BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Burnham EL, Janssen WJ, Riches DW, Moss M, Downey GP. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014;43:276-285. [PMID: 23520315 DOI: 10.1183/09031936.00196412] [Cited by in Crossref: 197] [Cited by in F6Publishing: 207] [Article Influence: 19.7] [Reference Citation Analysis]
Number Citing Articles
1 Planer JD, Morrisey EE. After the Storm: Regeneration, Repair, and Reestablishment of Homeostasis Between the Alveolar Epithelium and Innate Immune System Following Viral Lung Injury. Annu Rev Pathol 2023;18:337-59. [PMID: 36270292 DOI: 10.1146/annurev-pathmechdis-031621-024344] [Reference Citation Analysis]
2 Zheng Z, Peng F, Zhou Y. Pulmonary fibrosis: A short- or long-term sequelae of severe COVID-19? Chinese Medical Journal - Pulmonary and Critical Care Medicine 2023. [DOI: 10.1016/j.pccm.2022.12.002] [Reference Citation Analysis]
3 Giani M, Rezoagli E, Guervilly C, Rilinger J, Duburcq T, Petit M, Textoris L, Garcia B, Wengenmayer T, Bellani G, Grasselli G, Pesenti A, Combes A, Foti G, Schmidt M; European Prone positioning During Extracorporeal Membrane Oxygenation (EuroPronECMO) Investigators. Timing of Prone Positioning During Venovenous Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. Crit Care Med 2023;51:25-35. [PMID: 36519981 DOI: 10.1097/CCM.0000000000005705] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Mei S, Tang R, Hu Y, Feng J, Xu Q, Zhou Y, Zhong H, Gao Y, He Z, Xing S. Integrin β3 Mediates Sepsis and Mechanical Ventilation-Associated Pulmonary Fibrosis Through Glycometabolic Reprogramming. Laboratory Investigation 2023;103:100021. [DOI: 10.1016/j.labinv.2022.100021] [Reference Citation Analysis]
5 Oronsky B, Larson C, Hammond TC, Oronsky A, Kesari S, Lybeck M, Reid TR. A Review of Persistent Post-COVID Syndrome (PPCS). Clin Rev Allergy Immunol 2023;64:66-74. [PMID: 33609255 DOI: 10.1007/s12016-021-08848-3] [Cited by in Crossref: 100] [Cited by in F6Publishing: 107] [Article Influence: 100.0] [Reference Citation Analysis]
6 Wang Z, Liu Y, Chen F, Liao H, Wang X, Guo Z, Wang Z. Feasibility and mechanism analysis of Reduning in the prevention of sepsis-induced pulmonary fibrosis. Front Pharmacol 2022;13:1079511. [PMID: 36605402 DOI: 10.3389/fphar.2022.1079511] [Reference Citation Analysis]
7 Feng K, Huang W, Shang J, Ping F, Tan Q, Wang W, Li Y, Cao Y. Knockdown of lncRNA-ASLNC12002 alleviates epithelial-mesenchymal transition of type II alveolar epithelial cells in sepsis-induced acute respiratory distress syndrome. Hum Cell 2022;:1-15. [PMID: 36478088 DOI: 10.1007/s13577-022-00837-8] [Reference Citation Analysis]
8 Li Y, Li S, Gu M, Liu G, Li Y, Ji Z, Li K, Wang Y, Zhai H, Wang Y. Application of network composite module analysis and verification to explore the bidirectional immunomodulatory effect of Zukamu granules on Th1 / Th2 cytokines in lung injury. J Ethnopharmacol 2022;299:115674. [PMID: 36064149 DOI: 10.1016/j.jep.2022.115674] [Reference Citation Analysis]
9 Fang X, Li M, Wang Y, Zhang P, Sun M, Xu J, Yang Y, He Y, Yu Y, Li R, Zhou T, Reng L, Sun D, Shu H, Yuan S, Xu J, Shang Y. Mechanical activation of the ion channel Piezo1 mediates mechanical ventilation-exacerbated ARDS-associated pulmonary fibrosis. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.12.006] [Reference Citation Analysis]
10 Jyothula SSK, Peters A, Liang Y, Bi W, Shivshankar P, Yau S, Garcha PS, Yuan X, Akkanti B, Collum S, Wareing N, Thandavarayan RA, Poli de Frias F, Rosas IO, Zhao B, Buja LM, Eltzschig HK, Huang HJ, Karmouty-Quintana H. Fulminant lung fibrosis in non-resolvable COVID-19 requiring transplantation. EBioMedicine 2022;86:104351. [PMID: 36375315 DOI: 10.1016/j.ebiom.2022.104351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Siuba MT, Duggal A. Body Position: A Question That Weighs Heavily on Lung Protection in Acute Respiratory Distress Syndrome. Crit Care Med 2022;50:1675-7. [PMID: 36227039 DOI: 10.1097/CCM.0000000000005652] [Reference Citation Analysis]
12 Batiha GE, Al-kuraishy HM, Al-gareeb AI, Welson NN. Pathophysiology of Post-COVID syndromes: a new perspective. Virol J 2022;19. [DOI: 10.1186/s12985-022-01891-2] [Reference Citation Analysis]
13 Hua-Huy T, Günther S, Lorut C, Subileau M, Aubourg F, Morbieu C, Marey J, Texereau J, Fajac I, Mouthon L, Roche N, Dinh-Xuan AT. Distal Lung Inflammation Assessed by Alveolar Concentration of Nitric Oxide Is an Individualised Biomarker of Severe COVID-19 Pneumonia. J Pers Med 2022;12:1631. [PMID: 36294770 DOI: 10.3390/jpm12101631] [Reference Citation Analysis]
14 Go RC, Nyirenda T. Hydroxychloroquine, azithromycin and methylprednisolone and in hospital survival in severe COVID-19 pneumonia. Front Pharmacol 2022;13:935370. [DOI: 10.3389/fphar.2022.935370] [Reference Citation Analysis]
15 Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Tafuri S, Migliore G, Brienza N, Dipalma G, Inchingolo F. Antispike Immunoglobulin-G (IgG) Titer Response of SARS-CoV-2 mRNA-Vaccine (BNT162b2): A Monitoring Study on Healthcare Workers. Biomedicines 2022;10:2402. [DOI: 10.3390/biomedicines10102402] [Reference Citation Analysis]
16 Peng F, Ren X, Du B, Yang Y. Pyrus ussuriensis Maxim 70% ethanol eluted fraction ameliorates inflammation and oxidative stress in LPS-induced inflammation in vitro and in vivo. Food Sci Nutr 2023;11:458-69. [PMID: 36655082 DOI: 10.1002/fsn3.3077] [Reference Citation Analysis]
17 Tarraso J, Safont B, Carbonell-Asins JA, Fernandez-Fabrellas E, Sancho-Chust JN, Naval E, Amat B, Herrera S, Ros JA, Soler-Cataluña JJ, Rodriguez-Portal JA, Andreu AL, Marín M, Rodriguez-Hermosa JL, Gonzalez-Villaescusa C, Soriano JB, Signes-Costa J; COVID-FIBROTIC study team. Lung function and radiological findings 1 year after COVID-19: a prospective follow-up. Respir Res 2022;23:242. [PMID: 36096801 DOI: 10.1186/s12931-022-02166-8] [Reference Citation Analysis]
18 Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M, Sturza A. Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. Oxidative Medicine and Cellular Longevity 2022;2022:1-27. [DOI: 10.1155/2022/4032704] [Reference Citation Analysis]
19 Chaudhary S, Rai P, Joshi A, Yadav P, Sesham K, Kumar S, Mridha AR, Baitha U, Nag TC, Soni KD, Trikha A, Yadav SC. Ultracellular Imaging of Bronchoalveolar Lavage from Young COVID-19 Patients with Comorbidities Showed Greater SARS-COV-2 Infection but Lesser Ultrastructural Damage Than the Older Patients. Microsc Microanal 2022;:1-25. [PMID: 36065953 DOI: 10.1017/S1431927622012430] [Reference Citation Analysis]
20 Wang K, Wang Y, Cao Y, Wang H, Zhou Y, Gao L, Zeng Z, Cheng M, Jin X, Chen J, Wen F, Wang T. Lumican is elevated in the lung in human and experimental acute respiratory distress syndrome and promotes early fibrotic responses to lung injury. J Transl Med 2022;20:392. [PMID: 36059026 DOI: 10.1186/s12967-022-03597-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Tang L, Zhang S, Zhang M, Wang P, Liang G, Gao X. Analysis of protective effects of Rosa Roxburghii Tratt fruit polyphenols on lipopolysaccharide‐induced acute lung injury through network pharmacology and metabolomics. Food Science & Nutrition 2022;10:4258-4269. [DOI: 10.1002/fsn3.3019] [Reference Citation Analysis]
22 Maus M, López-polo V, Lafarga M, Aguilera M, Lama ED, Meyer K, Manonelles A, Sola A, Martinez CL, López-alonso I, Hernandez-gonzales F, Chaib S, Rovira M, Sanchez M, Faner R, Agusti A, Prats N, Albaiceta G, Cruzado JM, Serrano M. Iron accumulation drives fibrosis, senescence, and the senescence-associated secretory phenotype.. [DOI: 10.1101/2022.07.29.501953] [Reference Citation Analysis]
23 Zhang R, Tan Y, Yong C, Jiao Y, Tang X, Wang D. Pirfenidone ameliorates early pulmonary fibrosis in LPS-induced acute respiratory distress syndrome by inhibiting endothelial-to-mesenchymal transition via the Hedgehog signaling pathway. International Immunopharmacology 2022;109:108805. [DOI: 10.1016/j.intimp.2022.108805] [Reference Citation Analysis]
24 Brinkworth JF, Shaw JG. On race, human variation, and who gets and dies of sepsis. American Journal of Biological Anthropology 2022;178:230-255. [DOI: 10.1002/ajpa.24527] [Reference Citation Analysis]
25 Wang H, Cong L, Yin X, Zhang N, Zhu M, Sun T, Fan J, Xue F, Fan X, Gong Y. The Apelin-APJ axis alleviates LPS-induced pulmonary fibrosis and endothelial mesenchymal transformation in mice by promoting Angiotensin-Converting Enzyme 2. Cell Signal 2022;:110418. [PMID: 35882286 DOI: 10.1016/j.cellsig.2022.110418] [Reference Citation Analysis]
26 Weng C, Li G, Zhang D, Duan Z, Chen K, Zhang J, Li T, Wang J. Nanoscale Porphyrin Metal-Organic Frameworks Deliver siRNA for Alleviating Early Pulmonary Fibrosis in Acute Lung Injury. Front Bioeng Biotechnol 2022;10:939312. [DOI: 10.3389/fbioe.2022.939312] [Reference Citation Analysis]
27 Dolinay T, Jun D, Maller A, Chung A, Grimes B, Hsu L, Nelson D, Villagas B, Kim GHJ, Goldin J. Quantitative image analysis in COVID-19 acute respiratory distress syndrome: a cohort observational study. F1000Res 2021;10:1266. [DOI: 10.12688/f1000research.75311.2] [Reference Citation Analysis]
28 Zhou L, Meng X, Huang Y, Kang K, Zhou J, Chu Y, Li H, Xie D, Zhang J, Yang W, Bai N, Zhao Y, Zhao M, Wang G, Carin L, Xiao X, Yu K, Qiu Z, Gao X. An interpretable deep learning workflow for discovering subvisual abnormalities in CT scans of COVID-19 inpatients and survivors. Nat Mach Intell 2022;4:494-503. [DOI: 10.1038/s42256-022-00483-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Filimonova EV, Davydova LA, Lysenko MA, Tsarenko SV. Interstitial inflammation and pulmonary fibrosis in COVID-19: The potential role of cytostatic therapy for severe lung injury. Respiratory Medicine Case Reports 2022. [DOI: 10.1016/j.rmcr.2022.101676] [Reference Citation Analysis]
30 Shukla AK, Misra S. An overview of post COVID sequelae. J Basic Clin Physiol Pharmacol 2022. [PMID: 35428040 DOI: 10.1515/jbcpp-2022-0057] [Reference Citation Analysis]
31 Sakai K, Nishii M, Saji R, Matsumura R, Ogawa F, Takeuchi I. Interleukin-6 as a predictor of early weaning from invasive mechanical ventilation in patients with acute respiratory distress syndrome.. [DOI: 10.1101/2022.04.04.22273418] [Reference Citation Analysis]
32 Li H, Wang C, Chang C, Huang C, Hsu H, Chiu L. Relationship between Mechanical Ventilation and Histological Fibrosis in Patients with Acute Respiratory Distress Syndrome Undergoing Open Lung Biopsy. JPM 2022;12:474. [DOI: 10.3390/jpm12030474] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Myall KJ, Martinovic JL, West A. How COVID-19 interacts with interstitial lung disease. Breathe 2022;18:210158. [DOI: 10.1183/20734735.0158-2021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
34 Martin TR. Lung Injury and Repair in Coronavirus Disease 2019-Related Acute Lung Injury. Am J Pathol 2022;192:406-9. [PMID: 35026140 DOI: 10.1016/j.ajpath.2022.01.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Ibe Y, Ishigo T, Fujii S, Fujiya Y, Kuronuma K, Tsugawa T, Takahashi S, Fukudo M. Delayed dexamethasone treatment at initiation of oxygen supplementation for coronavirus disease 2019 is associated with the exacerbation of clinical condition. Journal of Infection and Chemotherapy 2022. [DOI: 10.1016/j.jiac.2022.03.007] [Reference Citation Analysis]
36 Cervantes-Alvarez E, la Rosa NL, la Mora MS, Valdez-Sandoval P, Palacios-Jimenez M, Rodriguez-Alvarez F, Vera-Maldonado BI, Aguirre-Aguilar E, Escobar-Valderrama JM, Alanis-Mendizabal J, Méndez-Guerrero O, Tejeda-Dominguez F, Torres-Ruíz J, Gómez-Martín D, Colborn KL, Kershenobich D, Huang CA, Navarro-Alvarez N. Galectin-3 as a potential prognostic biomarker of severe COVID-19 in SARS-CoV-2 infected patients. Sci Rep 2022;12:1856. [PMID: 35115644 DOI: 10.1038/s41598-022-05968-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
37 Magnusson JM, Bobbio E, Danielsson C, Wallinder A, Dellgren G, Bollano E. A Retrospective Study of Posttransplant Amiodarone Exposition on Clad Development and Survival After Lung Transplantation. Transplantation Proceedings 2022. [DOI: 10.1016/j.transproceed.2021.11.031] [Reference Citation Analysis]
38 Zhang X, Ye L, Tang W, Ji Y, Zheng L, Chen Y, Ge Q, Huang C. Wnt/β-Catenin Participates in the Repair of Acute Respiratory Distress Syndrome-Associated Early Pulmonary Fibrosis via Mesenchymal Stem Cell Microvesicles. DDDT 2022;Volume 16:237-247. [DOI: 10.2147/dddt.s344309] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Scendoni R, Gattari D, Cingolani M. COVID-19 Pulmonary Pathology, Ventilator-Induced Lung Injury (VILI), or Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS)? Healthcare Considerations Arising From an Autopsy Case and Miny-Review. Clin Pathol 2022;15:2632010X221083223. [PMID: 35284825 DOI: 10.1177/2632010X221083223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Bharat A, Hoetzenecker K. Lung transplantation for acute respiratory distress syndrome. Thoracic Surgery Clinics 2022. [DOI: 10.1016/j.thorsurg.2022.01.005] [Reference Citation Analysis]
41 Sauer A, Peukert K, Putensen C, Bode C. Antibiotics as immunomodulators: a potential pharmacologic approach for ARDS treatment. Eur Respir Rev 2021;30:210093. [PMID: 34615700 DOI: 10.1183/16000617.0093-2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Mylvaganam RJ, Bailey JI, Sznajder JI, Sala MA; Northwestern Comprehensive COVID Center Consortium. Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection. Eur Respir Rev 2021;30:210194. [PMID: 34911696 DOI: 10.1183/16000617.0194-2021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
43 Weinberg SE, Singer BD. Toward a Paradigm to Distinguish Distinct Functions of FOXP3+ Regulatory T Cells. Immunohorizons 2021;5:944-52. [PMID: 34893512 DOI: 10.4049/immunohorizons.2100046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Dolinay T, Jun D, Maller A, Chung A, Grimes B, Hsu L, Nelson D, Villagas B, Kim GHJ, Goldin J. Quantitative image analysis in COVID-19 acute respiratory distress syndrome: a cohort observational study. F1000Res 2021;10:1266. [DOI: 10.12688/f1000research.75311.1] [Reference Citation Analysis]
45 Messika J, Roux A, Dauriat G, Pavec JL. Lung Transplantation in the COVID-19 Era: A Multi-Faceted Challenge. Respiratory Medicine and Research 2021. [DOI: 10.1016/j.resmer.2021.100866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
46 Naik NB, Puri GD, Kajal K, Mahajan V, Bhalla A, Kataria S, Singla K, Panigrahi P, Singh A, Lazar M, Chander A, Ganesh V, Hazarika A, Suri V, Goyal MK, Pandey VK, Kaloria N, Samra T, Saini K, Soni SL. High-Dose Dexamethasone Versus Tocilizumab in Moderate to Severe COVID-19 Pneumonia: A Randomized Controlled Trial. Cureus 2021;13:e20353. [PMID: 35036193 DOI: 10.7759/cureus.20353] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
47 Doane JJ, Hirsch KS, Baldwin JO, Wurfel MM, Pipavath SN, West TE. Progressive Pulmonary Fibrosis After Non-Critical COVID-19: A Case Report. Am J Case Rep 2021;22:e933458. [PMID: 34848676 DOI: 10.12659/AJCR.933458] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Gupta B, Jain G, Chandrakar S, Gupta N, Agarwal A. Arterial Blood Gas as a Predictor of Mortality in COVID Pneumonia Patients Initiated on Noninvasive Mechanical Ventilation: A Retrospective Analysis. Indian J Crit Care Med 2021;25:866-71. [PMID: 34733025 DOI: 10.5005/jp-journals-10071-23917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
49 Ntatsoulis K, Karampitsakos T, Tsitoura E, Stylianaki EA, Matralis AN, Tzouvelekis A, Antoniou K, Aidinis V. Commonalities Between ARDS, Pulmonary Fibrosis and COVID-19: The Potential of Autotaxin as a Therapeutic Target. Front Immunol 2021;12:687397. [PMID: 34671341 DOI: 10.3389/fimmu.2021.687397] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Imai R, Nishimura N, Takahashi O, Tamura T. High-resolution computed tomography for the prediction of mortality in acute respiratory distress syndrome: A retrospective cohort study. Health Sci Rep 2021;4:e418. [PMID: 34646945 DOI: 10.1002/hsr2.418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
51 Vijayakumar B, Tonkin J, Devaraj A, Philip KEJ, Orton CM, Desai SR, Shah PL. CT Lung Abnormalities after COVID-19 at 3 Months and 1 Year after Hospital Discharge. Radiology 2021;:211746. [PMID: 34609195 DOI: 10.1148/radiol.2021211746] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
52 Nabeh OA, Matter LM, Khattab MA, Esraa Menshawey. "The possible implication of endothelin in the pathology of COVID-19-induced pulmonary hypertension". Pulm Pharmacol Ther 2021;71:102082. [PMID: 34601121 DOI: 10.1016/j.pupt.2021.102082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Wong SW, Lenzini S, Giovanni R, Knowles K, Shin JW. Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomater 2021;133:126-38. [PMID: 34365041 DOI: 10.1016/j.actbio.2021.07.075] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
54 García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev 2021;177:113953. [PMID: 34474094 DOI: 10.1016/j.addr.2021.113953] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
55 Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl Res 2021:S1931-5244(21)00243-7. [PMID: 34547499 DOI: 10.1016/j.trsl.2021.09.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 8.5] [Reference Citation Analysis]
56 Nikitopoulou I, Fanidis D, Ntatsoulis K, Moulos P, Mpekoulis G, Evangelidou M, Vassiliou AG, Dimakopoulou V, Jahaj E, Tsipilis S, Orfanos SE, Dimopoulou I, Angelakis E, Akinosoglou K, Vassilaki N, Tzouvelekis A, Kotanidou A, Aidinis V. Increased Autotaxin Levels in Severe COVID-19, Correlating with IL-6 Levels, Endothelial Dysfunction Biomarkers, and Impaired Functions of Dendritic Cells. Int J Mol Sci 2021;22:10006. [PMID: 34576169 DOI: 10.3390/ijms221810006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
57 Sathe NA, Zelnick LR, Mikacenic C, Morrell ED, Bhatraju PK, McNeil JB, Kosamo S, Hough CL, Liles WC, Ware LB, Wurfel MM. Identification of persistent and resolving subphenotypes of acute hypoxemic respiratory failure in two independent cohorts. Crit Care 2021;25:336. [PMID: 34526076 DOI: 10.1186/s13054-021-03755-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
58 Vimercati L, De Maria L, Quarato M, Caputi A, Gesualdo L, Migliore G, Cavone D, Sponselli S, Pipoli A, Inchingolo F, Scarano A, Lorusso F, Stefanizzi P, Tafuri S. Association between Long COVID and Overweight/Obesity. J Clin Med 2021;10:4143. [PMID: 34575251 DOI: 10.3390/jcm10184143] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
59 Safont B, Tarraso J, Rodriguez-Borja E, Fernández-Fabrellas E, Sancho-Chust JN, Molina V, Lopez-Ramirez C, Lope-Martinez A, Cabanes L, Andreu AL, Herrera S, Lahosa C, Ros JA, Rodriguez-Hermosa JL, Soriano JB, Moret-Tatay I, Carbonell-Asins JA, Mulet A, Signes-Costa J. Lung Function, Radiological Findings and Biomarkers of Fibrogenesis in a Cohort of COVID-19 Patients Six Months After Hospital Discharge. Arch Bronconeumol (Engl Ed) 2021. [PMID: 34497426 DOI: 10.1016/j.arbres.2021.08.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
60 Xu H, Xiao J. ACE2 Promotes the Synthesis of Pulmonary Surfactant to Improve AT II Cell Injury via SIRT1/eNOS Pathway. Comput Math Methods Med 2021;2021:7710129. [PMID: 34471421 DOI: 10.1155/2021/7710129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Jarosch I, Koczulla AR. Rehabilitation nach COVID-19-Erkrankung. Sports Orthopaedics and Traumatology 2021;37:242-248. [DOI: 10.1016/j.orthtr.2021.04.039] [Reference Citation Analysis]
62 Peiro Chamarro M, Ruiz de Gopegui Miguelena P, Sampedro Martín I, Callau Calvo A, Martínez Lamazares MT, Fuertes Schott C. Histolo-radiological dissociation in pulmonary fibrosis secondary to SARS-CoV-2 infection. Med Intensiva (Engl Ed) 2021;45:e34-6. [PMID: 34454895 DOI: 10.1016/j.medine.2021.08.006] [Reference Citation Analysis]
63 Cameli P, Bargagli E, Bergantini L, d'Alessandro M, Giugno B, Gentili F, Sestini P. Alveolar Nitric Oxide as a Biomarker of COVID-19 Lung Sequelae: A Pivotal Study. Antioxidants (Basel) 2021;10:1350. [PMID: 34572982 DOI: 10.3390/antiox10091350] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
64 Zhao Y, Yan Z, Liu Y, Zhang Y, Shi J, Li J, Ji F. Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: a systematic review and implication for clinical application. Stem Cell Res Ther 2021;12:470. [PMID: 34420515 DOI: 10.1186/s13287-021-02551-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
65 Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021;175:113831. [PMID: 34139255 DOI: 10.1016/j.addr.2021.113831] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
66 Nikitopoulou I, Fanidis D, Ntatsoulis K, Moulos P, Mpekoulis G, Evangelidou M, Vassiliou AG, Dimakopoulou V, Jahaj E, Tsipilis S, Orfanos SE, Dimopoulou I, Angelakis E, Akinosoglou K, Vassilaki N, Tzouvelekis A, Kotanidou A, Aidinis V. Increased Autotaxin levels in severe COVID-19, correlating with IL-6 levels, endothelial dysfunction biomarkers, and impaired functions of dendritic cells.. [DOI: 10.1101/2021.07.30.21261361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Bhattacharya S, Agarwal S, Shrimali NM, Guchhait P. Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Mol Aspects Med 2021;:101000. [PMID: 34294412 DOI: 10.1016/j.mam.2021.101000] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
68 Liu Q, Yan H, Zheng X, Fu L, Bao Y, Zheng H, Liu Z, Zhang X, Chen G. A novel indazole derivative, compound Cyy-272, attenuates LPS-induced acute lung injury by inhibiting JNK phosphorylation. Toxicol Appl Pharmacol 2021;428:115648. [PMID: 34280409 DOI: 10.1016/j.taap.2021.115648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Ramani C, Kadl A. Surviving COVID-19: A Burden Yet to Come? Chest 2021;160:15-6. [PMID: 34246363 DOI: 10.1016/j.chest.2021.04.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Ball L, Barisione E, Mastracci L, Campora M, Costa D, Robba C, Battaglini D, Micali M, Costantino F, Cittadini G, Patroniti N, Pelosi P, Fiocca R, Grillo F. Extension of Collagen Deposition in COVID-19 Post Mortem Lung Samples and Computed Tomography Analysis Findings. Int J Mol Sci 2021;22:7498. [PMID: 34299124 DOI: 10.3390/ijms22147498] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
71 Spagnolo P, Oldham JM. Fibrotic lung disease: A molecular glimpse into severe Covid-19? EBioMedicine 2021;69:103470. [PMID: 34229279 DOI: 10.1016/j.ebiom.2021.103470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
72 Bao X, Liu X, Liu N, Zhuang S, Yang Q, Ren H, Zhao D, Bai J, Zhou X, Tang L. Inhibition of EZH2 prevents acute respiratory distress syndrome (ARDS)-associated pulmonary fibrosis by regulating the macrophage polarization phenotype. Respir Res 2021;22:194. [PMID: 34217280 DOI: 10.1186/s12931-021-01785-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
73 Sarfraz Z, Sarfraz A, Barrios A, Garimella R, Dominari A, Kc M, Pandav K, Pantoja JC, Retnakumar V, Cherrez-Ojeda I. Cardio-Pulmonary Sequelae in Recovered COVID-19 Patients: Considerations for Primary Care. J Prim Care Community Health 2021;12:21501327211023726. [PMID: 34096390 DOI: 10.1177/21501327211023726] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
74 Balberova OV, Bykov EV, Shnayder NA, Petrova MM, Gavrilyuk OA, Kaskaeva DS, Soloveva IA, Petrov KV, Mozheyko EY, Medvedev GV, Nasyrova RF. The "Angiogenic Switch" and Functional Resources in Cyclic Sports Athletes. Int J Mol Sci 2021;22:6496. [PMID: 34204341 DOI: 10.3390/ijms22126496] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
75 Gao L, Li X, Wang H, Liao Y, Zhou Y, Wang K, Hu J, Cheng M, Zeng Z, Wang T, Wen F. Autotaxin levels in serum and bronchoalveolar lavage fluid are associated with inflammatory and fibrotic biomarkers and the clinical outcome in patients with acute respiratory distress syndrome. J Intensive Care 2021;9:44. [PMID: 34130757 DOI: 10.1186/s40560-021-00559-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
76 Townsend L, Dowds J, O'Brien K, Sheill G, Dyer AH, O'Kelly B, Hynes JP, Mooney A, Dunne J, Ni Cheallaigh C, O'Farrelly C, Bourke NM, Conlon N, Martin-Loeches I, Bergin C, Nadarajan P, Bannan C. Persistent Poor Health after COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann Am Thorac Soc 2021;18:997-1003. [PMID: 33413026 DOI: 10.1513/AnnalsATS.202009-1175OC] [Cited by in Crossref: 96] [Cited by in F6Publishing: 116] [Article Influence: 48.0] [Reference Citation Analysis]
77 Marwick JA, Elliott RJR, Longden J, Makda A, Hirani N, Dhaliwal K, Dawson JC, Carragher NO. Application of a High-Content Screening Assay Utilizing Primary Human Lung Fibroblasts to Identify Antifibrotic Drugs for Rapid Repurposing in COVID-19 Patients. SLAS Discov 2021;:24725552211019405. [PMID: 34078171 DOI: 10.1177/24725552211019405] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Ambardar SR, Hightower SL, Huprikar NA, Chung KK, Singhal A, Collen JF. Post-COVID-19 Pulmonary Fibrosis: Novel Sequelae of the Current Pandemic. J Clin Med 2021;10:2452. [PMID: 34205928 DOI: 10.3390/jcm10112452] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 18.0] [Reference Citation Analysis]
79 John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev 2021;302:228-40. [PMID: 34028807 DOI: 10.1111/imr.12977] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 23.5] [Reference Citation Analysis]
80 Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol 2021;254:358-73. [PMID: 33834494 DOI: 10.1002/path.5680] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
81 Pannone G, Caponio VCA, De Stefano IS, Ramunno MA, Meccariello M, Agostinone A, Pedicillo MC, Troiano G, Zhurakivska K, Cassano T, Bizzoca ME, Papagerakis S, Buonaguro FM, Advani S, Muzio LL. Lung histopathological findings in COVID-19 disease - a systematic review. Infect Agent Cancer 2021;16:34. [PMID: 34001199 DOI: 10.1186/s13027-021-00369-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
82 Aitbaev K, Murkamilov I, Fomin V, Kudaibergenova I, Murkamilova Z, Yusupov F. Pulmonary Fibrosis as a Consequence of the COVID-19 Pandemic. BSP 2021;7:204-215. [DOI: 10.33619/2414-2948/66/18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Kosyreva A, Dzhalilova D, Lokhonina A, Vishnyakova P, Fatkhudinov T. The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. Front Immunol 2021;12:682871. [PMID: 34040616 DOI: 10.3389/fimmu.2021.682871] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 11.5] [Reference Citation Analysis]
84 Aronson KI, Podolanczuk AJ. Lungs after COVID-19: Evolving Knowledge of Post-COVID-19 Interstitial Lung Disease. Ann Am Thorac Soc 2021;18:773-4. [PMID: 33929309 DOI: 10.1513/AnnalsATS.202102-223ED] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
85 Han H, Lagares D. RNA Sequencing Uncovers Antifibrotic Genes during Lung Fibrosis Resolution. Am J Respir Cell Mol Biol 2021;64:401-2. [PMID: 33556298 DOI: 10.1165/rcmb.2021-0008ED] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Sonnweber T, Sahanic S, Pizzini A, Luger A, Schwabl C, Sonnweber B, Kurz K, Koppelstätter S, Haschka D, Petzer V, Boehm A, Aichner M, Tymoszuk P, Lener D, Theurl M, Lorsbach-Köhler A, Tancevski A, Schapfl A, Schaber M, Hilbe R, Nairz M, Puchner B, Hüttenberger D, Tschurtschenthaler C, Aßhoff M, Peer A, Hartig F, Bellmann R, Joannidis M, Gollmann-Tepeköylü C, Holfeld J, Feuchtner G, Egger A, Hoermann G, Schroll A, Fritsche G, Wildner S, Bellmann-Weiler R, Kirchmair R, Helbok R, Prosch H, Rieder D, Trajanoski Z, Kronenberg F, Wöll E, Weiss G, Widmann G, Löffler-Ragg J, Tancevski I. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur Respir J 2021;57:2003481. [PMID: 33303539 DOI: 10.1183/13993003.03481-2020] [Cited by in Crossref: 171] [Cited by in F6Publishing: 188] [Article Influence: 85.5] [Reference Citation Analysis]
87 Ntolios P, Tzilas V, Bouros E, Avdoula E, Karakasiliotis I, Bouros D, Steiropoulos P. The Role of Microbiome and Virome in Idiopathic Pulmonary Fibrosis. Biomedicines 2021;9:442. [PMID: 33924195 DOI: 10.3390/biomedicines9040442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
88 Pawlos A, Niedzielski M, Gorzelak-Pabiś P, Broncel M, Woźniak E. COVID-19: Direct and Indirect Mechanisms of Statins. Int J Mol Sci 2021;22:4177. [PMID: 33920709 DOI: 10.3390/ijms22084177] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
89 Jin, An X, Zhang Y, Zhao S, Duan L, Duan Y, Lian F, Tong X. Potential Mechanism Prediction of Herbal Medicine for Pulmonary Fibrosis Associated with SARS-CoV-2 Infection Based on Network Analysis and Molecular Docking. Front Pharmacol 2021;12:602218. [PMID: 33986661 DOI: 10.3389/fphar.2021.602218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
90 Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, Cook JR, Nordvig AS, Shalev D, Sehrawat TS, Ahluwalia N, Bikdeli B, Dietz D, Der-Nigoghossian C, Liyanage-Don N, Rosner GF, Bernstein EJ, Mohan S, Beckley AA, Seres DS, Choueiri TK, Uriel N, Ausiello JC, Accili D, Freedberg DE, Baldwin M, Schwartz A, Brodie D, Garcia CK, Elkind MSV, Connors JM, Bilezikian JP, Landry DW, Wan EY. Post-acute COVID-19 syndrome. Nat Med 2021;27:601-15. [PMID: 33753937 DOI: 10.1038/s41591-021-01283-z] [Cited by in Crossref: 1725] [Cited by in F6Publishing: 1694] [Article Influence: 862.5] [Reference Citation Analysis]
91 Mcgroder CF, Zhang D, Choudhury MA, Salvatore MM, D’souza BM, Hoffman EA, Wei Y, Baldwin MR, Garcia CK. Pulmonary Fibrosis after COVID-19 is Associated with Severity of Illness and Blood Leukocyte Telomere Length.. [DOI: 10.1101/2021.03.17.21253834] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Lin CK, Huang TH, Yang CT, Shi CS. Roles of lung-recruited monocytes and pulmonary Vascular Endothelial Growth Factor (VEGF) in resolving Ventilator-Induced Lung Injury (VILI). PLoS One 2021;16:e0248959. [PMID: 33740009 DOI: 10.1371/journal.pone.0248959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
93 Hasan Z. A Review of Acute Respiratory Distress Syndrome Management and Treatment. Am J Ther 2021;28:e189-95. [PMID: 33687027 DOI: 10.1097/MJT.0000000000001343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
94 Tonelli R, Marchioni A, Tabbì L, Fantini R, Busani S, Castaniere I, Andrisani D, Gozzi F, Bruzzi G, Manicardi L, Demurtas J, Andreani A, Cappiello GF, Samarelli AV, Clini E. Spontaneous Breathing and Evolving Phenotypes of Lung Damage in Patients with COVID-19: Review of Current Evidence and Forecast of a New Scenario. J Clin Med 2021;10:975. [PMID: 33801368 DOI: 10.3390/jcm10050975] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
95 Lutchmansingh DD, Knauert MP, Antin-Ozerkis DE, Chupp G, Cohn L, Dela Cruz CS, Ferrante LE, Herzog EL, Koff J, Rochester CL, Ryu C, Singh I, Tickoo M, Winks V, Gulati M, Possick JD. A Clinic Blueprint for Post-Coronavirus Disease 2019 RECOVERY: Learning From the Past, Looking to the Future. Chest 2021;159:949-58. [PMID: 33159907 DOI: 10.1016/j.chest.2020.10.067] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
96 Li Y, Liu F, Cai Y, Yang Y, Wang Y. LncRNA MALAT1: A Potential Fibrosis Biomarker and Therapeutic Target. Crystals 2021;11:249. [DOI: 10.3390/cryst11030249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Abreu SC, Lopes-Pacheco M, Weiss DJ, Rocco PRM. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Front Cell Dev Biol 2021;9:600711. [PMID: 33659247 DOI: 10.3389/fcell.2021.600711] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
98 Beitia M, Delgado D, Sánchez P, Vallejo de la Cueva A, Cugat JR, Sánchez M. Platelet Lysate Nebulization Protocol for the Treatment of COVID-19 and Its Sequels: Proof of Concept and Scientific Rationale. Int J Mol Sci 2021;22:1856. [PMID: 33673372 DOI: 10.3390/ijms22041856] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
99 Cervantes-alvarez E, Rosa NLL, Salgado-de la Mora M, Valdez-sandoval P, Palacios-jiménez M, Rodriguez-alvarez F, Vera-maldonado BI, Aguirre-aguilar E, Escobar-valderrama JM, Alanis-mendizabal J, Méndez-guerrero O, Tejeda-dominguez F, Torres-ruíz J, Gómez-martín D, Colborn KL, Kershenobich D, Huang CA, Navarro-alvarez N. Galectin-3 as a potential prognostic biomarker of severe COVID-19 in SARS-CoV-2 infected patients.. [DOI: 10.1101/2021.02.07.21251281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
100 Vandenbunder B, Ehrmann S, Piagnerelli M, Sauneuf B, Serck N, Soumagne T, Textoris J, Vinsonneau C, Aissaoui N, Blonz G, Carbutti G, Courcelle R, D'hondt A, Gaudry S, Higny J, Horlait G, Hraiech S, Lefebvre L, Lejeune F, Ly A, Lascarrou JB, Grimaldi D; COVADIS study group. Static compliance of the respiratory system in COVID-19 related ARDS: an international multicenter study. Crit Care 2021;25:52. [PMID: 33557868 DOI: 10.1186/s13054-020-03433-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
101 Li J, Xu MX, Dai Z, Xu T. Mitofusion 2 Overexpression Decreased Proliferation of Human Embryonic Lung Fibroblasts in Acute Respiratory Distress Syndrome through Inhibiting RAS-RAF-1-ERK1/2 Pathway. Curr Med Sci 2020;40:1092-8. [PMID: 33428137 DOI: 10.1007/s11596-020-2305-y] [Reference Citation Analysis]
102 Shi Y, Shi X, Wang L, Zhou S, Shi W, Wu J. Complications and Image Findings. Avian Influenza in Human 2021. [DOI: 10.1007/978-981-16-1429-3_8] [Reference Citation Analysis]
103 Zotin A, Kents A, Simonov K, Hamad Y. Methods of Interpretation of CT Images with COVID-19 for the Formation of Feature Atlas and Assessment of Pathological Changes in the Lungs. Intelligent Decision Technologies 2021. [DOI: 10.1007/978-981-16-2765-1_14] [Reference Citation Analysis]
104 Redente EF, Chakraborty S, Sajuthi S, Black BP, Edelman BL, Seibold MA, Riches DW. Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight 2020;6:141618. [PMID: 33290280 DOI: 10.1172/jci.insight.141618] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
105 Tale S, Ghosh S, Meitei SP, Kolli M, Garbhapu AK, Pudi S. Post-COVID-19 pneumonia pulmonary fibrosis. QJM 2020;113:837-8. [PMID: 32814978 DOI: 10.1093/qjmed/hcaa255] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 15.0] [Reference Citation Analysis]
106 Matsuo A, Tanida R, Yanagi S, Tsubouchi H, Miura A, Shigekusa T, Matsumoto N, Nakazato M. Significance of nuclear LOXL2 inhibition in fibroblasts and myofibroblasts in the fibrotic process of acute respiratory distress syndrome. Eur J Pharmacol 2021;892:173754. [PMID: 33248114 DOI: 10.1016/j.ejphar.2020.173754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
107 Guo H, Su Y, Deng F. Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives. Stem Cell Rev Rep 2021;17:440-58. [PMID: 33211245 DOI: 10.1007/s12015-020-10085-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
108 Liu Y, Xiang D, Zhang H, Yao H, Wang Y. Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. Oxid Med Cell Longev 2020;2020:8871476. [PMID: 33282113 DOI: 10.1155/2020/8871476] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
109 Rai DK, Sharma P, Kumar R. Post covid 19 pulmonary fibrosis. Is it real threat? Indian J Tuberc 2021;68:330-3. [PMID: 34099197 DOI: 10.1016/j.ijtb.2020.11.003] [Cited by in Crossref: 50] [Cited by in F6Publishing: 58] [Article Influence: 16.7] [Reference Citation Analysis]
110 Brown R, McKelvey MC, Ryan S, Creane S, Linden D, Kidney JC, McAuley DF, Taggart CC, Weldon S. The Impact of Aging in Acute Respiratory Distress Syndrome: A Clinical and Mechanistic Overview.Front Med (Lausanne). 2020;7:589553. [PMID: 33195353 DOI: 10.3389/fmed.2020.589553] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
111 Yang JX, Li M, Hu X, Lu JC, Wang Q, Lu SY, Gao F, Jin SW, Zheng SX. Protectin DX promotes epithelial injury repair and inhibits fibroproliferation partly via ALX/PI3K signalling pathway. J Cell Mol Med 2020;24:14001-12. [PMID: 33098250 DOI: 10.1111/jcmm.16011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
112 Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang J, Li J, Fei G. Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3β/Nrf2 pathway. Biomed Pharmacother 2020;132:110827. [PMID: 33065391 DOI: 10.1016/j.biopha.2020.110827] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
113 Artigas L, Coma M, Matos-Filipe P, Aguirre-Plans J, Farrés J, Valls R, Fernandez-Fuentes N, de la Haba-Rodriguez J, Olvera A, Barbera J, Morales R, Oliva B, Mas JM. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm. PLoS One 2020;15:e0240149. [PMID: 33006999 DOI: 10.1371/journal.pone.0240149] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
114 de Souza Xavier Costa N, Ribeiro Júnior G, Dos Santos Alemany AA, Belotti L, Schalch AS, Cavalcante MF, Ribeiro S, Veras MM, Kallás EG, Saldiva PHN, Dolhnikoff M, Ferraz da Silva LF. Air pollution impairs recovery and tissue remodeling in a murine model of acute lung injury. Sci Rep 2020;10:15314. [PMID: 32943719 DOI: 10.1038/s41598-020-72130-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
115 Bendsten D, Lo T. Unusual paraseptal emphysema as the primary changes in computerized tomography scan of a COVID-19 patient. Case report. JMV 2020;1:14-18. [DOI: 10.53097/jmv.10004] [Reference Citation Analysis]
116 Meiler S, Schaible J, Poschenrieder F, Scharf G, Zeman F, Rennert J, Pregler B, Kleine H, Stroszczynski C, Zorger N, Hamer OW. Can CT performed in the early disease phase predict outcome of patients with COVID 19 pneumonia? Analysis of a cohort of 64 patients from Germany. Eur J Radiol 2020;131:109256. [PMID: 32919265 DOI: 10.1016/j.ejrad.2020.109256] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
117 Redente EF, Chakraborty S, Sajuthi S, Black BP, Edelman BL, Seibold MA, Riches DW. Loss of Fas-signaling in pro-fibrotic fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis.. [DOI: 10.1101/2020.08.18.255869] [Reference Citation Analysis]
118 Villar J, Añón JM, Ferrando C, Aguilar G, Muñoz T, Ferreres J, Ambrós A, Aldecoa C, Suárez-Sipmann F, Thorpe KE, Jüni P, Slutsky AS; DEXA-COVID19 Network. Efficacy of dexamethasone treatment for patients with the acute respiratory distress syndrome caused by COVID-19: study protocol for a randomized controlled superiority trial. Trials 2020;21:717. [PMID: 32799933 DOI: 10.1186/s13063-020-04643-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
119 Ferreira AO, Polonini HC, Dijkers ECF. Postulated Adjuvant Therapeutic Strategies for COVID-19. J Pers Med 2020;10:E80. [PMID: 32764275 DOI: 10.3390/jpm10030080] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
120 Lobzin YV, Cherkashina IV, Samoilova IG. Medical rehabilitation of children undergoing CoVID-19. test 2020;12:64-74. [DOI: 10.22625/2072-6732-2020-12-3-64-74] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
121 Grillo F, Barisione E, Ball L, Mastracci L, Fiocca R. Lung fibrosis: an undervalued finding in COVID-19 pathological series. Lancet Infect Dis 2021;21:e72. [PMID: 32735785 DOI: 10.1016/S1473-3099(20)30582-X] [Cited by in Crossref: 66] [Cited by in F6Publishing: 75] [Article Influence: 22.0] [Reference Citation Analysis]
122 Haddad J, Latoche JD, Nigam S, Bellavia MC, Day KE, Zhu Q, Edwards WB, Anderson CJ, Tavakoli S. Molecular Imaging of Very Late Antigen-4 in Acute Lung Injury. J Nucl Med 2021;62:280-6. [DOI: 10.2967/jnumed.120.242347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
123 Peiro Chamarro M, Ruiz de Gopegui Miguelena P, Sampedro Martín I, Callau Calvo A, Martínez Lamazares MT, Fuertes Schott C. Histolo-radiological dissociation in pulmonary fibrosis secondary to SARS-CoV-2 infection. Med Intensiva (Engl Ed) 2020:S0210-5691(20)30248-5. [PMID: 32843187 DOI: 10.1016/j.medin.2020.06.018] [Reference Citation Analysis]
124 Vasarmidi E, Tsitoura E, Spandidos DA, Tzanakis N, Antoniou KM. Pulmonary fibrosis in the aftermath of the COVID-19 era (Review). Exp Ther Med 2020;20:2557-60. [PMID: 32765748 DOI: 10.3892/etm.2020.8980] [Cited by in Crossref: 51] [Cited by in F6Publishing: 63] [Article Influence: 17.0] [Reference Citation Analysis]
125 Miesbach W. Pathological Role of Angiotensin II in Severe COVID-19. TH Open 2020;4:e138-44. [PMID: 32607467 DOI: 10.1055/s-0040-1713678] [Cited by in Crossref: 50] [Cited by in F6Publishing: 39] [Article Influence: 16.7] [Reference Citation Analysis]
126 D'Alonzo D, De Fenza M, Pavone V. COVID-19 and pneumonia: a role for the uPA/uPAR system. Drug Discov Today 2020;25:1528-34. [PMID: 32562843 DOI: 10.1016/j.drudis.2020.06.013] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 12.3] [Reference Citation Analysis]
127 Hwang JJ, Ko IG, Jin JJ, Hwang L, Kim SH, Jeon JW, Paik SS, Chang BS, Choi CW. Combination Therapy With Polydeoxyribonucleotide and Pirfenidone Alleviates Symptoms of Acute Respiratory Distress Syndrome in Human Lung Epithelial A549 Cells. Int Neurourol J 2020;24:S56-64. [PMID: 32482058 DOI: 10.5213/inj.2040152.076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
128 Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD, Sverzellati N, Maher TM. Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med. 2020;8:750-752. [PMID: 32422177 DOI: 10.1016/s2213-2600(20)30222-8] [Cited by in Crossref: 273] [Cited by in F6Publishing: 247] [Article Influence: 91.0] [Reference Citation Analysis]
129 George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med 2020;8:807-15. [PMID: 32422178 DOI: 10.1016/S2213-2600(20)30225-3] [Cited by in Crossref: 525] [Cited by in F6Publishing: 443] [Article Influence: 175.0] [Reference Citation Analysis]
130 Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, Aguilar G, Alba F, González-Higueras E, Conesa LA, Martín-Rodríguez C, Díaz-Domínguez FJ, Serna-Grande P, Rivas R, Ferreres J, Belda J, Capilla L, Tallet A, Añón JM, Fernández RL, González-Martín JM; dexamethasone in ARDS network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020;8:267-76. [PMID: 32043986 DOI: 10.1016/S2213-2600(19)30417-5] [Cited by in Crossref: 529] [Cited by in F6Publishing: 577] [Article Influence: 176.3] [Reference Citation Analysis]
131 Scheraga RG, Abraham S, Grove LM, Southern BD, Crish JF, Perelas A, McDonald C, Asosingh K, Hasday JD, Olman MA. TRPV4 Protects the Lung from Bacterial Pneumonia via MAPK Molecular Pathway Switching. J Immunol 2020;204:1310-21. [PMID: 31969384 DOI: 10.4049/jimmunol.1901033] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
132 Zhao J, Ma T, Yao Y. Sepsis Related Lung Injury (SRLI). Burn and Trauma Associated Lung Injury 2020. [DOI: 10.1007/978-981-15-7056-8_4] [Reference Citation Analysis]
133 Smith LS. Pathobiology of Pediatric Acute Respiratory Distress Syndrome. Pediatric Acute Respiratory Distress Syndrome 2020. [DOI: 10.1007/978-3-030-21840-9_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
134 Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020;16:11-31. [PMID: 31792399 DOI: 10.1038/s41584-019-0324-5] [Cited by in Crossref: 167] [Cited by in F6Publishing: 174] [Article Influence: 41.8] [Reference Citation Analysis]
135 Viola H, Chang J, Grunwell JR, Hecker L, Tirouvanziam R, Grotberg JB, Takayama S. Microphysiological systems modeling acute respiratory distress syndrome that capture mechanical force-induced injury-inflammation-repair. APL Bioeng 2019;3:041503. [PMID: 31768486 DOI: 10.1063/1.5111549] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
136 Liu A, Zhang X, He H, Zhou L, Naito Y, Sugita S, Lee JW. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin Biol Ther. 2020;20:125-140. [PMID: 31701782 DOI: 10.1080/14712598.2020.1689954] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 9.0] [Reference Citation Analysis]
137 Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. Ann Transl Med 2019;7:505. [PMID: 31728358 DOI: 10.21037/atm.2019.09.29] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
138 Ding XF, Li JB, Liang HY, Wang ZY, Jiao TT, Liu Z, Yi L, Bian WS, Wang SP, Zhu X, Sun TW. Predictive model for acute respiratory distress syndrome events in ICU patients in China using machine learning algorithms: a secondary analysis of a cohort study. J Transl Med 2019;17:326. [PMID: 31570096 DOI: 10.1186/s12967-019-2075-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
139 Ingvarsdottir IL, Vidarsdottir H, Valsson F, Simonardottir L, Sigurdsson MI, Myrdal G, Geirsson A, Gudbjartsson T. Venovenous extracorporeal membrane oxygenation treatment in a low-volume and geographically isolated cardiothoracic centre. Acta Anaesthesiol Scand 2019;63:879-84. [PMID: 30937908 DOI: 10.1111/aas.13367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
140 Kuhn H, Zobel C, Vollert G, Gurcke M, Jenszöwski C, Barina C, Frille A, Wirtz H. High amplitude stretching of ATII cells and fibroblasts results in profibrotic effects. Exp Lung Res 2019;45:167-74. [PMID: 31290711 DOI: 10.1080/01902148.2019.1636424] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
141 Aschner Y, Downey GP. The Importance of Tyrosine Phosphorylation Control of Cellular Signaling Pathways in Respiratory Disease: pY and pY Not. Am J Respir Cell Mol Biol 2018;59:535-47. [PMID: 29812954 DOI: 10.1165/rcmb.2018-0049TR] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
142 Cao Y, Liu Y, Shang J, Yuan Z, Ping F, Yao S, Guo Y, Li Y. Ang-(1-7) treatment attenuates lipopolysaccharide-induced early pulmonary fibrosis. Lab Invest 2019;99:1770-83. [PMID: 31278346 DOI: 10.1038/s41374-019-0289-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
143 Kim JM, Lee JK, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, Yoo CG, Kim YW, Han SK, Lee SM. Diagnostic and prognostic values of serum activin-a levels in patients with acute respiratory distress syndrome. BMC Pulm Med 2019;19:115. [PMID: 31238942 DOI: 10.1186/s12890-019-0879-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
144 Zhu M, An Y, Zhang X, Wang Z, Duan H. Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell Tissue Res 2019;378:255-65. [DOI: 10.1007/s00441-019-03054-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
145 Maia LA, Cruz FF, de Oliveira MV, Samary CS, Fernandes MVS, Trivelin SAA, Rocha NN, Gama de Abreu M, Pelosi P, Silva PL, Rocco PRM. Effects of Obesity on Pulmonary Inflammation and Remodeling in Experimental Moderate Acute Lung Injury. Front Immunol 2019;10:1215. [PMID: 31275296 DOI: 10.3389/fimmu.2019.01215] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
146 Ito JT, Lourenço JD, Righetti RF, Tibério IFLC, Prado CM, Lopes FDTQS. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019;8:E342. [PMID: 30979017 DOI: 10.3390/cells8040342] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 15.3] [Reference Citation Analysis]
147 Hamon A, Scemama U, Bourenne J, Daviet F, Coiffard B, Persico N, Adda M, Guervilly C, Hraiech S, Chaumoitre K, Roch A, Papazian L, Forel JM. Chest CT scan and alveolar procollagen III to predict lung fibroproliferation in acute respiratory distress syndrome. Ann Intensive Care 2019;9:42. [PMID: 30919111 DOI: 10.1186/s13613-019-0516-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
148 Sun L, Hult EM, Cornell TT, Kim KK, Shanley TP, Wilke CA, Agarwal M, Gurczynski SJ, Moore BB, Dahmer MK. Loss of myeloid-specific protein phosphatase 2A enhances lung injury and fibrosis and results in IL-10-dependent sensitization of epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 2019;316:L1035-48. [PMID: 30838865 DOI: 10.1152/ajplung.00299.2018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
149 Potey PM, Rossi AG, Lucas CD, Dorward DA. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J Pathol 2019;247:672-85. [PMID: 30570146 DOI: 10.1002/path.5221] [Cited by in Crossref: 122] [Cited by in F6Publishing: 125] [Article Influence: 30.5] [Reference Citation Analysis]
150 Kamo T, Tasaka S, Suzuki T, Asakura T, Suzuki S, Yagi K, Namkoong H, Ishii M, Morisaki H, Betsuyaku T. Prognostic values of the Berlin definition criteria, blood lactate level, and fibroproliferative changes on high-resolution computed tomography in ARDS patients. BMC Pulm Med 2019;19:37. [PMID: 30744598 DOI: 10.1186/s12890-019-0803-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
151 Aschner Y, Davidson JA. Early Plasma Matrix Metalloproteinase Profiles Offer New Insight into the Biology and Prognosis of Pediatric Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019;199:134-136. [DOI: 10.1164/rccm.201808-1500ed] [Reference Citation Analysis]
152 Peschman JR, de Moya M. Acute Respiratory Failure and Acute Respiratory Distress Syndrome in ACS Patient: What Are the Indications for Acute Intervention? Intensive Care for Emergency Surgeons 2019. [DOI: 10.1007/978-3-030-11830-3_2] [Reference Citation Analysis]
153 Weinberger SE, Cockrill BA, Mandel J. Acute Respiratory Distress Syndrome. Principles of Pulmonary Medicine 2019. [DOI: 10.1016/b978-0-323-52371-4.00031-3] [Reference Citation Analysis]
154 Lee J, Lee H, Jang S, Hong S, Kim WJ, Ryu SM, Park S, Lee K, Cho S, Yang S. CMIT/MIT induce apoptosis and inflammation in alveolar epithelial cells through p38/JNK/ERK1/2 signaling pathway. Mol Cell Toxicol 2019;15:41-8. [DOI: 10.1007/s13273-019-0005-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
155 Mokhber Dezfouli MR, Jabbari Fakhr M, Sadeghian Chaleshtori S, Dehghan MM, Vajhi A, Mokhtari R. Intrapulmonary autologous transplant of bone marrow-derived mesenchymal stromal cells improves lipopolysaccharide-induced acute respiratory distress syndrome in rabbit. Crit Care. 2018;22:353. [PMID: 30572913 DOI: 10.1186/s13054-018-2272-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
156 da-Palma-Cruz M, da Silva RF, Monteiro D, Rehim HMMA, Grabulosa CC, de Oliveira APL, Lino-dos-santos-franco A. Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis. Lasers Med Sci 2019;34:191-9. [DOI: 10.1007/s10103-018-2688-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
157 Zhang X, Wang T, Yuan ZC, Dai LQ, Zeng N, Wang H, Liu L, Wen FQ. Mitochondrial peptides cause proinflammatory responses in the alveolar epithelium via FPR-1, MAPKs, and AKT: a potential mechanism involved in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018;315:L775-86. [PMID: 30188748 DOI: 10.1152/ajplung.00466.2017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
158 Kim HY, Kim MS, Kim SH, Joen D, Lee K. Protective Effects of Nintedanib against Polyhexamethylene Guanidine Phosphate-Induced Lung Fibrosis in Mice. Molecules 2018;23:E1974. [PMID: 30087305 DOI: 10.3390/molecules23081974] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
159 Garcia AM, Allawzi A, Tatman P, Hernandez-Lagunas L, Swain K, Mouradian G, Bowler R, Karimpour-Fard A, Sucharov CC, Nozik-Grayck E. R213G polymorphism in SOD3 protects against bleomycin-induced inflammation and attenuates induction of proinflammatory pathways. Physiol Genomics 2018;50:807-16. [PMID: 30004839 DOI: 10.1152/physiolgenomics.00053.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
160 Grégoire M, Uhel F, Lesouhaitier M, Gacouin A, Guirriec M, Mourcin F, Dumontet E, Chalin A, Samson M, Berthelot L, Tissot A, Kerjouan M, Jouneau S, Le Tulzo Y, Tarte K, Zmijewski JW, Tadié J. Impaired efferocytosis and neutrophil extracellular trap clearance by macrophages in ARDS. Eur Respir J 2018;52:1702590. [DOI: 10.1183/13993003.02590-2017] [Cited by in Crossref: 84] [Cited by in F6Publishing: 88] [Article Influence: 16.8] [Reference Citation Analysis]
161 Li Y, Li H, Liu S, Pan P, Su X, Tan H, Wu D, Zhang L, Song C, Dai M, Li Q, Mao Z, Long Y, Hu Y, Hu C. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation. Mol Immunol 2018;99:134-44. [PMID: 29783158 DOI: 10.1016/j.molimm.2018.05.003] [Cited by in Crossref: 84] [Cited by in F6Publishing: 74] [Article Influence: 16.8] [Reference Citation Analysis]
162 Karki P, Birukova AA. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series). Pulm Circ 2018;8:2045894018773044. [PMID: 29714090 DOI: 10.1177/2045894018773044] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
163 Saha A, Vaidya PJ, Chavhan VB, Achlerkar A, Leuppi JD, Chhajed PN. Combined pirfenidone, azithromycin and prednisolone in post-H1N1 ARDS pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 2018;35:85-90. [PMID: 32476885 DOI: 10.36141/svdld.v35i1.6393] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
164 Yang CY, Chen CS, Yiang GT, Cheng YL, Yong SB, Wu MY, Li CJ. New Insights into the Immune Molecular Regulation of the Pathogenesis of Acute Respiratory Distress Syndrome. Int J Mol Sci 2018;19:E588. [PMID: 29462936 DOI: 10.3390/ijms19020588] [Cited by in Crossref: 40] [Cited by in F6Publishing: 47] [Article Influence: 8.0] [Reference Citation Analysis]
165 Xu Z, Li X, Huang Y, Mao P, Wu S, Yang B, Yang Y, Chen K, Liu X, Li Y. The Predictive Value of Plasma Galectin-3 for Ards Severity and Clinical Outcome. Shock 2017;47:331-6. [PMID: 27648691 DOI: 10.1097/SHK.0000000000000757] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
166 Lv Z, Wang Y, Liu Y, Mao Y, Dong W, Ding Z, Meng G, Jiang L, Zhu X. NLRP3 Inflammasome Activation Contributes to Mechanical Stretch–Induced Endothelial-Mesenchymal Transition and Pulmonary Fibrosis: . Critical Care Medicine 2018;46:e49-58. [DOI: 10.1097/ccm.0000000000002799] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 9.8] [Reference Citation Analysis]
167 Bueno J, Flors L. The role of imaging in the diagnosis of bronchiectasis: The key is in the distribution. Radiología (English Edition) 2018;60:39-48. [DOI: 10.1016/j.rxeng.2017.06.005] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
168 Wang X, Lai R, Su X, Chen G, Liang Z. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling. Biochemical and Biophysical Research Communications 2018;495:706-12. [DOI: 10.1016/j.bbrc.2017.10.165] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
169 Cao Y, Liu Y, Ping F, Yi L, Zeng Z, Li Y. miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways. Lab Invest 2018;98:339-59. [PMID: 29200203 DOI: 10.1038/labinvest.2017.123] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
170 Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight DA, Boyle AJ. The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Front Physiol 2017;8:777. [PMID: 29075197 DOI: 10.3389/fphys.2017.00777] [Cited by in Crossref: 104] [Cited by in F6Publishing: 107] [Article Influence: 17.3] [Reference Citation Analysis]
171 Costa SG, Barioni ÉD, Ignácio A, Albuquerque J, Câmara NOS, Pavani C, Vitoretti LB, Damazo AS, Farsky SHP, Lino-Dos-Santos-Franco A. Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Sci Rep 2017;7:12670. [PMID: 28978926 DOI: 10.1038/s41598-017-13117-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
172 Bueno J, Flors L. The role of imaging in the diagnosis of bronchiectasis: the key is in the distribution. Radiologia (Engl Ed) 2018;60:39-48. [PMID: 28781148 DOI: 10.1016/j.rx.2017.06.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
173 Mao P, Li J, Huang Y, Wu S, Pang X, He W, Liu X, Slutsky AS, Zhang H, Li Y. MicroRNA-19b Mediates Lung Epithelial-Mesenchymal Transition via Phosphatidylinositol-3,4,5-Trisphosphate 3-Phosphatase in Response to Mechanical Stretch. Am J Respir Cell Mol Biol 2017;56:11-9. [PMID: 27508324 DOI: 10.1165/rcmb.2015-0377OC] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
174 Li LF, Kao KC, Liu YY, Lin CW, Chen NH, Lee CS, Wang CW, Yang CT. Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway. J Cell Mol Med 2017;21:2937-49. [PMID: 28598023 DOI: 10.1111/jcmm.13206] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
175 Kim J, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, Yoo CG, Kim YW, Han SK, Lee SM. Effect of Renin-Angiotensin System Blockage in Patients with Acute Respiratory Distress Syndrome: A Retrospective Case Control Study. Korean J Crit Care Med 2017;32:154-63. [PMID: 31723629 DOI: 10.4266/kjccm.2016.00976] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
176 Dong WW, Zhang YQ, Zhu XY, Mao YF, Sun XJ, Liu YJ, Jiang L. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis. Med Sci Monit 2017;23:2357-64. [PMID: 28522797 DOI: 10.12659/msm.900452] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
177 Schuliga M, Jaffar J, Berhan A, Langenbach S, Harris T, Waters D, Lee PVS, Grainge C, Westall G, Knight D, Stewart AG. Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. American Journal of Physiology-Lung Cellular and Molecular Physiology 2017;312:L772-82. [DOI: 10.1152/ajplung.00553.2016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
178 Shetty SK, Tiwari N, Marudamuthu AS, Puthusseri B, Bhandary YP, Fu J, Levin J, Idell S, Shetty S. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis. Am J Pathol 2017;187:1016-34. [PMID: 28273432 DOI: 10.1016/j.ajpath.2016.12.020] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 11.3] [Reference Citation Analysis]
179 Li LF, Lee CS, Lin CW, Chen NH, Chuang LP, Hung CY, Liu YY. Trichostatin A attenuates ventilation-augmented epithelial-mesenchymal transition in mice with bleomycin-induced acute lung injury by suppressing the Akt pathway. PLoS One 2017;12:e0172571. [PMID: 28234968 DOI: 10.1371/journal.pone.0172571] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
180 Fowler III AA, Kim C, Lepler L, Malhotra R, Debesa O, Natarajan R, Fisher BJ, Syed A, DeWilde C, Priday A, Kasirajan V. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med 2017; 6(1): 85-90 [PMID: 28224112 DOI: 10.5492/wjccm.v6.i1.85] [Cited by in CrossRef: 60] [Cited by in F6Publishing: 63] [Article Influence: 10.0] [Reference Citation Analysis]
181 Schuliga M, Jaffar J, Harris T, Knight DA, Westall G, Stewart AG. The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF. Sci Rep 2017;7:41770. [PMID: 28139758 DOI: 10.1038/srep41770] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
182 Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017;312:L371-91. [PMID: 28062486 DOI: 10.1152/ajplung.00486.2016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
183 Antkowiak M, Mikulic L, Suratt BT. Sepsis and the Lung. Sepsis 2017. [DOI: 10.1007/978-3-319-48470-9_9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
184 Coudroy R, Boissier F, Thille AW. Acute Respiratory Distress Syndrome (ARDS): Definition, Incidence, and Outcome. Acute Respiratory Distress Syndrome 2017. [DOI: 10.1007/978-3-319-41852-0_1] [Reference Citation Analysis]
185 Scheraga RG, Thompson C, Tulapurkar ME, Nagarsekar AC, Cowan M, Potla R, Sun J, Cai R, Logun C, Shelhamer J, Todd NW, Singh IS, Luzina IG, Atamas SP, Hasday JD. Activation of heat shock response augments fibroblast growth factor-1 expression in wounded lung epithelium. Am J Physiol Lung Cell Mol Physiol 2016;311:L941-55. [PMID: 27638903 DOI: 10.1152/ajplung.00262.2016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
186 Villar J, Belda J, Añón JM, Blanco J, Pérez-Méndez L, Ferrando C, Martínez D, Soler JA, Ambrós A, Muñoz T, Rivas R, Corpas R, Díaz-Dominguez FJ, Soro M, García-Bello MA, Fernández RL, Kacmarek RM; DEXA-ARDS Network. Evaluating the efficacy of dexamethasone in the treatment of patients with persistent acute respiratory distress syndrome: study protocol for a randomized controlled trial. Trials 2016;17:342. [PMID: 27449641 DOI: 10.1186/s13063-016-1456-4] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
187 Torosyan Y, Hu Y, Hoffman S, Luo Q, Carleton B, Marinac-Dabic D. An in silico framework for integrating epidemiologic and genetic evidence with health care applications: ventilation-related pneumothorax as a case illustration. J Am Med Inform Assoc 2016;23:711-20. [PMID: 27107435 DOI: 10.1093/jamia/ocw031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
188 Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of Lung Fibrosis Resolution. Am J Pathol. 2016;186:1066-1077. [PMID: 27021937 DOI: 10.1016/j.ajpath.2016.01.018] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 10.7] [Reference Citation Analysis]
189 Uzunhan Y, Bernard O, Marchant D, Dard N, Vanneaux V, Larghero J, Gille T, Clerici C, Valeyre D, Nunes H, Boncoeur E, Planès C. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. American Journal of Physiology-Lung Cellular and Molecular Physiology 2016;310:L439-51. [DOI: 10.1152/ajplung.00117.2015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
190 D'Alessio FR, Craig JM, Singer BD, Files DC, Mock JR, Garibaldi BT, Fallica J, Tripathi A, Mandke P, Gans JH, Limjunyawong N, Sidhaye VK, Heller NM, Mitzner W, King LS, Aggarwal NR. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am J Physiol Lung Cell Mol Physiol 2016;310:L733-46. [PMID: 26895644 DOI: 10.1152/ajplung.00419.2015] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 9.1] [Reference Citation Analysis]
191 Bein T, Briegel J, Annane D. Steroids are part of rescue therapy in ARDS patients with refractory hypoxemia: yes. Intensive Care Med 2016;42:918-20. [PMID: 26883257 DOI: 10.1007/s00134-015-4162-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
192 Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome. Dis Markers 2016;2016:3501373. [PMID: 26980924 DOI: 10.1155/2016/3501373] [Cited by in Crossref: 76] [Cited by in F6Publishing: 85] [Article Influence: 10.9] [Reference Citation Analysis]
193 Zemans RL, Downey GP. Injury and Repair. Murray and Nadel's Textbook of Respiratory Medicine 2016. [DOI: 10.1016/b978-1-4557-3383-5.00015-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
194 Matthay MA, Murray JF. Pulmonary Edema. Murray and Nadel's Textbook of Respiratory Medicine 2016. [DOI: 10.1016/b978-1-4557-3383-5.00062-2] [Reference Citation Analysis]
195 Kon ZN, Dahi S, Evans CF, Byrnes KA, Bittle GJ, Wehman B, Rector RP, McCormick BM, Herr DL, Sanchez PG, Pham SM, Griffith BP. Long-Term Venovenous Extracorporeal Membrane Oxygenation Support for Acute Respiratory Distress Syndrome. Ann Thorac Surg 2015;100:2059-63. [PMID: 26296269 DOI: 10.1016/j.athoracsur.2015.05.088] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
196 Siempos II, Choi AMK. Midkine: In the Middle of the Pathogenesis of Acute Respiratory Distress Syndrome–associated Lung Fibrosis? Am J Respir Crit Care Med 2015;192:271-2. [DOI: 10.1164/rccm.201506-1084ed] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
197 Zhang Y, Liu Y, Mao Y, Dong W, Zhu X, Jiang L. Resveratrol ameliorates lipopolysaccharide-induced epithelial mesenchymal transition and pulmonary fibrosis through suppression of oxidative stress and transforming growth factor-β1 signaling. Clinical Nutrition 2015;34:752-60. [DOI: 10.1016/j.clnu.2014.08.014] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 7.8] [Reference Citation Analysis]
198 Meng F, Mambetsariev I, Tian Y, Beckham Y, Meliton A, Leff A, Gardel ML, Allen MJ, Birukov KG, Birukova AA. Attenuation of lipopolysaccharide-induced lung vascular stiffening by lipoxin reduces lung inflammation. Am J Respir Cell Mol Biol 2015;52:152-61. [PMID: 24992633 DOI: 10.1165/rcmb.2013-0468OC] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
199 Mokra D, Kosutova P. Biomarkers in acute lung injury. Respiratory Physiology & Neurobiology 2015;209:52-8. [DOI: 10.1016/j.resp.2014.10.006] [Cited by in Crossref: 141] [Cited by in F6Publishing: 150] [Article Influence: 17.6] [Reference Citation Analysis]
200 Meduri GU, Eltorky MA. Understanding ARDS-associated fibroproliferation. Intensive Care Med 2015;41:517-20. [DOI: 10.1007/s00134-014-3613-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
201 Lama VN. Cellular Origins of Fibrotic Lung Diseases. Stem Cells in the Lung 2015. [DOI: 10.1007/978-3-319-21082-7_13] [Reference Citation Analysis]
202 Aschner Y, Zemans RL, Yamashita CM, Downey GP. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest 2014;146:1081-91. [PMID: 25287998 DOI: 10.1378/chest.14-0397] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 6.3] [Reference Citation Analysis]
203 Zompatori M, Ciccarese F, Fasano L. Overview of current lung imaging in acute respiratory distress syndrome. Eur Respir Rev 2014;23:519-30. [DOI: 10.1183/09059180.00001314] [Cited by in Crossref: 62] [Cited by in F6Publishing: 70] [Article Influence: 6.9] [Reference Citation Analysis]
204 Andonegui G, Krein PM, Mowat C, Brisebois R, Doig C, Green FH, Léger C, Winston BW. Enhanced production of IGF-I in the lungs of fibroproliferative ARDS patients. Physiol Rep 2014;2:e12197. [PMID: 25367695 DOI: 10.14814/phy2.12197] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
205 Cabrera-Benitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, Slutsky AS. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology 2014;121:189-98. [PMID: 24732023 DOI: 10.1097/ALN.0000000000000264] [Cited by in Crossref: 98] [Cited by in F6Publishing: 103] [Article Influence: 10.9] [Reference Citation Analysis]
206 Keshari RS, Silasi-Mansat R, Zhu H, Popescu NI, Peer G, Chaaban H, Lambris JD, Polf H, Lupu C, Kinasewitz G, Lupu F. Acute lung injury and fibrosis in a baboon model of Escherichia coli sepsis. Am J Respir Cell Mol Biol 2014;50:439-50. [PMID: 24066737 DOI: 10.1165/rcmb.2013-0219OC] [Cited by in Crossref: 9] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]