulate immune responses. In this review, we discuss how the interplay between immunosuppression and microbiome-driven inflammation creates a tumor-promoting environment in OSCC, leading to treatment resistance and poor patient outcomes, and explore the potential therapeutic implication of a better understanding of OSCC etiology and molecular changes.
Collapse
Affiliation(s)
- Laertty Garcia de Sousa Cabral
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 05508-220, SP, Brazil; (L.G.d.S.C.); (E.P.d.A.P.)
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| | - Isabela Mancini Martins
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| | - Ellen Paim de Abreu Paulo
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 05508-220, SP, Brazil; (L.G.d.S.C.); (E.P.d.A.P.)
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil;
| | - Jean-Luc Poyet
- INSERM UMRS1342—CNRS EMR8000, Institut De Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Durvanei Augusto Maria
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 05508-220, SP, Brazil; (L.G.d.S.C.); (E.P.d.A.P.)
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 05585-000, SP, Brazil;
| |
Collapse
|
32
|
Li X, Sun C, Ge Z, Li Y, Zhou H, Wu Y, Lin S, Zhang P, Wu X, Lai Y. Evaluation of the diagnostic value of a three-miRNA panel in prostate cancer: a discovery and validation study. Discov Oncol 2025; 16:611. [PMID: 40279022 PMCID: PMC12031705 DOI: 10.1007/s12672-025-02382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND PSA is widely used in prostate cancer screening. However, false-positive PSA results can lead to misdiagnosis and wrong puncture biopsy, while false-negative PSA results can result in missed diagnosis and delayed treatment. There is an urgent need to find convenient, economical and non-invasive diagnostic methods to reduce the false-negative and false-positive rates of PSA. The aim of this study was to discover new miRNA panels to detect prostate cancer. MATERIALS AND METHOD We selected 10 miRNAs in the literature that were associated with prostate cancer. Afterwards, we measured the expression levels of these miRNAs in serum of 112 prostate cancer patients and healthy controls through a training phase and a validation phase. By plotting receiver operating characteristic curve, the miRNAs with the highest diagnosis value were chosen. Then, a set of miRNAs with the top diagnostic value was identified using stepwise logistic regression. RESULTS The findings showed that 5 kinds of miRNAs (let-7b-5p, miR-15a-5p, miR-133a-3p, miR-15b-5p, miR-144-3p) were abnormally expressed in the serum of prostate cancer patients. The diagnostic panel constructed with these 3 miRNAs including let-7b-5p, miR-15a-5p miR-15b-5p and which have high specificity and sensitivity in detecting prostate cancer (area under the curve (AUC) = 0.899). Furthermore, the genes FAM107A and TAF1C may be potential therapeutic targets for prostate cancer. CONCLUSIONS A three-microRNA panel has an important diagnostic value in prostate cancer and is expected to serve as diagnostic biomarker for prostate cancer. Furthermore, the genes FAM107A and TAF1C may be potential therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Xutai Li
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Chen Sun
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Zhenjian Ge
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Yingqi Li
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Huimei Zhou
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yutong Wu
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Shengjie Lin
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, China
| | - Pengwu Zhang
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China
- Peking University Health Science Center, Beijing, China
| | - Xionghui Wu
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China.
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China.
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, The Fifth Clinical Medical College of Anhui Medical University, Shenzhen, 518036, China.
- Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
- Shenzhen Clinical Research Center for Urology and Nephrology, Shenzhen, 518036, China.
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Baran AM, Patil AH, Aparicio-Puerta E, Jun SH, Halushka MK, McCall MN. miRglmm: a generalized linear mixed model of isomiR-level counts improves estimation of miRNA-level differential expression and uncovers variable differential expression between isomiRs. Genome Biol 2025; 26:102. [PMID: 40264242 PMCID: PMC12016310 DOI: 10.1186/s13059-025-03549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
MicroRNA-seq data is produced by aligning small RNA sequencing reads of different microRNA transcript isoforms, called isomiRs, to known microRNAs. Aggregation to microRNA-level counts discards information and violates core assumptions of differential expression methods developed for mRNA-seq data. We establish miRglmm, a differential expression method for microRNA-seq data, that uses a generalized linear mixed model of isomiR-level counts, facilitating detection of miRNA with differential expression or differential isomiR usage. We demonstrate that miRglmm outperforms current differential expression methods in estimating differential expression for miRNA, whether or not there is differential isomiR usage, and simultaneously provides estimates of isomiR-level differential expression.
Collapse
Affiliation(s)
- Andrea M Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA
| | - Arun H Patil
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe St. Suite 300, Baltimore, MD, 21205, USA
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA
| | - Seong-Hwan Jun
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA
| | - Marc K Halushka
- Institute of Pathology and Laboratory Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA.
| |
Collapse
|
34
|
Kehl A, Klein R, Steiger K, Aupperle-Lellbach H. Stability of microRNAs in Canine Serum-A Prerequisite for Use as Biomarkers in Tumour Diagnostics. Vet Sci 2025; 12:390. [PMID: 40284892 PMCID: PMC12031383 DOI: 10.3390/vetsci12040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Since microRNAs are released into the bloodstream and miRNA profiles are supposed to differ between healthy and tumour patients, miRNAs seem to have potential as biomarkers. An essential prerequisite for biomarkers in a routine diagnostic setup is their stability in serum over time. In this study, serum samples from 10 healthy dogs were analysed at different time points and under various temperature conditions (after 24 and 48 h, at 4° or 20 °C) for the copy number of eight miRNAs (miR-20b, 21, 122, 126, 192, 214, 222, 494) using ddPCR. The miR-21 had the highest copy number, whereas miR-494 had the lowest copy number in canine blood samples. The values of each miRNA varied individually between the dogs, showing a 5 to 10-fold range. Stability differed between the miRNAs, with miR-192 having the best stability. The copy number of miR-20b, miR-126 and miR-214 decreased not significantly during 48 h storage time. In contrast, miR-21, miR-122 and miR-222 were stable for 24 h only but decreased significantly after 48 h. The (in)stability of individual canine miRNAs must be considered when transferring study results into veterinary routine diagnostics, as the transport and storage conditions are variable. As far as possible, standardisation of sampling, storage and quantification of miRNAs is needed.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| | - Ruth Klein
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| | - Heike Aupperle-Lellbach
- Laboklin GmbH&Co. KG, 97688 Bad Kissingen, Germany; (R.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, 81675 München, Germany;
| |
Collapse
|
35
|
Nguyen TTA, Dutour R, Conrard L, Vermeersch M, Mirgaux M, Perez-Morga D, Baeyens N, Bruylants G, Demeestere I. Effect of Surface Modification of Gold Nanoparticles Loaded with Small Nucleic Acid Sequences on Cytotoxicity and Uptake: A Comparative Study In Vitro. ACS APPLIED BIO MATERIALS 2025; 8:3040-3051. [PMID: 40089913 PMCID: PMC12015956 DOI: 10.1021/acsabm.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
Nanoparticle technology, particularly gold nanoparticles (AuNPs), is being developed for a wide range of applications, including as a delivery system of peptides or nucleic acids (NA). Their use in precision medicine requires detailed engineering of NP functionalization to optimize their function and minimize off-target toxicity. Two main routes can be found in the literature for the attachment of NA strands to AuNPs: covalent binding via a thiol group or passive adsorption onto a specially adapted coating previously applied to the metallic core. In this latter case, the coating is often a positively charged polymer, as polyethylenimine, which due to its high positive charge can induce cytotoxicity. Here, we investigated an innovative strategy based on the initial coating of the particles using calix[4]arene macrocycles bearing polyethylene glycol chains as an interesting alternative to polyethylenimine for NA adsorption. Because any molecular modification of AuNPs may affect the cytotoxicity and cellular uptake, we compared the behavior of these AuNPs to that of particles obtained via a classical thiol covalent attachment in MCF-7 and GC-1 spg cell lines. We showed a high biocompatibility of both AuNPs-NA internalized in vitro. The difference in subcellular localization of both AuNPs-NA in MCF-7 cells compared to GC-1 spg cells suggests that their subcellular target is cell- and coating-dependent. This finding provides valuable insights for developing alternative NA delivery systems with a high degree of tunability.
Collapse
Affiliation(s)
- Thuy Truong An Nguyen
- Research
Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Raphaël Dutour
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Louise Conrard
- Center
for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Marjorie Vermeersch
- Center
for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Manon Mirgaux
- Center
for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - David Perez-Morga
- Center
for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- Laboratory
of Molecular Parasitology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Nicolas Baeyens
- Laboratory
of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Isabelle Demeestere
- Research
Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
36
|
Zhang Y, Su R, Zhang Z, Jiang Y, Miao Y, Zhou S, Ji M, Hsu CW, Xu H, Li Z, Wang G. An ultrasensitive one-pot Cas13a-based microfluidic assay for rapid multiplexed detection of microRNAs. Biosens Bioelectron 2025; 274:117212. [PMID: 39893949 DOI: 10.1016/j.bios.2025.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Aberrant microRNA expression is associated with tumor progression in various organs. Detecting microRNAs as clinical cancer biomarkers can facilitate early cancer diagnosis and monitoring. However, the rapid and accurate quantification of microRNAs from biological samples remains a significant challenge. Here we developed a one-pot isothermal assay utilizing a molecular circuit with CRISPR/Cas13a (CRISPR-circuit) to rapidly convert, amplify and report different microRNAs within 15 min at the attomolar (aM) level. Then the full process was performed on an active centrifugal microfluidic chip and its corresponding portable equipment for parallel detection of multiple microRNAs, including miR-21, miR-141, miR-196a, and miR-1246. We also demonstrated its application for identifying cell lines and clinical samples of cancer patients with varying microRNA levels, which showed a strong correlation with the RT-qPCR. The assay can be easily adapted for the detection of any microRNA by simply modifying the converter primer, thereby holding significant potential for accurate disease detection and clinical diagnosis.
Collapse
Affiliation(s)
- Ya Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Rouyu Su
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Zheng Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Yiyue Jiang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yejia Miao
- Department of health, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Shiqi Zhou
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Miaomiao Ji
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Chih-Wen Hsu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Hongpan Xu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China.
| |
Collapse
|
37
|
Zheng QQ, Lin WF. Inhibition of miR-325 inhibits KIF20B expression and the colorectal cancer cells' invasion & proliferation. BMC Cancer 2025; 25:680. [PMID: 40229707 PMCID: PMC11995485 DOI: 10.1186/s12885-025-13759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/18/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of miR-325 on KIF20B expression and its role in the invasion and proliferation of colorectal cancer cells. METHODS Colorectal cancer HCT116 cells were cultured and transfected with a miR-325 inhibitor. KIF20B expression was assessed using quantitative polymerase chain reaction (qPCR) and western blotting. Cell proliferation was assessed with the Cell Counting Kit-8 (CCK8) assay, while invasion was evaluated using Transwell and scratch wound healing assays. The expression levels of the invasion-related proteins Matrix Metalloproteinase-2 (MMP-2) and MMP-9 were also analyzed. RESULTS The q-PCR and western blot results demonstrated that KIF20B expression was significantly reduced by miR-325 inhibition. The CCK8 assay revealed that miR-325 inhibition decreased cell proliferation. Furthermore, Transwell and Scratch Wound Healing assays showed that miR-325 inhibition suppressed the invasive capacity of colorectal cancer cells. The inhibition of miR-325 also led to decreased expression levels of MMP-2 and MMP-9. CONCLUSION miR-325 inhibition effectively suppresses KIF20B expression, reducing the invasion and proliferation of colorectal cancer cells, suggesting miR-325 as a potential therapeutic target.
Collapse
Affiliation(s)
- Qi-Qi Zheng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, P.R. China
| | - Wen-Feng Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou City, Wenzhou City, 325000, Zhejiang Province, P.R. China.
| |
Collapse
|
38
|
Saadh MJ, Bishoyi AK, Ballal S, Singh A, Kareem RA, Devi A, Sharma GC, Naidu KS, Sead FF. MicroRNAs as behind-the-scenes molecules in breast cancer metastasis and their therapeutic role through novel microRNA-based delivery strategies. Gene 2025; 944:149272. [PMID: 39894085 DOI: 10.1016/j.gene.2025.149272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Breast cancer is the primary cause of cancer-related death and the most frequent malignancy among women in Western countries. Although there have been advancements in combination treatments and targeted therapies for the metastatic diseases management, metastatic breast cancer is still the second most common cause of cancer-related deaths among U.S. women. The routes of metastasis encompass invasion, intravasation, circulation, extravasation, infiltration into a remote location to establish a metastatic niche, and the formation of micro-metastases in a new environment. Each of these processes is regulated by changes in gene expression. MicroRNAs (miRNAs) are widely expressed by a variety of organisms and have a key role in cell activities including suppressing or promoting cancer through regulating various pathways. Target gene expression is post-transcriptionally regulated by miRNAs, which contribute to the development, spread, and metastasis of breast cancer. In this study, we comprehensively discussed the role of miRNAs as predictors of breast cancer metastasis, their correlation with the spread of the disease to certain organs, and their potential application as targets for breast cancer treatment. We also provided molecular mechanisms of miRNAs in the progression of breast cancer, as well as current challenges in miRNA-based therapeutic approaches. Furthermore, as one of the primary issues with the treatment of solid malignancies is the efficient delivery of miRNAs, we examined a number of cutting-edge carriers for miRNA-based therapies and CRISPR/Cas9 as a targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
39
|
Li Q, Bai Y, Cavender SM, Miao Y, Nguele Meke F, Lasse-Opsahl EL, Zhu P, Doody GM, Tao WA, Zhang ZY. The PRL2 phosphatase up-regulates miR-21 through activation of the JAK2/STAT3 pathway to down-regulate the PTEN tumor suppressor. Biochem J 2025; 482:341-356. [PMID: 39665584 DOI: 10.1042/bcj20240626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
The phosphatases of regenerating liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally down-regulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here, we report that PRLs can also reduce PTEN expression by up-regulating microRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors. We observe a broad correlation between PRL and miR-21 levels in multiple human cancers. Mechanistically, PRL2, the most abundant and ubiquitously expressed PRL family member, promotes the JAK2/STAT3 pathway-mediated miR-21 expression by directly dephosphorylating JAK2 at Tyr570. Finally, we confirm that the PRL2-mediated miR-21 expression contributes to its oncogenic potential in breast cancer cells. Our study defines a new functional role of PRL2 in PTEN regulation through a miR-21-dependent post-transcriptional mechanism, in addition to our previously reported NEDD4-dependent post-translational PTEN regulation. Together, these studies further establish the PRLs as negative regulators of PTEN.
Collapse
Affiliation(s)
- Qinglin Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Current address: Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Sarah M Cavender
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Frederick Nguele Meke
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Emily L Lasse-Opsahl
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, U.K
| | - W Andy Tao
- Department of Biochemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, U.S.A
- Purdue Institute for Cancer Research, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
- Purdue Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN, 47907, U.S.A
| |
Collapse
|
40
|
Cho H, Ha SE, Singh R, Kim D, Ro S. microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. Int J Mol Sci 2025; 26:3301. [PMID: 40244147 PMCID: PMC11990060 DOI: 10.3390/ijms26073301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency. The primary drivers of β-cell destruction in T1D involve autoimmune-mediated processes that trigger chronic inflammation and ultimately β-cell loss. Regulatory microRNAs (miRNAs) play a crucial role in modulating these processes by regulating gene expression through post-transcriptional suppression of target mRNAs. Dysregulated miRNAs have been implicated in T1D pathogenesis, serving as both potential diagnostic biomarkers and therapeutic targets. This review explores the role of miRNAs in T1D, highlighting their involvement in disease mechanisms across both rodent models and human patients. While current antidiabetic therapies manage T1D symptoms, they do not prevent β-cell destruction, leaving patients reliant on lifelong insulin therapy. By summarizing key miRNA expression profiles in diabetic animal models and patients, this review explores the potential of miRNA-based therapies to restore β-cell function and halt or slow the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (H.C.); (S.E.H.); (R.S.); (D.K.)
| |
Collapse
|
41
|
Zhang S, Wang C, Liu J, Liu L, Miao L, Wang H, Tian Y, Cheng H, Li J, Zeng X. The novel miR_146-Tfdp2 axis antagonizes METH induced neuron apoptosis and cell cycle abnormalities in tree shrew. Neuropharmacology 2025; 267:110300. [PMID: 39793695 DOI: 10.1016/j.neuropharm.2025.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Methamphetamine (METH) is a synthetic drug with potent addictive, relapse, and neurotoxic properties. METH abuse contributes to severe damage to the central nervous system, potentially causing cognitive impairments, behavioral changes, and neurodegenerative diseases. METH-induced neuronal damage is closely related to apoptosis and cell cycle abnormalities, while gene expression regulator microRNAs (miRNAs) may play extensive roles in this progress, but the specific mechanisms remain unclear. We found that the novel miRNA 146 (miR_146) was downregulated in METH-induced apoptosis and cell cycle arrest in tree shrew primary neurons, while the expression of its target gene Tfdp2 was increased after METH exposure. Overexpression of miR_146 or silencing of Tfdp2 significantly alleviated METH-induced cell cycle arrest and apoptosis in primary tree shrew neurons. These findings provide new insights into the role of the miR_146-Tfdp2 axis in METH-induced neurotoxic injury and offer a theoretical basis for miR_146 as potential therapeutic targets in drug abuse.
Collapse
Affiliation(s)
- Shuwei Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Jianxing Liu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Liu Liu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hao Cheng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Collaborative Laboratory of Intelligentized Forensic Science, Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China.
| | - Juan Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China; Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China.
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| |
Collapse
|
42
|
Li H, Meng J, Wang Z, Luan Y. PmiProPred: A novel method towards plant miRNA promoter prediction based on CNN-Transformer network and convolutional block attention mechanism. Int J Biol Macromol 2025; 302:140630. [PMID: 39909261 DOI: 10.1016/j.ijbiomac.2025.140630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
It is crucial to understand the transcription mechanisms of miRNAs, especially considering the presence of peptides encoded by miRNAs. Since promoters function as the switch for gene transcription, precisely identifying these regions is essential for fully annotating miRNA transcripts. Nonetheless, existing computational methods still have room for improvement in the characterization of promoter regions. Here, we present PmiProPred, an advanced tool designed for predicting plant miRNA promoters from a wide spectrum of genomes. It consists of two core components: multi-stream deep feature extraction (MsDFE) and multi-stream deep feature refinement (MsDFR). The MsDFE utilizes Transformer and CNN to gather multi-view features, while the MsDFR focuses on aligning and refining them using channel and spatial attention mechanisms. Ultimately, a multi-layer perceptron is employed to accomplish the miRNA promoter identification task. Across three independent testing datasets, PmiProPred achieves accuracies of 94.630%, 96.659%, and 92.480%, respectively, substantially surpassing the latest methods. Additionally, PmiProPred is employed to identify potential core promoters in the upstream 2-kb regions of intergenic miRNAs in five plant species. We further conduct cis-regulatory elements mining on the predicted promoters and perform an in-depth analysis of the identified motifs. Altogether, PmiProPred is a robust and effective tool for discovering plant miRNA promoters.
Collapse
Affiliation(s)
- Haibin Li
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhaowei Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
43
|
Feng Y, Zhu Y, Zhu Y, Lu Y, He Y, Wu Y, Jiang L, Weng W. Circular RNA NXN (circNXN) promotes diabetic retinopathy by regulating the miR-338-3p/FGFR1 axis. Arch Physiol Biochem 2025; 131:177-187. [PMID: 39988878 DOI: 10.1080/13813455.2024.2404102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 02/25/2025]
Abstract
Diabetic retinopathy (DR) is the leading manifestation of diabetic microangiopathy. However, effective biomarkers and therapies are lacking. Circular RNAs (circRNAs) have been implicated in various diseases including DR. However, the role of circRNAs in DR remains elusive. In the present study, circNXN was upregulated in high glucose (HG)-treated human retinal microvascular endothelial cells (hRMECs). circNXN knockdown inhibited the proliferation, migration, and angiogenesis of hRMECs and promoted apoptosis. In addition, circNXN acted as a sponge for miR-338-3p to facilitate the FGFR1 (fibroblast growth factor receptor 1) expression. Furthermore, rescue assays revealed that the reduced promoting effect on hRMECs induced by the knockdown of circNXN could be reversed by a miR-338-3p inhibitor in HG-treated hRMECs. Additionally, in a DR rat model, circNXN downregulation ameliorated retinal vasculature changes. Our findings reveal a new therapeutic strategy for DR that may provide a new approach to clinical DR therapy.
Collapse
Affiliation(s)
- Yanbing Feng
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| | - Yongwei Zhu
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| | - Yixing Zhu
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| | - Yanting Lu
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| | - Yanyan He
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| | - Yibo Wu
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| | - Lijun Jiang
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| | - Wenqing Weng
- Department of ophthalmology, Jiaxing Hospital of Traditional Chinese Medicine, No.1501 Zhongshan East Road, Jiaxing, Zhejiang, China
| |
Collapse
|
44
|
Kandettu A, Kuthethur R, Chakrabarty S. A detailed review on the role of miRNAs in mitochondrial-nuclear cross talk during cancer progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167731. [PMID: 39978440 DOI: 10.1016/j.bbadis.2025.167731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are associated with biochemical pathways through the post-transcriptional regulation of gene expression in different cell types. Based on their expression pattern and function, miRNAs can have oncogenic and tumor suppressor activities in different cancer cells. Altered mitochondrial function and bioenergetics are known hallmarks of cancer cells. Mitochondria play a central role in metabolic reprogramming during cancer progression. Cancer cells exploit mitochondrial function for cell proliferation, invasion, migration and metastasis. Genetic and epigenetic changes in nuclear genome contribute to altered mitochondrial function and metabolic reprogramming in cancer cells. Recent studies have identified the role of miRNAs as major facilitators of anterograde and retrograde signaling between the nucleus and mitochondria in cancer cells. Detailed analysis of the miRNA-mediated regulation of mitochondrial function in cancer cells may provide new avenues for the diagnosis, prognosis, and therapeutic management of the disease. Our review aims to discuss the role of miRNAs in nuclear-mitochondrial crosstalk regulating mitochondrial functions in different cancer types. We further discussed the potential application of mitochondrial miRNAs (mitomiRs) targeting mitochondrial biogenesis and metabolism in developing novel cancer therapy.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
45
|
Wang Y, Wang S, He H, Bai Y, Liu Z, Sabihi SS. Mechanisms of apoptosis-related non-coding RNAs in ovarian cancer: a narrative review. Apoptosis 2025; 30:553-578. [PMID: 39833637 DOI: 10.1007/s10495-024-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Ovarian cancer remains a major challenge in oncology due to its complex biology and late-stage diagnosis. Recent advances in molecular biology have highlighted the crucial role of non-coding RNAs (ncRNAs) in regulating apoptosis and cancer progression. NcRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have emerged as significant players in the molecular networks governing ovarian cancer. Despite these insights, the precise mechanisms by which ncRNAs influence ovarian cancer pathology are not fully understood. This complexity, combined with the heterogeneity of the disease and the development of treatment resistance, poses substantial obstacles to effective therapeutic development. Additionally, the lack of reliable early detection methods further complicates treatment strategies. This manuscript reviews the current state of research on ncRNAs in ovarian cancer, discusses the challenges in translating these findings into clinical applications, and outlines potential future directions. Emphasis is placed on the need for integrated approaches to unravel the intricate roles of ncRNAs, improve early detection, and develop personalized treatment strategies to address the diverse and evolving nature of ovarian cancer. While these findings provide valuable insights, it is crucial to recognize that many results are based on preclinical studies and require further validation to establish their clinical applicability.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Shirui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710038, China
| | - Haiyan He
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Yingying Bai
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Zhuo Liu
- Department of Obstetrics and Gynecology, Xi'an International Medical Center Hospital, Xi'an, 710038, China
| | - Sima-Sadat Sabihi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
46
|
Kura B, Kindernay L, Singla D, Dulova U, Bartekova M. Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury. Am J Physiol Heart Circ Physiol 2025; 328:H865-H884. [PMID: 40033927 PMCID: PMC12069993 DOI: 10.1152/ajpheart.00736.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cardiovascular complications, particularly diabetic cardiomyopathy (DCM), are the primary causes of morbidity and mortality among individuals with diabetes. Hyperglycemia associated with diabetes leads to cardiomyocyte hypertrophy, apoptosis, and myocardial fibrosis, culminating in heart failure (HF). Patients with diabetes face a 2-4 times greater risk of developing HF compared with those without diabetes. Consequently, there is a growing interest in exploring the molecular mechanisms that contribute to the development of DCM. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNA molecules that participate in the maintenance of physiological homeostasis through the regulation of essential processes such as metabolism, cell proliferation, and apoptosis. At the posttranscriptional level, miRNAs modulate gene expression by binding directly to genes' mRNAs. Multiple cardiac-enriched miRNAs were reported to be dysregulated under diabetic conditions. Different studies revealed the role of specific miRNAs in the pathogenesis of diabetes and related cardiovascular complications, including cardiomyocyte hypertrophy and fibrosis, mitochondrial dysfunction, metabolic impairment, inflammatory response, or cardiomyocyte death. Circulating miRNAs have been shown to represent the potential biomarkers for early detection of diabetic heart injury. A deeper understanding of miRNAs and their role in diabetes-related pathophysiological processes could lead to new therapeutic strategies for addressing cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dinender Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Ulrika Dulova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
47
|
Qiao H, Tong Z, Wang Y, Yang J, Sun Y, Shi H, Liu Z, Duan J, Li D, Kan Y. miR-34-5p mediates 20E-induced autophagy in the fat body of Bombyx mori by targeting Atg1. BMC Genomics 2025; 26:317. [PMID: 40165048 PMCID: PMC11956236 DOI: 10.1186/s12864-025-11499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND 20-Hydroxyecdysone (20E) is an important hormone that regulates insect development and metamorphosis. The fat body of insects plays a crucial role in nutrient storage and energy metabolism and is considered the exchange center for regulating insect development. The fat body undergoes remarkable transformation during insect metamorphosis and is primarily regulated by 20E. microRNAs (miRNAs) have been identified in different insects and have multiple functions in various physiological processes. However, the interaction of 20E and miRNAs in fat body regulation remains unclear. RESULTS We constructed six small RNA libraries using Bombyx mori fat body treated with 20E. Expression and functional analyses were conducted to identify 20E-responsive miRNAs. In total, 431 miRNAs were identified, including 389 known and 42 novel miRNAs. Differential expression analysis revealed significant expression changes in the expression of 40, 9, and 18 miRNAs at 2 h, 6 h, and 12 h after 20E treatment, respectively. The expression of 10 miRNAs was validated using quantitative real-time PCR. miR-34-5p is a highly conserved miRNA among the 10 validated miRNAs, and autophagy-related gene 1 (Atg1) was considered a target gene of miR-34-5p. The expression analysis of miR-34-5p and Atg1 exhibited an opposite expression pattern in the fat body after the 20E treatment. Dual-luciferase assay indicated that miR-34-5p could inhibit Atg1 expression by targeting a binding site in CDS region of Atg1. In larval fat body, overexpressing miR-34-5p by injecting miR-34-5p agomir suppressed the expression of Atg1 and autophagy, whereas knocking down miR-34-5p by injecting miR-34-5p antagomir induced the expression of Atg1 and autophagy. Meanwhile, Atg1 silencing by RNAi also inhibited autophagy. These results indicate that miR-34-5p participates in 20E-induced autophagy in B. mori fat body by interacting with Atg1. CONCLUSIONS We systematically identified and functionally characterized miRNAs associated with 20E regulation in the fat body of B. mori. miR-34-5p is involved in 20E-induced autophagy in B. mori by regulating its target gene Atg1. These results provide insight into the role of sophisticated interactions between miRNAs, 20E regulation, and autophagy in fat body remodeling and insect metamorphosis.
Collapse
Affiliation(s)
- Huili Qiao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China.
| | - Ziqian Tong
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yuanzhuo Wang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Juanjuan Yang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yanyan Sun
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Huixuan Shi
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Zhuo Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Jianping Duan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science, Nanyang Normal University, Nanyang, Henan, 473061, China.
- School of Resourses and Enviroment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
48
|
Zhang Y, Zang C, Mao M, Zhang M, Tang Z, Chen W, Zhu W. Advances in RNA therapy for the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103753. [PMID: 39842534 DOI: 10.1016/j.autrev.2025.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Autoimmune diseases (ADs) are a group of complex, chronic conditions characterized by disturbance of immune tolerance, with examples including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. These diseases have unclear pathogenesis, and traditional therapeutic approaches remain limited. However, advances in high-throughput histology technology and scientific discoveries have led to the identification of various pathogenic factors contributing to ADs. Coupled with improvements in RNA nucleic acid-based drug synthesis, design, and delivery, RNA-based therapies have been extensively investigated for their potential in treating ADs. This paper reviews the progress in the use of miRNAs, lncRNAs, circRNAs, siRNAs, antisense oligonucleotides (ASOs), aptamers, mRNAs, and other RNA-based therapies in ADs, focusing on their therapeutic potential and application prospects, providing insights for future research and clinical treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Chenyang Zang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Manyun Mao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Mi Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangqing Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
49
|
AbdElneam AI, Al-Dhubaibi MS, Bahaj SS, Mohammed GF, Atef LM. Assessment of miR-19b-3p, miR-182-5p, and miR-155-5p expression and its relation. Arch Dermatol Res 2025; 317:619. [PMID: 40119951 DOI: 10.1007/s00403-025-04043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/25/2025]
Abstract
Alopecia areata (AA) is an autoimmune disorder characterized by non-scarring hair loss. Despite the growing understanding of its immune-related pathogenesis, biomarkers for early diagnosis and disease severity assessment remain limited. Recent studies have suggested that microRNAs (miRNAs) play a crucial role in regulating immune responses and inflammation in autoimmune diseases. This study aimed to investigate the expression levels of three miRNAs, miR-19b-3p, miR-182-5p, and miR-155-5p, in AA patients and their potential as diagnostic markers and indicators of disease severity. A total of 67 AA patients and 62 healthy controls were included in this case-control study. The severity of AA was evaluated using the Severity of Alopecia Tool (SALT) score, categorizing patients into mild, moderate, and severe groups. Plasma miRNA extraction was performed using the Direct-zol™ RNA MiniPrep kit, and qRT-PCR analysis was conducted to quantify the expression levels of miR-19b-3p, miR-182-5p, and miR-155-5p. Diagnostic accuracy was assessed using Receiver Operating Characteristic (ROC) curve analysis, and correlation analysis was performed to examine the relationship between miRNA expression and disease severity. The results revealed that the expression of miR-19b-3p, miR-182-5p, and miR-155-5p was significantly higher in AA patients compared to healthy controls (p = 0.001 for all three miRNAs). ROC curve analysis demonstrated high diagnostic accuracy, with AUC values of 0.99 for miR-19b-3p, 0.95 for miR-182-5p, and 0.97 for miR-155-5p. These miRNAs showed high sensitivity and specificity, indicating their strong potential as diagnostic biomarkers. Moreover, correlation analysis revealed a significant association between miR-155-5p expression and the severity of AA (p < 0.001), suggesting its potential as a marker of disease progression. This study highlights the significant upregulation of miR-19b-3p, miR-182-5p, and miR-155-5p in AA patients, indicating their potential as minimally invasive diagnostic markers. Furthermore, the correlation between miRNA expression and disease severity provides valuable insights into the molecular mechanisms underlying AA. These findings suggest that miRNAs, particularly miR-155-5p, may serve as promising biomarkers for diagnosing and monitoring the progression of AA, potentially aiding in the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed Ibrahim AbdElneam
- Department of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, Shaqra University, Dawadmi, Saudi Arabia
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Center, 33 El Bohouth St. (Former El Tahrir St.), Dokki 12622, Cairo, Egypt
| | | | - Saleh Salem Bahaj
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen
| | - Ghada Farouk Mohammed
- Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Lina Mohammed Atef
- Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
50
|
Moorthy S, Bhaskar E, Singh S, Silambanan S. Diagnostic utility of microRNA profiles in cavitatory and non-cavitatory pulmonary tuberculosis: Research protocol. World J Exp Med 2025; 15:97460. [PMID: 40115755 PMCID: PMC11718590 DOI: 10.5493/wjem.v15.i1.97460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is a common infection causing huge morbidity and mortality to mankind. The analytical methods used in diagnosing TB are not sensitive in paucibacillary infections and also require trained technical personnel. MicroRNAs are stable in serum and other body fluids, and hold great potential in the diagnosis of TB. AIM To analyze the dysregulated microRNA profiles among patients with cavitatory and non-cavitatory pulmonary TB. METHODS The prospective study will be conducted in a tertiary care center in India. Adult patients with newly diagnosed pulmonary TB will be included. There will be two groups: Patients with sputum positive pulmonary TB with cavity and without cavity (group1), and apparently healthy individuals (group 2). The participants will undergo sputum examination, Xpert Mycobacterium TB complex/resistance to rifampin (Mtb/RIF) assay, chest X-ray, and blood investigations and serum microRNA detection. Ethics approval has been obtained. Written informed consent will be obtained. Appropriate statistical analyses will be used. RESULTS MicroRNAs will be correlated with sputum positivity, Xpert Mtb/RIF assay, radiological involvement, inflammatory markers, and course of the disease among cases and controls. CONCLUSION MicroRNAs could serve as potential diagnostic biomarkers in diagnostically challenging TB patients.
Collapse
Affiliation(s)
- Swathy Moorthy
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nādu, India
| | - Emmanuel Bhaskar
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nādu, India
| | - Shivakumar Singh
- Department of Medicine, Railway Hospital, Perumbur, Chennai, Chennai 600023, Tamil Nādu, India
| | - Santhi Silambanan
- Department of Biochemistry, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nādu, India
| |
Collapse
|