1
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. Targeting γc family cytokines with biologics: current status and future prospects. MAbs 2025; 17:2468312. [PMID: 39967341 PMCID: PMC11845063 DOI: 10.1080/19420862.2025.2468312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Over the recent decades the market potential of biologics has substantially expanded, and many of the top-selling drugs worldwide are now monoclonal antibodies or antibody-like molecules. The common gamma chain (γc) cytokines, Interleukin (IL-)2, IL-4, IL-7, IL-9, IL-15, and IL-21, play pivotal roles in regulating immune responses, from innate to adaptive immunity. Dysregulation of cell signaling by these cytokines is strongly associated with a range of immunological disorders, which includes cancer as well as autoimmune and inflammatory diseases. Given the essential role of γc cytokines in maintaining immune homeostasis, the development of therapeutic interventions targeting these molecules poses unique challenges. Here, we provide an overview of current biologics targeting either single or multiple γc cytokines or their respective receptor subunits across a spectrum of diseases, primarily focusing on antibodies, antibody-like constructs, and antibody-cytokine fusions. We summarize therapeutic biologics currently in clinical trials, highlighting how they may offer advantages over existing therapies and standard of care, and discuss recent advances in this field. Finally, we explore future directions and the potential of novel therapeutic intervention strategies targeting this cytokine family.
Collapse
Affiliation(s)
- Fabian Bick
- Argenx BV, Zwijnaarde, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J. Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Xu J, Apetoh L. Go to the scene: T H9 cells superior migration ability to the lungs explains their exceptional anticancer efficacy. J Immunother Cancer 2025; 13:e011522. [PMID: 40295144 PMCID: PMC12039026 DOI: 10.1136/jitc-2025-011522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Antibodies against immune checkpoints are now routinely administered as a first line of treatment against metastatic lung cancer. Resistance to immune checkpoint inhibitors is, however, frequent, underscoring the need to find alternative treatments. Adoptive T-cell therapy has recently proven effective in treating patient's refractory to immune checkpoint inhibitors. This provides impetus to characterize the T-cell subsets best able to tackle tumors. The anticancer activities of IL-9-producing CD4 T helper cells (TH9 cells) were identified in melanoma in 2012. TH9 cells feature strong antimelanoma effects thanks to their production of interleukin (IL)-9 and the activation of innate and adaptive immune effectors. The ability of TH9 cells to prevent the growth of triple-negative breast cancer (TNBC) and osteosarcoma (OS), which commonly metastasize to the lungs, is elusive. In this commentary, we discuss the findings of Chen et al reported in the JITC demonstrating that TH9 cells are lung-tropic and eliminate TNBC and OS cells developing in the lungs. We also highlight how these investigations are in line with recent studies indicating that the adoptive transfer of IL-9-producing T cells eliminate aggressive cancers, including hematological tumors like leukemia and solid tumors such as glioblastoma. Altogether, these findings over the past 13 years support the clinical evaluation of TH9 cells in the adoptive therapy of cancer.
Collapse
Affiliation(s)
- Jiazhi Xu
- Microbiology and Immunology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Lionel Apetoh
- Microbiology and Immunology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2025; 48:295-312. [PMID: 39325360 PMCID: PMC11996958 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
4
|
Attia A, Habel A, Xu W, Stayoussef M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Serum Protein Profiling as theranostic biomarkers for Left- and Right-Sided Colon Cancer using Luminex ® technology. Cancer Biomark 2025; 42:18758592251329321. [PMID: 40232184 DOI: 10.1177/18758592251329321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundGiven the differences between malignancies arising from different segments of the colon, specific theranostic biomarkers can be linked to either Right-sided (RCC) or Left-sided colon cancer (LCC).ObjectiveAnalysis of 65 serum proteins to identify panels of theranostic biomarkers for LCC and RCC.MethodsSerum levels of 65 immunomodulators were measured in CC, LCC, and RCC patients, as well as healthy controls with the ProcartaPlex Human Immune Monitoring 65-Plex Panel.ResultsIL-27 may be used for early detection in LCC. CD-30 was up-regulated in metastatic CC, BLC was up-regulated in metastatic LCC and CD-40L was down-regulated in metastatic RCC. MDC and MMP-1 were positively associated, while IL-9 and VEGF-A were negatively associated with lymph nodes invasion in CC. Up-regulation of IL-12p70 and MMP-1 in LCC with lymph nodes invasion contrasted with down-regulation of IL-9 and MIP-1beta. IL-23, I-TAC, and SDF-1α were negatively associated with resistant CC to Folfox chemotherapy, and I-TAC was down-regulated in resistant LCC. IL-2 and FGF-2 were down-regulated, while APRIL was up-regulated in resistant RCC.ConclusionsOur study revealed significant differences in serum protein levels between LCC and RCC emphasizing the importance to explore novel theranostic biomarkers for CC, associated with resistance or sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Amani Attia
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Azza Habel
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Mouna Stayoussef
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Amel Mezlini
- Medical Oncology Department, Salah Azaiez Oncology Institute, Tunis, Tunisia
| | - Anis Larbi
- Beckman Coulter Life Sciences, Ville pinte, France
| | - Besma Yaacoubi-Loueslati
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| |
Collapse
|
5
|
Rao G, Mack CD, Nguyen T, Wong N, Payne K, Worley L, Gray PE, Wong M, Hsu P, Stormon MO, Preece K, Suan D, O'Sullivan M, Blincoe AK, Sinclair J, Okada S, Hambleton S, Arkwright PD, Boztug K, Stepensky P, Cooper MA, Bezrodnik L, Nadeau KC, Abolhassani H, Abraham RS, Seppänen MRJ, Béziat V, Bustamante J, Forbes Satter LR, Leiding JW, Meyts I, Jouanguy E, Boisson-Dupuis S, Uzel G, Puel A, Casanova JL, Tangye SG, Ma CS. Inborn errors of immunity reveal molecular requirements for generation and maintenance of human CD4 + IL-9-expressing cells. J Allergy Clin Immunol 2025; 155:1161-1178. [PMID: 39622295 PMCID: PMC11972900 DOI: 10.1016/j.jaci.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND CD4+ T cells play essential roles in adaptive immunity. Distinct CD4+ T-cell subsets-TH1, TH2, TH17, TH22, T follicular helper, and regulatory T cells-have been identified, and their contributions to host defense and immune regulation are increasingly well defined. IL-9-producing TH9 cells were first described in 2008 and appear to play both protective and pathogenic roles in human immunity. However, key requirements for generating human TH9 cells remain incompletely defined. OBJECTIVE We sought to define signaling pathways that regulate IL-9 production by human CD4+ T cells. METHODS Human naive and memory CD4+ T cells were cultured under different conditions, and the molecular mechanisms regulating IL-9 induction were determined by assessing the ability of CD4+ T cells from a broad range of patients (n = 92) with pathogenic variants in key immune genes (n = 21) to differentiate into IL-9+ cells. RESULTS We identified 2 culture conditions that yielded IL-9-expressing cells from naive CD4+ T cells and amplified IL-9 production by in vivo-generated memory CD4+ T cells: TGF-β plus IL-4 (ie, TH9 polarizing condition), and the combination of IL-21, IL-23, IL-6, IL-1β, and TGF-β (ie, TH17 polarizing condition). Combining these conditions had a synergistic effect in generating IL-9+CD4+ T cells. IL-9 induction required STAT3-activating cytokines as well as intact signaling via the T-cell receptor and STAT5. Importantly, IL-9 induction was restrained by IFN-γ/STAT1 and IL-10. CONCLUSIONS Our findings revealed critical molecules involved in inducing/restraining IL-9 production by human CD4+ T cells, thereby identifying pathways that could be targeted to modulate IL-9 in health and disease.
Collapse
Affiliation(s)
- Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Corinne D Mack
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia
| | - Natalie Wong
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kathryn Payne
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Lisa Worley
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, Australia
| | - Melanie Wong
- Children's Hospital at Westmead, Westmead, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Peter Hsu
- Children's Hospital at Westmead, Westmead, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | | | - Kahn Preece
- John Hunter Children's Hospital, Newcastle, Australia
| | - Daniel Suan
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - Jan Sinclair
- Starship Children's Hospital, Auckland, New Zealand
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Peter D Arkwright
- Lydia Becker Institute for Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Kaan Boztug
- St Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Medical University of Vienna, Department of Paediatrics and Adolescent Medicine, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St Louis, Mo
| | - Liliana Bezrodnik
- Grupo de Inmunología-Instituto Multidisciplinario de Investigaciones en Patologias Pediatricas (IMIPP-CONICET), Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina; Center for Clinical Immunology, Buenos Aires, Argentina
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center and Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; ERN-RITA Core Center, RITAFIN, Helsinki, Finland
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, William T. Shearer Center for Human Immunobiology, Department of Allergy, Immunology, and Retrovirology, Houston, Tex
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, Md; Institute for Clinical and Translational Research and the Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Inborn Errors of Immunity, University Hospitals Leuven, Leuven, Belgium; FWO Vlaanderen, Brussels, Belgium
| | - Emmanuelle Jouanguy
- Imagine Institute, Université Paris Cité, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Imagine Institute, Université Paris Cité, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| |
Collapse
|
6
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
7
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2025; 18:1-15. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
8
|
Tan B, Tu C, Xiong H, Xu Y, Shi X, Zhang X, Yang R, Zhang N, Lin B, Liu M, Qin J, Du B. GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy. Mol Ther 2025:S1525-0016(25)00040-1. [PMID: 39863927 DOI: 10.1016/j.ymthe.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and the limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of GITR ligand enhances the anti-tumor activity of CAR-T cells. Compared to prostate-specific membrane antigen-BB-Z (PSMA-BB-Z) CAR-T, PSMA-BB-Z-GITRL CAR-T cells have much more interferon (IFN)-γ, TNF-α, and interleukin (IL)-9 secretion, a higher proportion of central memory T (TCM) cells and T helper 9 (Th9) cells, less expression of exhaustion markers, and robust proliferation capacity. Consequently, PSMA-BB-Z-GITRL CAR-T cells exhibited more potent anti-tumor activity against established solid tumors in vivo than PSMA-BB-Z CAR-T cells. The results of the in vivo persistence experiment also indicated that PSMA-BB-Z-GITRL CAR-T cells exhibited much more retention in mouse blood, spleen, and tumor tissue than PSMA-BB-Z CAR-T cells 15 days after CAR-T cell therapy. In addition, PSMA-BB-Z-GITRL CAR-T cells produce higher levels of IFN-γ, TNF-α, and IL-9 in mouse blood, exhibiting a higher proportion of TCM cells and a lower proportion of Treg cells compared to PSMA-BB-Z CAR-T cells. Our results demonstrate that the overexpression of GITRL has important implications for improving CAR-T cell-based human solid tumor immunotherapy.
Collapse
Affiliation(s)
- Binghe Tan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; BRL Medicine, Inc., Shanghai 201109, China
| | - Chuntian Tu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hao Xiong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yongqian Xu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiujuan Shi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaolin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ruijie Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Na Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; BRL Medicine, Inc., Shanghai 201109, China
| | - Boxu Lin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
9
|
Chen T, Qiao C, Yinwang E, Wang S, Wen X, Feng Y, Jin X, Li S, Xue Y, Zhou H, Zhang W, Zeng X, Wang Z, Sun H, Jiang L, Li H, Li B, Cai Z, Ye Z, Lin N. Natural lung-tropic T H9 cells: a sharp weapon for established lung metastases. J Immunother Cancer 2024; 12:e009629. [PMID: 39631847 PMCID: PMC11624796 DOI: 10.1136/jitc-2024-009629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Lung metastasis remains the primary cause of tumor-related mortality, with limited treatment options and unsatisfactory efficacy. In preclinical studies, T helper 9 (TH9) cells have shown promise in treating solid tumors. However, it is unclear whether TH9 cells can tackle more challenging situations, such as established lung metastases. Moreover, comprehensive exploration into the nuanced biological attributes of TH9 cells is imperative to further unravel their therapeutic potential. METHODS We adoptively transferred TH1, TH9, and TH17 cells into subcutaneous, in situ, and established lung metastases models of osteosarcoma and triple-negative breast cancer, respectively, comparing their therapeutic efficacy within each distinct model. We employed flow cytometry and an in vivo imaging system to evaluate the accumulation patterns of TH1, TH9, and TH17 cells in the lungs after transfusion. We conducted bulk RNA sequencing on in vitro differentiated TH9 cells to elucidate the chemokine receptor CXCR4, which governs their heightened pulmonary tropism relative to TH1 and TH17 cell counterparts. Using Cd4 cre Cxcr4 flox/flox mice, we investigate the effects of CXCR4 on the lung tropism of TH9 cells. We performed mass spectrometry to identify the E3 ligase responsible for CXCR4 ubiquitination and elucidated the mechanism governing CXCR4 expression within TH9 cellular milieu. Ultimately, we analyzed the tumor immune composition after TH9 cell transfusion and evaluated the therapeutic efficacy of adjunctive anti-programmed cell death protein-1 (PD-1) therapy in conjunction with TH9 cells. RESULTS In this study, we provide evidence that TH9 cells exhibit higher lung tropism than TH1 and TH17 cells, thereby exhibiting exceptional efficacy in combating established lung metastases. CXCR4-CXCL12 axis is responsible for lung tropism of TH9 cells as ablating CXCR4 in CD4+ T cells reverses their lung accumulation. Mechanistically, tumor necrosis factor receptor-associated factor 6 (TRAF6)-driven hyperactivation of NF-κB signaling in TH9 cells inhibited ITCH-mediated ubiquitination of CXCR4, resulting in increased CXCR4 accumulation and enhanced lung tropism of TH9 cells. Besides, TH9 cells' transfusion significantly improved the immunosuppressed microenvironment. TH9 cells and anti-PD-1 exhibit synergistic effects in tumor control. CONCLUSIONS Our findings emphasized the innate lung tropism of TH9 cells driven by the activation of TRAF6, which supports the potential of TH9 cells as a promising therapy for established lung metastases.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxiao Qiao
- Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Featured Laboratory of Respiratory Immunology and Regenerative Medicine in Universities of Shandong, Jinan Clinical Research Center for Respiratory Disease, Jinan, Shandong, People's Republic of China
| | - Eloy Yinwang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shengdong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xuehuan Wen
- Department of Oncology, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yixuan Feng
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangang Jin
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Shuming Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wenkan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xianchang Zeng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hangxiang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Lifeng Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hengyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Binghao Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zhijian Cai
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Nong Lin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Kim JC, Hu W, Lee M, Bae GH, Park JY, Lee SY, Jeong YS, Park B, Park JS, Zabel BA, Bae YS, Bae YS. Sphingosylphosphorylcholine Promotes Th9 Cell Differentiation Through Regulation of Smad3, STAT5, and β-Catenin Pathways. Immune Netw 2024; 24:e45. [PMID: 39801737 PMCID: PMC11711130 DOI: 10.4110/in.2024.24.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
Sphingosylphosphorylcholine (SPC) is one of sphingomyelin-derived sphingolipids. SPC levels are increased in ascitic fluids of ovarian cancer patients and stratum corneum of atopic dermatitis (AD) patients. SPC has antitumor activity against several cancer cells by reducing proliferation and migration and increasing apoptosis in vitro. SPC can also cause scratching, potentially exacerbating symptoms of AD. However, the role of SPC in modulating immune responses, particularly in the differentiation of Th9 cells, which carry the most powerful antitumor activity among CD4+ T cells, has yet to be investigated. In this study, we found that SPC is another inducer of Th9 cell differentiation by replicating TGF-β. SPC upregulated Smad3, STAT5, and β-catenin signaling pathways. Increased Smad3 and STAT5 signaling pathways by SPC promoted the differentiation of Th9 cells and increased β-catenin signaling pathway resulted in a less-exhausted, memory-like phenotype of Th9 cells. Increased Smad3, STAT5 and β-catenin signaling pathways by SPC were mediated by increased mitochondrial ROS. These results suggest that SPC is an important endogenous inducer of Th9 cell differentiation and may be one of the targets for treating Th9-related diseases, and that enhancing Th9 differentiation by SPC may be helpful in adoptive T cell therapy for cancer treatment.
Collapse
Affiliation(s)
- Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Wonseok Hu
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingyu Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| | - Geon Ho Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Ye Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Brian A. Zabel
- Palo Alto Veterans Institute for Research (PAVIR), VA Palo Alto Health Care Systems (VAPAHCS), Palo Alto, CA 94304, USA
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
11
|
Kalim M, Jing R, Guo W, Xing H, Lu Y. Functional diversity and regulation of IL-9-producing T cells in cancer immunotherapy. Cancer Lett 2024; 606:217306. [PMID: 39426662 PMCID: PMC11675864 DOI: 10.1016/j.canlet.2024.217306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Wei Guo
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Hui Xing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Taberner-Cortés A, Aguilar-Ballester M, Jiménez-Martí E, Hurtado-Genovés G, Martín-Rodríguez RM, Herrero-Cervera A, Vinué Á, Martín-Vañó S, Martínez-Hervás S, González-Navarro H. Treatment with 1.25% cholesterol enriched diet produces severe fatty liver disease characterized by advanced fibrosis and inflammation and impaired autophagy in mice. J Nutr Biochem 2024; 134:109711. [PMID: 39111707 DOI: 10.1016/j.jnutbio.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is reaching pandemic proportions due to overnutrition. The understanding of advanced stages that recapitulate the human pathology is of great importance to get a better mechanistic insight. We hypothesized that feeding of WT (C57BL) mice with a diet containing a high content of fat (21%), sugar (41.5%) and 1.25% of cholesterol (called from now on high fat, sucrose and cholesterol diet, HFSCD) will reproduce the characteristics of disease severity. Analysis of 16 weeks HFSCD-fed mice demonstrated increased liver weight and plasmatic liver damage markers compared with control diet (CD)-fed mice. HFSCD-fed mice developed greater hepatic triglyceride, cholesterol and NEFA content, inflammation and NAFLD activity score (NAS) indicating an advanced disease. HFSCD-fed mice displayed augmented hepatic total CD3+ T and Th9 lymphocytes, as well as reduced Th2 lymphocytes and CD206 anti-inflammatory macrophages. Moreover, T cells and anti-inflammatory macrophages correlated positively and inversely, respectively, with intrahepatic cholesterol content. Consistently, circulating cytotoxic CD8+ T lymphocytes, Th1, and B cell levels were elevated in HFSCD-fed WT mice. Hepatic and adipose tissue expression analysis demonstrated changes in fibrotic and metabolic genes related with cholesterol, triglycerides, and fatty acid synthesis in HFSCD-fed WT. These mice also exhibited reduced antioxidant capacity and autophagy and elevated ERK signaling pathway activation and CHOP levels. Our results indicate that the feeding with a cholesterol-enriched diet in WT mice produces an advanced NAFLD stage with fibrosis, characterized by deficient autophagy and ER stress along with inflammasome activation partially via ERK pathway activation.
Collapse
Affiliation(s)
| | | | - Elena Jiménez-Martí
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain; Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Gema Hurtado-Genovés
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | | | - Ángela Vinué
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Susana Martín-Vañó
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Sergio Martínez-Hervás
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain; Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, Valencia, Spain; Metabolic Diseases Group, CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Herminia González-Navarro
- Metabolic Diseases Group, INCLIVA Biomedical Research Institute, Valencia, Spain; Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, Valencia, Spain; Metabolic Diseases Group, CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Nakajima T, Kanno T, Ueda Y, Miyako K, Endo T, Yoshida S, Yokoyama S, Asou HK, Yamada K, Ikeda K, Togashi Y, Endo Y. Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling. Cell Mol Immunol 2024; 21:1266-1281. [PMID: 39187636 PMCID: PMC11528006 DOI: 10.1038/s41423-024-01209-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-β); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-β-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-β-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells.
Collapse
Affiliation(s)
- Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yuki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Takeru Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Souta Yoshida
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoru Yokoyama
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hikari K Asou
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazuko Yamada
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan.
- Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
14
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Nematisouldaragh D, Kirshenbaum E, Uzonna M, Kirshenbaum L, Rabinovich-Nikitin I. The Role of Retinoic-Acid-Related Orphan Receptor (RORs) in Cellular Homeostasis. Int J Mol Sci 2024; 25:11340. [PMID: 39518891 PMCID: PMC11545807 DOI: 10.3390/ijms252111340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Retinoic-acid-related orphan receptors (RORs) are transcription factors belonging to the nuclear receptor subfamily consisting of RORα, RORβ, and RORγ. By binding to the ROR response elements (ROREs) on target gene promoters, RORs regulate a wide variety of cellular processes, including autophagy, mitophagy, oxidative stress, and inflammation. The regulatory roles of RORs are observed in cardiac cells, hepatocytes, pulmonary epithelial cells, renal cells, immune cells, and cancer cells. A growing body of clinical and experimental evidence suggests that ROR expression levels are markedly reduced under different pathological and stress conditions, suggesting that RORs may play a critical role in the pathogenesis of a variety of disease states, including myocardial infarction, immune disorders, cancer, and metabolic syndrome. Reductions in RORs are also associated with inhibition of autophagy, increased reactive oxygen species (ROS), and increased cell death, underscoring the importance of RORs in the regulation of these processes. Herein, we highlight the relationship between RORs and homeostatic processes that influence cell viability. Understanding how these intricate processes are governed at the cellular level is of high scientific and clinical importance to develop new therapeutic strategies that modulate ROR expression and disease progression.
Collapse
Affiliation(s)
- Darya Nematisouldaragh
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Eryn Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Michael Uzonna
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Lorrie Kirshenbaum
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, MB R2H 2A6, Canada
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (D.N.); (E.K.); (M.U.); (L.K.)
- The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
16
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
17
|
Kirkpatrick C, Lu YCW. Deciphering CD4 + T cell-mediated responses against cancer. Mol Carcinog 2024; 63:1209-1220. [PMID: 38725218 PMCID: PMC11166516 DOI: 10.1002/mc.23730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024]
Abstract
It's been long thought that CD8+ cytotoxic T cells play a major role in T cell-mediated antitumor responses, whereas CD4+ T cells merely provide some assistance to CD8+ T cells as the "helpers." In recent years, numerous studies support the notion that CD4+ T cells play an indispensable role in antitumor responses. Here, we summarize and discuss the current knowledge regarding the roles of CD4+ T cells in antitumor responses and immunotherapy, with a focus on the molecular and cellular mechanisms behind these observations. These new insights on CD4+ T cells may pave the way to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Catherine Kirkpatrick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yong-Chen William Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
18
|
Bharti V, Kumar A, Wang Y, Roychowdhury N, de Lima Bellan D, Kassaye BB, Watkins R, Capece M, Chung CG, Hilinski G, Vilgelm AE. TTK inhibitor OSU13 promotes immunotherapy responses by activating tumor STING. JCI Insight 2024; 9:e177523. [PMID: 38900577 PMCID: PMC11383830 DOI: 10.1172/jci.insight.177523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
TTK spindle assembly checkpoint kinase is an emerging cancer target. This preclinical study explored the antitumor mechanism of TTK inhibitor OSU13 to define a strategy for clinical development. We observed prominent antitumor activity of OSU13 in melanoma, colon and breast cancer cells, organoids derived from patients with melanoma, and mice bearing colon tumors associated with G2 cell cycle arrest, senescence, and apoptosis. OSU13-treated cells displayed DNA damage and micronuclei that triggered the cytosolic DNA-sensing cGAS/STING pathway. STING was required for the induction of several proteins involved in T cell recruitment and activity. Tumors from OSU13-treated mice showed an increased proportion of T and NK cells and evidence of PD-1/PD-L1 immune checkpoint activation. Combining a low-toxicity dose of OSU13 with anti-PD-1 checkpoint blockade resulted in prominent STING- and CD8+ T cell-dependent tumor inhibition and improved survival. These findings provide a rationale for utilizing TTK inhibitors in combination with immunotherapy in STING-proficient tumors.
Collapse
Affiliation(s)
- Vijaya Bharti
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amrendra Kumar
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yinchong Wang
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Nikhil Roychowdhury
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Daniel de Lima Bellan
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Reese Watkins
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Marina Capece
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Gerard Hilinski
- Drug Development Institute, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Anna E Vilgelm
- Department of Pathology
- Pelotonia Institute for Immunooncology, and
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
20
|
Cunha D, Neves M, Silva D, Silvestre AR, Nunes PB, Arrobas F, Ribot JC, Ferreira F, Moita LF, Soares-de-Almeida L, Silva JM, Filipe P, Ferreira J. Tumor-Infiltrating T Cells in Skin Basal Cell Carcinomas and Squamous Cell Carcinomas: Global Th1 Preponderance with Th17 Enrichment-A Cross-Sectional Study. Cells 2024; 13:964. [PMID: 38891095 PMCID: PMC11172364 DOI: 10.3390/cells13110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Basal cell carcinomas (BCCs) and squamous cell carcinomas (SCCs) are high-incidence, non-melanoma skin cancers (NMSCs). The success of immune-targeted therapies in advanced NMSCs led us to anticipate that NMSCs harbored significant populations of tumor-infiltrating lymphocytes with potential anti-tumor activity. The main aim of this study was to characterize T cells infiltrating NMSCs. Flow cytometry and immunohistochemistry were used to assess, respectively, the proportions and densities of T cell subpopulations in BCCs (n = 118), SCCs (n = 33), and normal skin (NS, n = 30). CD8+ T cells, CD4+ T cell subsets, namely, Th1, Th2, Th17, Th9, and regulatory T cells (Tregs), CD8+ and CD4+ memory T cells, and γδ T cells were compared between NMSCs and NS samples. Remarkably, both BCCs and SCCs featured a significantly higher Th1/Th2 ratio (~four-fold) and an enrichment for Th17 cells. NMSCs also showed a significant enrichment for IFN-γ-producing CD8+T cells, and a depletion of γδ T cells. Using immunohistochemistry, NMSCs featured denser T cell infiltrates (CD4+, CD8+, and Tregs) than NS. Overall, these data favor a Th1-predominant response in BCCs and SCCs, providing support for immune-based treatments in NMSCs. Th17-mediated inflammation may play a role in the progression of NMSCs and thus become a potential therapeutic target in NMSCs.
Collapse
Affiliation(s)
- Daniela Cunha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Dermatology Unit, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Marco Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Daniela Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Ana Rita Silvestre
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
| | - Paula Borralho Nunes
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal (P.B.N.)
- Instituto de Anatomia Patológica, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Fernando Arrobas
- Datamedica, Biostatistics Services and Consulting, 2610-008 Amadora, Portugal
| | - Julie C. Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
| | - Fernando Ferreira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Luís F. Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Luís Soares-de-Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Maia Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Centro de Dermatologia, Hospital CUF Descobertas, 1998-018 Lisbon, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Paulo Filipe
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Serviço de Dermatologia, Centro Hospitalar Universitário Lisboa Norte EPE, 1649-028 Lisbon, Portugal
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.C.)
- Clínica Dermatológica Universitária, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
21
|
Son A, Baral I, Falduto GH, Schwartz DM. Locus of (IL-9) control: IL9 epigenetic regulation in cellular function and human disease. Exp Mol Med 2024; 56:1331-1339. [PMID: 38825637 PMCID: PMC11263352 DOI: 10.1038/s12276-024-01241-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine with roles in a broad cross-section of human diseases. Like many cytokines, IL-9 is transcriptionally regulated by a group of noncoding regulatory elements (REs) surrounding the IL9 gene. These REs modulate IL-9 transcription by forming 3D loops that recruit transcriptional machinery. IL-9-promoting transcription factors (TFs) can bind REs to increase locus accessibility and permit chromatin looping, or they can be recruited to already accessible chromatin to promote transcription. Ample mechanistic and genome-wide association studies implicate this interplay between IL-9-modulating TFs and IL9 cis-REs in human physiology, homeostasis, and disease.
Collapse
Affiliation(s)
- Aran Son
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Ishita Baral
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Isvoranu G, Chiritoiu-Butnaru M. Therapeutic potential of interleukin-21 in cancer. Front Immunol 2024; 15:1369743. [PMID: 38638431 PMCID: PMC11024325 DOI: 10.3389/fimmu.2024.1369743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Interleukin-21 (IL-21) is an immunostimulatory cytokine which belongs to the common gamma-chain family of cytokines. It plays an import role in the development, differentiation, proliferation, and activation of immune cells, in particular T and natural killer (NK) cells. Since its discovery in 2000, IL-21 has been shown to regulate both adaptive and immune responses associates with key role in antiviral and antitumor responses. Recent advances indicate IL-21 as a promising target for cancer treatment and encouraging results were obtained in preclinical studies which investigated the potency of IL-21 alone or in combination with other therapies, including monoclonal antibodies, checkpoint inhibitory molecules, oncolytic virotherapy, and adoptive cell transfer. Furthermore, IL-21 showed antitumor effects in the treatment of patients with advanced cancer, with minimal side effects in several clinical trials. In the present review, we will outline the recent progress in IL-21 research, highlighting the potential of IL-21 based therapy as single agent or in combination with other drugs to enhance cancer treatment efficiency.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Department of Animal Husbandry,” Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Marioara Chiritoiu-Butnaru
- Department of Molecular and Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
24
|
Roostaee A, Yaghobi R, Afshari A, Jafarinia M. Regulatory role of T helper 9/interleukin-9: Transplantation view. Heliyon 2024; 10:e26359. [PMID: 38420400 PMCID: PMC10900956 DOI: 10.1016/j.heliyon.2024.e26359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
T helper 9 (Th9) cells, a subset of CD4+ T helper cells, have emerged as a valuable target for immune cell therapy due to their potential to induce immunomodulation and tolerance. The Th9 cells mainly produce interleukin (IL)-9 and are known for their defensive effects against helminth infections, allergic and autoimmune responses, and tumor suppression. This paper explores the mechanisms involved in the generation and differentiation of Th9 cells, including the cytokines responsible for their polarization and stabilization, the transcription factors necessary for their differentiation, as well as the role of Th9 cells in inflammatory and autoimmune diseases, allergic reactions, and cancer immunotherapies. Recent research has shown that the differentiation of Th9 cells is coregulated by the transcription factors transforming growth factor β (TGF-β), IL-4, and PU.1, which are also known to secrete IL-10 and IL-21. Multiple cell types, such as T and B cells, mast cells, and airway epithelial cells, are influenced by IL-9 due to its pleiotropic effects.
Collapse
Affiliation(s)
- Azadeh Roostaee
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
25
|
Ye J, Chen L, Waltermire J, Zhao J, Ren J, Guo Z, Bartlett DL, Liu Z. Intratumoral Delivery of Interleukin 9 via Oncolytic Vaccinia Virus Elicits Potent Antitumor Effects in Tumor Models. Cancers (Basel) 2024; 16:1021. [PMID: 38473379 DOI: 10.3390/cancers16051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The success of cancer immunotherapy is largely associated with immunologically hot tumors. Approaches that promote the infiltration of immune cells into tumor beds are urgently needed to transform cold tumors into hot tumors. Oncolytic viruses can transform the tumor microenvironment (TME), resulting in immunologically hot tumors. Cytokines are good candidates for arming oncolytic viruses to enhance their function in this transformation. Here, we used the oncolytic vaccinia virus (oVV) to deliver interleukin-9 (IL-9) into the tumor bed and explored its antitumor effects in colon and lung tumor models. Our data show that IL-9 prolongs viral persistence, which is probably mediated by the up-regulation of IL-10. The vvDD-IL-9 treatment elevated the expression of Th1 chemokines and antitumor factors such as IFN-γ, granzyme B, and perforin. IL-9 expression increased the percentages of CD4+ and CD8+ T cells in the TME and decreased the percentage of oVV-induced immune suppressive myeloid-derived suppressor cells (MDSC), leading to potent antitumor effects compared with parental virus treatment. The vvDD-IL-9 treatment also increased the percentage of regulatory T cells (Tregs) in the TME and elevated the expression of immune checkpoint molecules such as PD-1, PD-L1, and CTLA-4, but not GITR. The combination therapy of vvDD-IL-9 and the anti-CTLA-4 antibody, but not the anti-GITR antibody, induced systemic tumor-specific antitumor immunity and significantly extended the overall survival of mice, indicating a potential translation of the IL-9-expressing oncolytic virus into a clinical trial to enhance the antitumor effects elicited by an immune checkpoint blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Junjie Ye
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingjuan Chen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Julia Waltermire
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinshun Zhao
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongsheng Guo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David L Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Zuqiang Liu
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Dhamija B, Marathe S, Sawant V, Basu M, Attrish D, Mukherjee D, Kumar S, Pai MGJ, Wad S, Sawant A, Nayak C, Venkatesh KV, Srivastava S, Barthel SR, Purwar R. IL-17A Orchestrates Reactive Oxygen Species/HIF1α-Mediated Metabolic Reprogramming in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:302-316. [PMID: 38019129 PMCID: PMC11100423 DOI: 10.4049/jimmunol.2300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
Immune cell-derived IL-17A is one of the key pathogenic cytokines in psoriasis, an immunometabolic disorder. Although IL-17A is an established regulator of cutaneous immune cell biology, its functional and metabolic effects on nonimmune cells of the skin, particularly keratinocytes, have not been comprehensively explored. Using multiomics profiling and systems biology-based approaches, we systematically uncover significant roles for IL-17A in the metabolic reprogramming of human primary keratinocytes (HPKs). High-throughput liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy revealed IL-17A-dependent regulation of multiple HPK proteins and metabolites of carbohydrate and lipid metabolism. Systems-level MitoCore modeling using flux-balance analysis identified IL-17A-mediated increases in HPK glycolysis, glutaminolysis, and lipid uptake, which were validated using biochemical cell-based assays and stable isotope-resolved metabolomics. IL-17A treatment triggered downstream mitochondrial reactive oxygen species and HIF1α expression and resultant HPK proliferation, consistent with the observed elevation of these downstream effectors in the epidermis of patients with psoriasis. Pharmacological inhibition of HIF1α or reactive oxygen species reversed IL-17A-mediated glycolysis, glutaminolysis, lipid uptake, and HPK hyperproliferation. These results identify keratinocytes as important target cells of IL-17A and reveal its involvement in multiple downstream metabolic reprogramming pathways in human skin.
Collapse
Affiliation(s)
- Bhavuk Dhamija
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Soumitra Marathe
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Vinanti Sawant
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Moumita Basu
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Diksha Attrish
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Sushant Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Siddhi Wad
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Abhijeet Sawant
- Plastic Surgery Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - Chitra Nayak
- Skin and Venereal Diseases Department, TNMC and BYL Nair Charitable Hospital, Mumbai, India
| | - KV Venkatesh
- Department of Chemical Engineering, IIT Bombay, Mumbai, India
| | | | - Steven R. Barthel
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
27
|
Silver RF, Xia M, Storer CE, Jarvela JR, Moyer MC, Blazevic A, Stoeckel DA, Rakey EK, Tennant JM, Goll JB, Head RD, Hoft DF. Distinct gene expression signatures comparing latent tuberculosis infection with different routes of Bacillus Calmette-Guérin vaccination. Nat Commun 2023; 14:8507. [PMID: 38129388 PMCID: PMC10739751 DOI: 10.1038/s41467-023-44136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Tuberculosis remains an international health threat partly because of limited protection from pulmonary tuberculosis provided by standard intradermal vaccination with Bacillus of Calmette and Guérin (BCG); this may reflect the inability of intradermal vaccination to optimally induce pulmonary immunity. In contrast, respiratory Mycobacterium tuberculosis infection usually results in the immune-mediated bacillary containment of latent tuberculosis infection (LTBI). Here we present RNA-Seq-based assessments of systemic and pulmonary immune cells from LTBI participants and recipients of intradermal and oral BCG. LTBI individuals uniquely display ongoing immune activation and robust CD4 T cell recall responses in blood and lung. Intradermal BCG is associated with robust systemic immunity but only limited pulmonary immunity. Conversely, oral BCG induces limited systemic immunity but distinct pulmonary responses including enhanced inflammasome activation potentially associated with mucosal-associated invariant T cells. Further, IL-9 is identified as a component of systemic immunity in LTBI and intradermal BCG, and pulmonary immunity following oral BCG.
Collapse
Affiliation(s)
- Richard F Silver
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Pulmonary and Critical Care Medicine, The Louis Stokes Cleveland Department of Veterans' Affairs Medical Center, Cleveland, OH, USA.
| | - Mei Xia
- Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
- Center for Vaccine Development, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Chad E Storer
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica R Jarvela
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pulmonary and Critical Care Medicine, The Louis Stokes Cleveland Department of Veterans' Affairs Medical Center, Cleveland, OH, USA
| | - Michelle C Moyer
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pulmonary and Critical Care Medicine, The Louis Stokes Cleveland Department of Veterans' Affairs Medical Center, Cleveland, OH, USA
| | - Azra Blazevic
- Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
- Center for Vaccine Development, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Stoeckel
- Division of Pulmonary, Critical Care and Sleep Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Erin K Rakey
- Division of Pulmonary, Critical Care and Sleep Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jan M Tennant
- Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Center for Vaccine Development, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology & Immunology Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Lee WH, Hong KJ, Li H, Lee GR. Transcription Factor Id1 Plays an Essential Role in Th9 Cell Differentiation by Inhibiting Tcf3 and Tcf4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305527. [PMID: 37867222 PMCID: PMC10724384 DOI: 10.1002/advs.202305527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Indexed: 10/24/2023]
Abstract
T helper type 9 (Th9) cells play important roles in immune responses by producing interleukin-9 (IL-9). Several transcription factors are responsible for Th9 cell differentiation; however, transcriptional regulation of Th9 cells is not fully understood. Here, it is shown that Id1 is an essential transcriptional regulator of Th9 cell differentiation. Id1 is induced by IL-4 and TGF-β. Id1-deficient naïve CD4 T cells fail to differentiate into Th9 cells, and overexpression of Id1 induce expression of IL-9. Mass spectrometry analysis reveals that Id1 interacts with Tcf3 and Tcf4 in Th9 cells. In addition, RNA-sequencing, chromatin immunoprecipitation, and transient reporter assay reveal that Tcf3 and Tcf4 bind to the promoter region of the Il9 gene to suppress its expression, and that Id1 inhibits their function, leading to Th9 differentiation. Finally, Id1-deficient Th9 cells ameliorate airway inflammation in an animal model of asthma. Thus, Id1 is a transcription factor that plays an essential role in Th9 cell differentiation by inhibiting Tcf3 and Tcf4.
Collapse
Affiliation(s)
- Woo Ho Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Kyung Jin Hong
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| | - Hua‐Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of Medicine280 Chongqing South Rd, Building #5‐602Shanghai200025China
| | - Gap Ryol Lee
- Department of Life ScienceSogang University35 Baekbeom‐roMapo‐guSeoul04107South Korea
| |
Collapse
|
29
|
Richter F, Paget C, Apetoh L. STING-driven activation of T cells: relevance for the adoptive cell therapy of cancer. Cell Stress 2023; 7:95-104. [PMID: 37970489 PMCID: PMC10642958 DOI: 10.15698/cst2023.11.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
Adoptive cell therapy (ACT) can successfully treat hematopoietic cancers but lacks efficacy against solid tumors. This is due to insufficient T cell infiltration, high tumor heterogeneity, frequent antigen loss with subsequent tumor escape, and the immunosuppressive tumor microenvironment (TME). Alternative methods to boost the anticancer efficacy of adoptively transferred cells are actively pursued. Among adjuvants that are utilized to stimulate anticancer immune responses, ligands of the stimulator of interferon genes (STING) pathway have received increasing attention. STING activation can trigger dendritic cell (DC) activation and endogenous immune responses, thereby preventing tumor escape. Activation of the STING pathway in the context of ACT was accordingly associated with improved T cell trafficking and persistence in the TME combined with the reduced presence of immunosuppressive cells. Recent findings also suggest cell-intrinsic effects of STING ligands on T cells. Activation of the STING signaling pathway was in this regard shown to enhance effector functions of CD4+ and CD8+ T cells, suggesting that the STING signaling could be exploited to harness T cell anticancer functions. In this review, we will discuss how the STING signaling can be used to enhance the anticancer efficacy of ACT.
Collapse
Affiliation(s)
- Fabian Richter
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
30
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
31
|
Chen J, Zhang Y, Zhang H, Zhang M, Dong H, Qin T, Gao S, Wang S. IL-24 is the key effector of Th9 cell-mediated tumor immunotherapy. iScience 2023; 26:107531. [PMID: 37680459 PMCID: PMC10480301 DOI: 10.1016/j.isci.2023.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Th9 cells are powerful effector T cells for cancer immunotherapy. However, the underlying antitumor mechanism of Th9 cells still needs to be further elucidated. Here, we show that Th9 cells express high levels of not only IL-9, but also IL-24. We found that knockout of Il24 gene in Th9 cells promotes Th9 cell proliferation in vitro, but decreases Th9 cell survival in vitro and in vivo. Interestingly, knockout of Il24 gene in Th9 cells decreases the tumor-specific cytotoxicity of Th9 cells in vitro. In addition, immunotherapy with Il24 knockout Th9 cells exhibit less tumor inhibition than regular Th9 cells in mouse tumor models. We found that inhibition of Foxo1 by a specific inhibitor downregulates IL-24 expression in Th9 cells and decreases Th9 cell antitumor efficacy in vivo. Our results identify IL-24 as a powerful antitumor effector of Th9 cells and provide a target in Th9 cell-mediated tumor therapy.
Collapse
Affiliation(s)
- Jintong Chen
- Department of Cancer Immunology, First Hospital of Jilin University, Changchun 130061, China
| | - Yunwei Zhang
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Hua Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Mingyue Zhang
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun 130021, China
| | - He Dong
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun 130021, China
| | - Tianxue Qin
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Sujun Gao
- Department of Hematology, First Hospital of Jilin University, Changchun 130061, China
| | - Siqing Wang
- Department of Cancer Immunology, First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
32
|
Zhuang J, Qu Z, Chu J, Wang J, Wu Y, Fan Z, Song Y, Han S, Ru L, Zhao H. Single-cell transcriptome analysis reveals T population heterogeneity and functions in tumor microenvironment of colorectal cancer metastases. Heliyon 2023; 9:e17119. [PMID: 37539320 PMCID: PMC10394913 DOI: 10.1016/j.heliyon.2023.e17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 08/05/2023] Open
Abstract
Cell mediated immune escape, a microenvironment factor, induces tumorigenesis and metastasis. The purpose of this study was to display the characteristics of T cell populations in immune microenvironments for colorectal cancer (CRC) metastasis. Unsupervised cluster analysis was conducted to identify functionally distinct T cell clusters from 3,003 cells in peripheral blood and 4,656 cells in tissues. Subsequently, a total of 8 and 4 distinct T cell population clusters were identified from tumor tissue and peripheral blood, respectively. High levels of CD8+TEX, CD4+TRM, TH1-like T cells, CD8+TEM, tumor-Treg from tissues, and CD4+TN from peripheral blood are essential components of immune microenvironment for the prediction of CRC metastasis. Moreover, exhausted T cells are characterized by higher expression of multiple inhibitory receptors, including PDCD1 and LAG3. Some genes such as PFKFB3, GNLY, circDCUN1D4, TXNIP and NR4A2 in T cells of cluster were statistically different between CRC metastasis and non-metastasis. The ligand-receptor interactions identified between different cluster cells and metastases-related DEGs identified from each cluster revealed that the communications of cells, alterations of functions, and numbers of T subsets may contribute to the metastasis of CRC. The mutation frequency of KiAA1551, ATP8B4 and LNPEP in T cells from tissues and SOR1 from peripheral blood were higher in metastatic CRC than that in non-metastatic CRC. In conclusion, the discovery of differential genes in T cells may provide potential targets for immunotherapy of CRC metastasis and relevant insights into the clinical prediction and prognosis of CRC metastasis.
Collapse
Affiliation(s)
- Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Jingjing Wang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Zhiqing Fan
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Lixin Ru
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Hui Zhao
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| |
Collapse
|
33
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 316] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
35
|
Koga H, Teye K, Sugawara A, Tsutsumi M, Ishii N, Nakama T. Elevated levels of interleukin-9 in the serum of bullous pemphigoid: possible association with the pathogenicity of bullous pemphigoid. Front Immunol 2023; 14:1135002. [PMID: 37398641 PMCID: PMC10311483 DOI: 10.3389/fimmu.2023.1135002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease (sAIBD). In addition to disease causing autoantibodies, several leukocyte subsets, including mast cells and eosinophils, play key roles in mediating skin inflammation. Detailed immunophenotyping and, more recently, the therapeutic effects of interleukin-4 (IL-4) receptor alpha inhibition in BP pointed to a prominent role of T helper 2 (Th2) cells. Among other cell types, IL-9 is expressed by Th2 and mast cells and potentially drives allergic, Th2-dominated inflammation. Although cytokines in BP have been relatively well investigated, the role of IL-9 has remained enigmatic. This study aimed to evaluate the effect of IL-9 in BP. Serum IL-9 levels were significantly elevated in patients with BP and decreased upon induction of remission. Serum IL-9 levels were not elevated in epidermolysis bullosa acquisita, another sAIBD. The time-course analysis using serum sets from four patients with BP revealed that serum IL-9 was a sensitive biomarker of BP. IL-9-positive cells infiltrated dominantly in BP lesions, especially in the blister fluid, and Th9 cells were abundant. Therefore, IL-9 was elevated in the serum and lesions of BP, which could be a biomarker of BP.
Collapse
Affiliation(s)
- Hiroshi Koga
- Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan
| | - Kwesi Teye
- Kurume University Institute of Cutaneous Cell Biology, Kurume University, Fukuoka, Japan
| | - Arisa Sugawara
- Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan
| | - Masahiro Tsutsumi
- Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan
| | - Takekuni Nakama
- Department of Dermatology, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
36
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
37
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
38
|
Chia SL, Kapoor S, Carvalho C, Bajénoff M, Gentek R. Mast cell ontogeny: From fetal development to life-long health and disease. Immunol Rev 2023; 315:31-53. [PMID: 36752151 PMCID: PMC10952628 DOI: 10.1111/imr.13191] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mast cells (MCs) are evolutionarily ancient innate immune cells with important roles in protective immunity against bacteria, parasites, and venomous animals. They can be found in most organs of the body, where they also contribute to normal tissue functioning, for example by engaging in crosstalk with nerves. Despite this, they are most widely known for their detrimental roles in allergy, anaphylaxis, and atopic disease. Just like macrophages, mast cells were conventionally thought to originate from the bone marrow. However, they are already present in fetal tissues before the onset of bone marrow hematopoiesis, questioning this dogma. In recent years, our view of myeloid cell ontogeny has been revised. We now know that the first mast cells originate from progenitors made in the extra-embryonic yolk sac, and later get supplemented with mast cells produced from subsequent waves of hematopoiesis. In most connective tissues, sizeable populations of fetal-derived mast cells persist into adulthood, where they self-maintain largely independently from the bone marrow. These developmental origins are highly reminiscent of macrophages, which are known to have critical functions in development. Mast cells too may thus support healthy development. Their fetal origins and longevity also make mast cells susceptible to genetic and environmental perturbations, which may render them pathological. Here, we review our current understanding of mast cell biology from a developmental perspective. We first summarize how mast cell populations are established from distinct hematopoietic progenitor waves, and how they are subsequently maintained throughout life. We then discuss what functions mast cells may normally have at early life stages, and how they may be co-opted to cause, worsen, or increase susceptibility to disease.
Collapse
Affiliation(s)
- Shin Li Chia
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Simran Kapoor
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Cyril Carvalho
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille‐Luminy (CIML)MarseilleFrance
| | - Rebecca Gentek
- Institute for Regeneration and Repair, Centre for Inflammation Research & Centre for Reproductive HealthThe University of EdinburghEdinburghUK
| |
Collapse
|
39
|
Ohtsuki S, Wang C, Watanabe R, Zhang H, Akiyama M, Bois MC, Maleszewski JJ, Warrington KJ, Berry GJ, Goronzy JJ, Weyand CM. Deficiency of the CD155-CD96 immune checkpoint controls IL-9 production in giant cell arteritis. Cell Rep Med 2023; 4:101012. [PMID: 37075705 PMCID: PMC10140609 DOI: 10.1016/j.xcrm.2023.101012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Loss of function of inhibitory immune checkpoints, unleashing pathogenic immune responses, is a potential risk factor for autoimmune disease. Here, we report that patients with the autoimmune vasculitis giant cell arteritis (GCA) have a defective CD155-CD96 immune checkpoint. Macrophages from patients with GCA retain the checkpoint ligand CD155 in the endoplasmic reticulum (ER) and fail to bring it to the cell surface. CD155low antigen-presenting cells induce expansion of CD4+CD96+ T cells, which become tissue invasive, accumulate in the blood vessel wall, and release the effector cytokine interleukin-9 (IL-9). In a humanized mouse model of GCA, recombinant human IL-9 causes vessel wall destruction, whereas anti-IL-9 antibodies efficiently suppress innate and adaptive immunity in the vasculitic lesions. Thus, defective surface translocation of CD155 creates antigen-presenting cells that deviate T cell differentiation toward Th9 lineage commitment and results in the expansion of vasculitogenic effector T cells.
Collapse
Affiliation(s)
- Shozo Ohtsuki
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chenyao Wang
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ryu Watanabe
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hui Zhang
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Deptartment of Rheumatology, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Mitsuhiro Akiyama
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth J Warrington
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Gerald J Berry
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Cornelia M Weyand
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Vinokurova D, Apetoh L. The Emerging Role of IL-9 in the Anticancer Effects of Anti-PD-1 Therapy. Biomolecules 2023; 13:biom13040670. [PMID: 37189417 DOI: 10.3390/biom13040670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
PD-1 blockade rescues failing anticancer immune responses, resulting in durable remissions in some cancer patients. Cytokines such as IFNγ and IL-2 contribute to the anti-tumor effect of PD-1 blockade. IL-9 was identified over the last decade as a cytokine demonstrating a potent ability to harness the anticancer functions of innate and adaptive immune cells in mice. Recent translational investigations suggest that the anticancer activity of IL-9 also extends to some human cancers. Increased T cell-derived IL-9 was proposed to predict the response to anti-PD-1 therapy. Preclinical investigations accordingly revealed that IL-9 could synergize with anti-PD-1 therapy in eliciting anticancer responses. Here, we review the findings suggesting an important contribution of IL-9 in the efficacy of anti-PD-1 therapy and discuss their clinical relevance. We will also discuss the role of host factors like the microbiota and TGFβ in the tumor microenvironment (TME) in the regulation of IL-9 secretion and anti-PD-1 treatment efficacy.
Collapse
Affiliation(s)
- Daria Vinokurova
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
CD4 + T cells in cancer. NATURE CANCER 2023; 4:317-329. [PMID: 36894637 DOI: 10.1038/s43018-023-00521-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/20/2023] [Indexed: 03/11/2023]
Abstract
Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.
Collapse
|
42
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
43
|
Khokhar M, Purohit P, Gadwal A, Tomo S, Bajpai NK, Shukla R. The Differentially Expressed Genes Responsible for the Development of T Helper 9 Cells From T Helper 2 Cells in Various Disease States: Immuno-Interactomics Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e42421. [PMID: 38935935 PMCID: PMC11135241 DOI: 10.2196/42421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/29/2024]
Abstract
BACKGROUND T helper (Th) 9 cells are a novel subset of Th cells that develop independently from Th2 cells and are characterized by the secretion of interleukin (IL)-9. Studies have suggested the involvement of Th9 cells in variable diseases such as allergic and pulmonary diseases (eg, asthma, chronic obstructive airway disease, chronic rhinosinusitis, nasal polyps, and pulmonary hypoplasia), metabolic diseases (eg, acute leukemia, myelocytic leukemia, breast cancer, lung cancer, melanoma, pancreatic cancer), neuropsychiatric disorders (eg, Alzheimer disease), autoimmune diseases (eg, Graves disease, Crohn disease, colitis, psoriasis, systemic lupus erythematosus, systemic scleroderma, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, atopic dermatitis, eczema), and infectious diseases (eg, tuberculosis, hepatitis). However, there is a dearth of information on its involvement in other metabolic, neuropsychiatric, and infectious diseases. OBJECTIVE This study aims to identify significant differentially altered genes in the conversion of Th2 to Th9 cells, and their regulating microRNAs (miRs) from publicly available Gene Expression Omnibus data sets of the mouse model using in silico analysis to unravel various pathogenic pathways involved in disease processes. METHODS Using differentially expressed genes (DEGs) identified from 2 publicly available data sets (GSE99166 and GSE123501) we performed functional enrichment and network analyses to identify pathways, protein-protein interactions, miR-messenger RNA associations, and disease-gene associations related to significant differentially altered genes implicated in the conversion of Th2 to Th9 cells. RESULTS We extracted 260 common downregulated, 236 common upregulated, and 634 common DEGs from the expression profiles of data sets GSE99166 and GSE123501. Codifferentially expressed ILs, cytokines, receptors, and transcription factors (TFs) were enriched in 7 crucial Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology. We constructed the protein-protein interaction network and predicted the top regulatory miRs involved in the Th2 to Th9 differentiation pathways. We also identified various metabolic, allergic and pulmonary, neuropsychiatric, autoimmune, and infectious diseases as well as carcinomas where the differentiation of Th2 to Th9 may play a crucial role. CONCLUSIONS This study identified hitherto unexplored possible associations between Th9 and disease states. Some important ILs, including CCL1 (chemokine [C-C motif] ligand 1), CCL20 (chemokine [C-C motif] ligand 20), IL-13, IL-4, IL-12A, and IL-9; receptors, including IL-12RB1, IL-4RA (interleukin 9 receptor alpha), CD53 (cluster of differentiation 53), CD6 (cluster of differentiation 6), CD5 (cluster of differentiation 5), CD83 (cluster of differentiation 83), CD197 (cluster of differentiation 197), IL-1RL1 (interleukin 1 receptor-like 1), CD101 (cluster of differentiation 101), CD96 (cluster of differentiation 96), CD72 (cluster of differentiation 72), CD7 (cluster of differentiation 7), CD152 (cytotoxic T lymphocyte-associated protein 4), CD38 (cluster of differentiation 38), CX3CR1 (chemokine [C-X3-C motif] receptor 1), CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha), CTLA28, and CD196 (cluster of differentiation 196); and TFs, including FOXP3 (forkhead box P3), IRF8 (interferon regulatory factor 8), FOXP2 (forkhead box P2), RORA (RAR-related orphan receptor alpha), AHR (aryl-hydrocarbon receptor), MAF (avian musculoaponeurotic fibrosarcoma oncogene homolog), SMAD6 (SMAD family member 6), JUN (Jun proto-oncogene), JAK2 (Janus kinase 2), EP300 (E1A binding protein p300), ATF6 (activating transcription factor 6), BTAF1 (B-TFIID TATA-box binding protein associated factor 1), BAFT (basic leucine zipper transcription factor), NOTCH1 (neurogenic locus notch homolog protein 1), GATA3 (GATA binding protein 3), SATB1 (special AT-rich sequence binding protein 1), BMP7 (bone morphogenetic protein 7), and PPARG (peroxisome proliferator-activated receptor gamma, were able to identify significant differentially altered genes in the conversion of Th2 to Th9 cells. We identified some common miRs that could target the DEGs. The scarcity of studies on the role of Th9 in metabolic diseases highlights the lacunae in this field. Our study provides the rationale for exploring the role of Th9 in various metabolic disorders such as diabetes mellitus, diabetic nephropathy, hypertensive disease, ischemic stroke, steatohepatitis, liver fibrosis, obesity, adenocarcinoma, glioblastoma and glioma, malignant neoplasm of stomach, melanoma, neuroblastoma, osteosarcoma, pancreatic carcinoma, prostate carcinoma, and stomach carcinoma.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Nitin Kumar Bajpai
- Department of Nephrology, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| | - Ravindra Shukla
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences Jodhpur, Jodhpur, India
| |
Collapse
|
44
|
IL-1β neutralization prevents diastolic dysfunction development, but lacks hepatoprotective effect in an aged mouse model of NASH. Sci Rep 2023; 13:356. [PMID: 36611037 PMCID: PMC9825403 DOI: 10.1038/s41598-022-26896-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Interleukin-1β (IL-1β) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1β contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1β is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1β targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1β Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1β treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1β inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1β inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1β. IL-1β inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1β inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.
Collapse
|
45
|
Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. CANCER PATHOGENESIS AND THERAPY 2023; 1:76-86. [PMID: 38328613 PMCID: PMC10846313 DOI: 10.1016/j.cpt.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 02/09/2024]
Abstract
The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela Freitas Lopes
- Laboratory of Immunity Biology George DosReis,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
46
|
Chen T, Xue Y, Wang S, Lu J, Zhou H, Zhang W, Zhou Z, Li B, Li Y, Wang Z, Li C, Eloy Y, Sun H, Shen Y, Diarra MD, Ge C, Chai X, Mou H, Lin P, Yu X, Ye Z. Enhancement of T cell infiltration via tumor-targeted Th9 cell delivery improves the efficacy of antitumor immunotherapy of solid tumors. Bioact Mater 2022; 23:508-523. [PMID: 36514387 PMCID: PMC9727594 DOI: 10.1016/j.bioactmat.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Insufficient infiltration of T cells severely compromises the antitumor efficacy of adoptive cell therapy (ACT) against solid tumors. Here, we present a facile immune cell surface engineering strategy aiming to substantially enhance the anti-tumor efficacy of Th9-mediated ACT by rapidly identifying tumor-specific binding ligands and improving the infiltration of infused cells into solid tumors. Non-genetic decoration of Th9 cells with tumor-targeting peptide screened from phage display not only allowed precise targeted ACT against highly heterogeneous solid tumors but also substantially enhanced infiltration of CD8+ T cells, which led to improved antitumor outcomes. Mechanistically, infusion of Th9 cells modified with tumor-specific binding ligands facilitated the enhanced distribution of tumor-killing cells and remodeled the immunosuppressive microenvironment of solid tumors via IL-9 mediated immunomodulation. Overall, we presented a simple, cost-effective, and cell-friendly strategy to enhance the efficacy of ACT against solid tumors with the potential to complement the current ACT.
Collapse
Affiliation(s)
- Tao Chen
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Yucheng Xue
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Shengdong Wang
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Jinwei Lu
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Hao Zhou
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Wenkan Zhang
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Zhiyi Zhou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Binghao Li
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Yong Li
- Qingtian People's Hospital, Department of Orthopedics, Lishui, 323900, China
| | - Zenan Wang
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for the Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China
| | - Yinwang Eloy
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Hangxiang Sun
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Yihang Shen
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Mohamed Diaty Diarra
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Chang Ge
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xupeng Chai
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Haochen Mou
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China
| | - Peng Lin
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China,Corresponding author. Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaohua Yu
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China,Corresponding author. Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China,Orthopaedic Research Institute, Zhejiang University, Hangzhou, 310009, China,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310009, China,Corresponding author. Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
47
|
Gerlach K, Popp V, Wirtz S, Al-Saifi R, Gonzalez Acera M, Atreya R, Dregelies T, Vieth M, Fichtner-Feigl S, McKenzie ANJ, Rosenbauer F, Weigmann B, Neurath MF. PU.1-driven Th9 Cells Promote Colorectal Cancer in Experimental Colitis Models Through Il-6 Effects in Intestinal Epithelial Cells. J Crohns Colitis 2022; 16:1893-1910. [PMID: 35793807 DOI: 10.1093/ecco-jcc/jjac097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Colorectal cancer [CRC] is one of the most frequent malignancies, but the molecular mechanisms driving cancer growth are incompletely understood. We characterised the roles of the cytokine IL-9 and Th9 cells in regulating CRC development. METHODS CRC patient samples and samples from AOM/DSS treated mice were analysed for expression of IL-9, CD3, and PU.1 by FACS analysis and immunohistochemistry. IL-9 citrine reporter mice, IL-9 knockout mice, and PU.1 and GATA3 CD4-Cre conditional knockout mice were studied in the AOM/DSS model. DNA minicircles or hyper-IL-6 were used for overexpression of cytokines in vivo. Effects of IL-6 and IL-9 were determined in organoid and T cell cultures. Claudin2/3 expression was studied by western blotting and bacterial translocation by FISH. RESULTS We uncovered a significant expansion of IL-9- and PU.1-expressing mucosal Th9 cells in CRC patients, with particularly high levels in patients with colitis-associated neoplasias. PU.1+ Th9 cells accumulated in experimental colorectal neoplasias. Deficiency of IL-9 or inactivation of PU.1 in T cells led to impaired tumour growth in vivo, suggesting a protumoral role of Th9 cells. In contrast, GATA3 inactivation did not affect Th9-mediated tumour growth. Mechanistically, IL-9 controls claudin2/3 expression and T cell-derived IL-6 production in colorectal tumours. IL-6 abrogated the anti-proliferative effects of IL-9 in epithelial organoids in vivo. IL-9-producing Th9 cells expand in CRC and control IL-6 production by T cells. CONCLUSIONS IL-9 is a crucial regulator of tumour growth in colitis-associated neoplasias and emerges as potential target for therapy.
Collapse
Affiliation(s)
- Katharina Gerlach
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vanessa Popp
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ragheed Al-Saifi
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie [DZI], Erlangen, University of Erlangen-Nuremberg, Germany
| | - Theresa Dregelies
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Frank Rosenbauer
- Laboratory of Molecular Stem Cell Biology, University of Münster, Münster, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie [DZI], Erlangen, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
48
|
IL-9 stimulates an anti-tumor immune response and facilitates immune checkpoint blockade in the CMT167 mouse model. Lung Cancer 2022; 174:14-26. [PMID: 36272280 DOI: 10.1016/j.lungcan.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES There is mounting evidence that interleukin-9 (IL-9) is associated with various cancers although its function in lung cancer remains elusive. This study aimed to elucidate the role(s) of IL-9 in lung cancer and the mechanisms involved. MATERIALS AND METHODS Expression of IL-9 receptor (IL-9R) in two murine lung cancer cell lines: CMT167 and Lewis lung carcinoma (LLC) were assessed and syngeneic murine lung cancer models were established. Tumor growth, intratumoral immune responses and downstream signaling pathways in tumor-bearing mice were analyzed upon IL-9 treatment. Human lung cancer cell lines A549 and H1975 were included for in vitro validation. Synergistic effects and immune responses of IL-9 in combination with anti-PD-1 were studied. RESULTS IL-9R expression was only detected in CMT167 but not LLC cells. IL-9 suppressed CMT167 tumor growth and enhanced anti-tumor T cell responses, both of which were absent in IL-9R-deficient LLC model and lost upon IL-9R knockdown in CMT167 model. In CMT167 tumors, while IL-9 increased CD4+ and CD8+ T cells and dendritic cells, the cytotoxic T subset was the key driver of IL-9-induced tumor suppression. Consistently, in CMT167 and A549 cells, IL-9/IL-9R signaling promoted MHC class I upregulation. Inhibition of ERK signaling abolished IL-9-mediated MHC class I upregulation in CMT167 cells. IL-9 induced expression of PD-1 and PD-L1 on CD8+ T lymphocytes and CMT167 cells respectively. Combined IL-9 treatment with PD-1 blockade further upregulated tumor-infiltrating CD8+ T cell frequencies and synergistically suppressed tumor growth in CMT167 model. CONCLUSION IL-9 suppresses tumor growth by promoting tumor-derived MHC class I presentation and enhancing cytotoxic T cell immunity. Expression of IL-9R might be used as a biomarker for identification of potential target population susceptible to IL-9 treatment. Our study proposes IL-9 as a promising therapeutic immunomodulatory agent that can be used in combination with PD-1 blockade in lung cancer.
Collapse
|
49
|
Tietze JK. [Tumor-infiltrating natural killer and T cells in melanoma]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:929-936. [PMID: 36401123 DOI: 10.1007/s00105-022-05076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Melanoma is a highly immunogenic cancer with an increased infiltration of lymphocytes (TIL). TIL are a very heterogeneous population which consists among others of CD8+ T cells, CD4+ T cells, regulatory T cells, B cells, and natural killer (NK) cells and may differ highly between melanoma patients. Distribution, concentration, phenotype, and activation status of the infiltrating lymphocytes vary greatly and impact the prognosis. Different subpopulations of CD8+ T cells, CD4+ T cells, and NK cells have been identified and have been associated with both the course of the disease and the therapeutic response to different therapies. Increased knowledge of the different functions, interactions, activation, and possibilities of actively influencing relevant subgroups may lead to novel, innovative, and promising therapeutic options.
Collapse
Affiliation(s)
- Julia K Tietze
- Klinik und Poliklinik für Dermatologie und Allergologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland.
| |
Collapse
|
50
|
Wilkens AB, Fulton EC, Pont MJ, Cole GO, Leung I, Stull SM, Hart MR, Bernstein ID, Furlan SN, Riddell SR. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 2022; 140:2261-2275. [PMID: 35605191 PMCID: PMC9837446 DOI: 10.1182/blood.2021015144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.
Collapse
Affiliation(s)
- Alec B. Wilkens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Elena C. Fulton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margot J. Pont
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gabriel O. Cole
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Isabel Leung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sylvia M. Stull
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Matthew R. Hart
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irwin D. Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| |
Collapse
|