BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun. 2015;6:6413. [PMID: 25752527 DOI: 10.1038/ncomms7413] [Cited by in Crossref: 204] [Cited by in F6Publishing: 192] [Article Influence: 34.0] [Reference Citation Analysis]
Number Citing Articles
1 Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and Macrophages as Viral Targets and Reservoirs. Int J Mol Sci 2018;19:E2821. [PMID: 30231586 DOI: 10.3390/ijms19092821] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 22.0] [Reference Citation Analysis]
2 Abou-El-Enein M, Bauer G, Reinke P. Gene therapy: a possible future standard for HIV care. Trends Biotechnol 2015;33:374-6. [PMID: 26088914 DOI: 10.1016/j.tibtech.2015.03.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
3 Gao Z, Fan M, Das AT, Herrera-Carrillo E, Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res 2020;48:5527-39. [PMID: 32282899 DOI: 10.1093/nar/gkaa226] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
4 Panfil AR, Green PL, Yoder KE. CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Front Cell Infect Microbiol 2020;10:580371. [PMID: 33425776 DOI: 10.3389/fcimb.2020.580371] [Reference Citation Analysis]
5 Uppada V, Gokara M, Rasineni GK. Diagnosis and therapy with CRISPR advanced CRISPR based tools for point of care diagnostics and early therapies. Gene 2018;656:22-9. [PMID: 29496558 DOI: 10.1016/j.gene.2018.02.066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
6 Okoli A, Okeke MI, Tryland M, Moens U. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development. Viruses 2018;10:E50. [PMID: 29361752 DOI: 10.3390/v10010050] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
7 Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11(11): 937-956 [PMID: 31768221 DOI: 10.4252/wjsc.v11.i11.937] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
8 Soppe JA, Lebbink RJ. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans. Trends in Microbiology 2017;25:833-50. [DOI: 10.1016/j.tim.2017.04.005] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
9 Janssens J, Bruggemans A, Christ F, Debyser Z. Towards a Functional Cure of HIV-1: Insight Into the Chromatin Landscape of the Provirus. Front Microbiol 2021;12:636642. [PMID: 33868195 DOI: 10.3389/fmicb.2021.636642] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Llewellyn GN, Seclén E, Wietgrefe S, Liu S, Chateau M, Pei H, Perkey K, Marsden MD, Hinkley SJ, Paschon DE, Holmes MC, Zack JA, Louie SG, Haase AT, Cannon PM. Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1+ and TIGIT+ CD4 T Cells. J Virol 2019;93:e02086-18. [PMID: 30842333 DOI: 10.1128/JVI.02086-18] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
11 Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla P. Cell Line Techniques and Gene Editing Tools for Antibody Production: A Review. Front Pharmacol 2018;9:630. [PMID: 29946262 DOI: 10.3389/fphar.2018.00630] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 10.7] [Reference Citation Analysis]
12 Chin W, Ang SK, Chu JJH. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discovery Today 2017;22:17-30. [DOI: 10.1016/j.drudis.2016.08.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Siegrist CM, Kinahan SM, Settecerri T, Greene AC, Santarpia JL. CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Sci Rep 2020;10:19307. [PMID: 33168908 DOI: 10.1038/s41598-020-76449-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System. Viruses 2021;13:1850. [PMID: 34578431 DOI: 10.3390/v13091850] [Reference Citation Analysis]
15 Sanches-da-Silva GN, Medeiros LFS, Lima FM. The Potential Use of the CRISPR-Cas System for HIV-1 Gene Therapy. Int J Genomics 2019;2019:8458263. [PMID: 31531340 DOI: 10.1155/2019/8458263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Lusic M, Siliciano RF. Nuclear landscape of HIV-1 infection and integration. Nat Rev Microbiol 2017;15:69-82. [PMID: 27941817 DOI: 10.1038/nrmicro.2016.162] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 12.0] [Reference Citation Analysis]
17 [DOI: 10.1101/673715] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020;9:E1608. [PMID: 32630835 DOI: 10.3390/cells9071608] [Cited by in Crossref: 46] [Cited by in F6Publishing: 33] [Article Influence: 46.0] [Reference Citation Analysis]
19 Chen S, Hou C, Bi H, Wang Y, Xu J, Li M, James AA, Huang Y, Tan A. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus. J Virol 2017;91:e02465-16. [PMID: 28122981 DOI: 10.1128/JVI.02465-16] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 7.8] [Reference Citation Analysis]
20 Ishida K, Gee P, Hotta A. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases. Int J Mol Sci 2015;16:24751-71. [PMID: 26501275 DOI: 10.3390/ijms161024751] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
21 Huang H, Zou X, Zhong L, Hou Y, Zhou J, Zhang Z, Xing X, Sun J. CRISPR/dCas9-mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydig-like cells. J Cell Mol Med 2019;23:6072-84. [PMID: 31264792 DOI: 10.1111/jcmm.14470] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
22 Hu X. CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells Mol Dis 2016;62:6-12. [PMID: 27736664 DOI: 10.1016/j.bcmd.2016.09.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
23 Hilton IB, Gersbach CA. Enabling functional genomics with genome engineering. Genome Res 2015;25:1442-55. [PMID: 26430154 DOI: 10.1101/gr.190124.115] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 12.6] [Reference Citation Analysis]
24 Datta PK, Kaminski R, Hu W, Pirrone V, Sullivan NT, Nonnemacher MR, Dampier W, Wigdahl B, Khalili K. HIV-1 Latency and Eradication: Past, Present and Future. Curr HIV Res 2016;14:431-41. [PMID: 27009094 DOI: 10.2174/1570162x14666160324125536] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
25 Ji H, Jiang Z, Lu P, Ma L, Li C, Pan H, Fu Z, Qu X, Wang P, Deng J, Yang X, Wang J, Zhu H. Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter. Mol Ther 2016;24:508-21. [PMID: 26775808 DOI: 10.1038/mt.2016.7] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 10.0] [Reference Citation Analysis]
26 Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020;18:532-57. [PMID: 32775490 DOI: 10.1016/j.omtm.2020.06.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 21.0] [Reference Citation Analysis]
27 Shao M, Xu TR, Chen CS. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Dongwuxue Yanjiu 2016;37:191-204. [PMID: 27469250 DOI: 10.13918/j.issn.2095-8137.2016.4.191] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
28 Peterson TA, MacLean AG. Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs. J Neuroimmune Pharmacol 2019;14:68-93. [PMID: 30317409 DOI: 10.1007/s11481-018-9814-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Luthra R, Kaur S, Bhandari K. Applications of CRISPR as a potential therapeutic. Life Sci 2021;284:119908. [PMID: 34453943 DOI: 10.1016/j.lfs.2021.119908] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Golkar Z. CRISPR: a journey of gene-editing based medicine. Genes Genomics 2020;42:1369-80. [PMID: 33094378 DOI: 10.1007/s13258-020-01002-x] [Reference Citation Analysis]
31 White MK, Kaminski R, Wollebo H, Hu W, Malcolm T, Khalili K. Gene Editing for Treatment of Neurological Infections. Neurotherapeutics 2016;13:547-54. [PMID: 27150390 DOI: 10.1007/s13311-016-0439-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
32 Liao HK, Li M, Martinez Martinez L, Izpisua Belmonte JC. Stem cell, CRISPR and HIV. Cell Cycle 2015;14:1991-2. [PMID: 26039637 DOI: 10.1080/15384101.2015.1046791] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
33 Wei H, Yu D, Geng X, He Y. Defective HIV-1 envelope gene promotes the evolution of the infectious strain through recombination in vitro. BMC Infect Dis 2020;20:569. [PMID: 32753067 DOI: 10.1186/s12879-020-05288-w] [Reference Citation Analysis]
34 Henderson LJ, Reoma LB, Kovacs JA, Nath A. Advances toward Curing HIV-1 Infection in Tissue Reservoirs. J Virol 2020;94:e00375-19. [PMID: 31694954 DOI: 10.1128/JVI.00375-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
35 Oude Blenke EE, van den Dikkenberg J, van Kolck B, Kros A, Mastrobattista E. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery. Nanoscale 2016;8:8955-65. [DOI: 10.1039/c6nr00711b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 4.2] [Reference Citation Analysis]
36 Mahas A, Mahfouz M. Engineering virus resistance via CRISPR-Cas systems. Curr Opin Virol 2018;32:1-8. [PMID: 30005359 DOI: 10.1016/j.coviro.2018.06.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
37 Locatelli A. Towards a novel therapy against AIDS. Med Hypotheses 2020;137:109569. [PMID: 31952017 DOI: 10.1016/j.mehy.2020.109569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 White MK, Kaminski R, Young WB, Roehm PC, Khalili K. CRISPR Editing Technology in Biological and Biomedical Investigation. J Cell Biochem 2017;118:3586-94. [PMID: 28460414 DOI: 10.1002/jcb.26099] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
39 Bellizzi A, Ahye N, Jalagadugula G, Wollebo HS. A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System. J Neuroimmune Pharmacol 2019;14:578-94. [PMID: 31512166 DOI: 10.1007/s11481-019-09878-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Wang Q, Liu S, Liu Z, Ke Z, Li C, Yu X, Chen S, Guo D. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res 2018;250:21-30. [PMID: 29625148 DOI: 10.1016/j.virusres.2018.04.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
41 Sampath R, Cummins NW, Natesampillai S, Bren GD, Chung TD, Baker J, Henry K, Pagliuzza A, Badley AD. Increasing procaspase 8 expression using repurposed drugs to induce HIV infected cell death in ex vivo patient cells. PLoS One 2017;12:e0179327. [PMID: 28628632 DOI: 10.1371/journal.pone.0179327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
42 Deng Q, Chen Z, Shi L, Lin H. Developmental progress of CRISPR/Cas9 and its therapeutic applications for HIV-1 infection. Rev Med Virol 2018;28:e1998. [PMID: 30024073 DOI: 10.1002/rmv.1998] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
43 Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021;:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Debyser Z, Vansant G, Bruggemans A, Janssens J, Christ F. Insight in HIV Integration Site Selection Provides a Block-and-Lock Strategy for a Functional Cure of HIV Infection. Viruses 2018;11:E12. [PMID: 30587760 DOI: 10.3390/v11010012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
45 Liu B, Zou F, Lu L, Chen C, He D, Zhang X, Tang X, Liu C, Li L, Zhang H. Chimeric Antigen Receptor T Cells Guided by the Single-Chain Fv of a Broadly Neutralizing Antibody Specifically and Effectively Eradicate Virus Reactivated from Latency in CD4+ T Lymphocytes Isolated from HIV-1-Infected Individuals Receiving Suppressive Combined Antiretroviral Therapy. J Virol 2016;90:9712-24. [PMID: 27535056 DOI: 10.1128/JVI.00852-16] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 10.8] [Reference Citation Analysis]
46 Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, Li M, Khashab NM. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework. J Am Chem Soc 2018;140:143-6. [DOI: 10.1021/jacs.7b11754] [Cited by in Crossref: 204] [Cited by in F6Publishing: 184] [Article Influence: 51.0] [Reference Citation Analysis]
47 Zhang Y, Li M. Genome Editing Technologies as Cellular Defense Against Viral Pathogens. Front Cell Dev Biol 2021;9:716344. [PMID: 34336867 DOI: 10.3389/fcell.2021.716344] [Reference Citation Analysis]
48 Ebina H, Gee P, Koyanagi Y. Perspectives of Genome-Editing Technologies for HIV Therapy. Curr HIV Res 2016;14:2-8. [PMID: 26255882 DOI: 10.2174/1570162x13666150807105718] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
49 Smith C, Mcfarland EJ. Remaining Challenges in Pediatric HIV-1 Infection. Curr Pediatr Rep 2016;4:63-73. [DOI: 10.1007/s40124-016-0108-1] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
50 Mohammadzadeh I, Qujeq D, Yousefi T, Ferns GA, Maniati M, Vaghari-Tabari M. CRISPR/Cas9 gene editing: A new therapeutic approach in the treatment of infection and autoimmunity. IUBMB Life. 2020;72:1603-1621. [PMID: 32344465 DOI: 10.1002/iub.2296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
51 Atkins AJ, Allen AG, Dampier W, Haddad EK, Nonnemacher MR, Wigdahl B. HIV-1 cure strategies: why CRISPR? Expert Opin Biol Ther 2021;21:781-93. [PMID: 33331178 DOI: 10.1080/14712598.2021.1865302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Badia R, Ballana E, Esté JA, Riveira-muñoz E. Antiviral treatment strategies based on gene silencing and genome editing. Current Opinion in Virology 2017;24:46-54. [DOI: 10.1016/j.coviro.2017.04.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
53 Zhang Z, Zhang Y, Gao F, Han S, Cheah KS, Tse HF, Lian Q. CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Mol Ther Nucleic Acids 2017;9:230-41. [PMID: 29246302 DOI: 10.1016/j.omtn.2017.09.009] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 14.8] [Reference Citation Analysis]
54 Li K, Liu Y, Xu Z, Zhang Y, Yao Y, Nair V, Liu C, Zhang Y, Gao Y, Qi X, Cui H, Gao L, Wang X. Prevention of Avian Retrovirus Infection in Chickens Using CRISPR-Cas9 Delivered by Marek's Disease Virus. Mol Ther Nucleic Acids 2020;21:343-53. [PMID: 32650233 DOI: 10.1016/j.omtn.2020.06.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
55 Acevedo-rocha CG. The Synthetic Nature of Biology. In: Hagen K, Engelhard M, Toepfer G, editors. Ambivalences of Creating Life. Cham: Springer International Publishing; 2016. pp. 9-53. [DOI: 10.1007/978-3-319-21088-9_2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
56 Yoder KE, Bundschuh R. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9. Sci Rep 2016;6:29530. [PMID: 27404981 DOI: 10.1038/srep29530] [Cited by in Crossref: 59] [Cited by in F6Publishing: 57] [Article Influence: 11.8] [Reference Citation Analysis]
57 Trevisan M, Sinigaglia A, Desole G, Berto A, Pacenti M, Palù G, Barzon L. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems. Viruses 2015;7:3835-56. [PMID: 26184286 DOI: 10.3390/v7072800] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
58 Luteijn RD, Drexler I, Smith GL, Lebbink RJ, Wiertz EJHJ. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol. J Gen Virol 2018;99:790-804. [PMID: 29676720 DOI: 10.1099/jgv.0.001034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
59 Escalona-Noguero C, López-Valls M, Sot B. CRISPR/Cas technology as a promising weapon to combat viral infections. Bioessays 2021;43:e2000315. [PMID: 33569817 DOI: 10.1002/bies.202000315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Li R, Zhong C, Yu Y, Liu H, Sakurai M, Yu L, Min Z, Shi L, Wei Y, Takahashi Y, Liao HK, Qiao J, Deng H, Nuñez-Delicado E, Rodriguez Esteban C, Wu J, Izpisua Belmonte JC. Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell 2019;179:687-702.e18. [PMID: 31626770 DOI: 10.1016/j.cell.2019.09.029] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 63.0] [Reference Citation Analysis]
61 Wollebo HS, Bellizzi A, Kaminski R, Hu W, White MK, Khalili K. CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection. PLoS One 2015;10:e0136046. [PMID: 26360417 DOI: 10.1371/journal.pone.0136046] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 8.5] [Reference Citation Analysis]
62 De Masi C, Spitalieri P, Murdocca M, Novelli G, Sangiuolo F. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. Hum Genomics 2020;14:25. [PMID: 32591003 DOI: 10.1186/s40246-020-00276-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
63 McCarthy MW. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine. Expert Rev Anti Infect Ther 2020;18:799-805. [PMID: 32366131 DOI: 10.1080/14787210.2020.1761333] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
64 Jerome KR. Disruption or Excision of Provirus as an Approach to HIV Cure. AIDS Patient Care STDS 2016;30:551-5. [PMID: 27855263 DOI: 10.1089/apc.2016.0232] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
65 Tang YD, Liu JT, Fang QQ, Wang TY, Sun MX, An TQ, Tian ZJ, Cai XH. Recombinant Pseudorabies Virus (PRV) Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds. Viruses 2016;8:90. [PMID: 27043610 DOI: 10.3390/v8040090] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
66 Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. Mol Ther Nucleic Acids 2019;14:212-38. [PMID: 30641475 DOI: 10.1016/j.omtn.2018.11.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
67 Mefferd AL, Bogerd HP, Irwan ID, Cullen BR. Insights into the mechanisms underlying the inactivation of HIV-1 proviruses by CRISPR/Cas. Virology 2018;520:116-26. [PMID: 29857168 DOI: 10.1016/j.virol.2018.05.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
68 Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, Li F, Xiao W, Zhao H, Dai S, Qin X, Mo X, Young WB, Khalili K, Hu W. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Mol Ther. 2017;25:1168-1186. [PMID: 28366764 DOI: 10.1016/j.ymthe.2017.03.012] [Cited by in Crossref: 153] [Cited by in F6Publishing: 143] [Article Influence: 38.3] [Reference Citation Analysis]
69 Binda CS, Klaver B, Berkhout B, Das AT. CRISPR-Cas9 Dual-gRNA Attack Causes Mutation, Excision and Inversion of the HIV-1 Proviral DNA. Viruses 2020;12:E330. [PMID: 32197474 DOI: 10.3390/v12030330] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
70 Yin F, Liu W, Chai J, Lu B, Murphy RW, Luo J. CRISPR/Cas9 Application for Gene Copy Fate Survey of Polyploid Vertebrates. Front Genet 2018;9:260. [PMID: 30079079 DOI: 10.3389/fgene.2018.00260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
71 Huang J, Wang Y, Zhao J. CRISPR editing in biological and biomedical investigation. J Cell Physiol 2018;233:3875-91. [DOI: 10.1002/jcp.26141] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
72 Glass Z, Lee M, Li Y, Xu Q. Engineering the Delivery System for CRISPR-Based Genome Editing. Trends Biotechnol. 2018;36:173-185. [PMID: 29305085 DOI: 10.1016/j.tibtech.2017.11.006] [Cited by in Crossref: 131] [Cited by in F6Publishing: 115] [Article Influence: 43.7] [Reference Citation Analysis]
73 Ebrahimi S, Teimoori A, Khanbabaei H, Tabasi M. Harnessing CRISPR/Cas 9 System for manipulation of DNA virus genome. Rev Med Virol 2019;29:e2009. [PMID: 30260068 DOI: 10.1002/rmv.2009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
74 Lander N, Chiurillo MA, Docampo R. Genome Editing by CRISPR/Cas9: A Game Change in the Genetic Manipulation of Protists. J Eukaryot Microbiol 2016;63:679-90. [PMID: 27315329 DOI: 10.1111/jeu.12338] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
75 Herrera-carrillo E, Berkhout B. Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochemical Society Transactions 2016;44:1355-65. [DOI: 10.1042/bst20160060] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
76 Grzybek M, Golonko A, Górska A, Szczepaniak K, Strachecka A, Lass A, Lisowski P. The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites. Appl Microbiol Biotechnol 2018;102:4629-40. [PMID: 29626235 DOI: 10.1007/s00253-018-8927-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
77 Dampier W, Sullivan NT, Chung CH, Mell JC, Nonnemacher MR, Wigdahl B. Designing broad-spectrum anti-HIV-1 gRNAs to target patient-derived variants. Sci Rep 2017;7:14413. [PMID: 29089503 DOI: 10.1038/s41598-017-12612-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
78 Li C, Kuang WD, Qu D, Wang JH. Toll-interacting protein inhibits HIV-1 infection and regulates viral latency. Biochem Biophys Res Commun 2016;475:161-8. [PMID: 27181351 DOI: 10.1016/j.bbrc.2016.05.065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
79 Mahmoudian-sani M, Farnoosh G, Mahdavinezhad A, Saidijam M. CRISPR genome editing and its medical applications. Biotechnology & Biotechnological Equipment 2018;32:286-92. [DOI: 10.1080/13102818.2017.1406823] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
80 White MK, Hu W, Khalili K. Gene Editing Approaches against Viral Infections and Strategy to Prevent Occurrence of Viral Escape. PLoS Pathog 2016;12:e1005953. [PMID: 27930735 DOI: 10.1371/journal.ppat.1005953] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
81 Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape. Mol Ther. 2016;24:522-526. [PMID: 26796669 DOI: 10.1038/mt.2016.24] [Cited by in Crossref: 136] [Cited by in F6Publishing: 129] [Article Influence: 27.2] [Reference Citation Analysis]
82 Baker C, Hayden MS. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. F1000Res 2020;9:281. [PMID: 32528662 DOI: 10.12688/f1000research.23185.2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Dampier W, Sullivan NT, Mell JC, Pirrone V, Ehrlich GD, Chung CH, Allen AG, DeSimone M, Zhong W, Kercher K, Passic S, Williams JW, Szep Z, Khalili K, Jacobson JM, Nonnemacher MR, Wigdahl B. Broad-Spectrum and Personalized Guide RNAs for CRISPR/Cas9 HIV-1 Therapeutics. AIDS Res Hum Retroviruses 2018;34:950-60. [PMID: 29968495 DOI: 10.1089/AID.2017.0274] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
84 De Silva Feelixge HS, Stone D, Pietz HL, Roychoudhury P, Greninger AL, Schiffer JT, Aubert M, Jerome KR. Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy. Antiviral Res 2016;126:90-8. [PMID: 26718067 DOI: 10.1016/j.antiviral.2015.12.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 5.7] [Reference Citation Analysis]
85 Zhu H, Zhang L, Tong S, Lee CM, Deshmukh H, Bao G. Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat Biomed Eng 2019;3:126-36. [PMID: 30944431 DOI: 10.1038/s41551-018-0318-7] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 16.3] [Reference Citation Analysis]
86 Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated Activation of Latent HIV-1 Expression. Mol Ther 2016;24:499-507. [PMID: 26607397 DOI: 10.1038/mt.2015.213] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 10.2] [Reference Citation Analysis]
87 Kuruvilla J, Sasmita AO, Ling APK. Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases. Neurol Sci 2018;39:1827-35. [DOI: 10.1007/s10072-018-3521-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
88 Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol 2015;13:777-86. [PMID: 26548913 DOI: 10.1038/nrmicro3564] [Cited by in Crossref: 265] [Cited by in F6Publishing: 220] [Article Influence: 44.2] [Reference Citation Analysis]
89 Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas based antiviral strategies against HIV-1. Virus Research 2018;244:321-32. [DOI: 10.1016/j.virusres.2017.07.020] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 16.3] [Reference Citation Analysis]
90 Masroori N, Merindol N, Berthoux L. The interferon-induced antiviral protein PML (TRIM19) promotes the restriction and transcriptional silencing of lentiviruses in a context-specific, isoform-specific fashion. Retrovirology 2016;13:19. [PMID: 27000403 DOI: 10.1186/s12977-016-0253-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
91 Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020;12:E188. [PMID: 32046251 DOI: 10.3390/v12020188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
92 Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol 2019;2:46. [PMID: 30729184 DOI: 10.1038/s42003-019-0288-7] [Cited by in Crossref: 76] [Cited by in F6Publishing: 43] [Article Influence: 38.0] [Reference Citation Analysis]
93 Chen S, Yu X, Guo D. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses 2018;10:E40. [PMID: 29337866 DOI: 10.3390/v10010040] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
94 Ophinni Y, Miki S, Hayashi Y, Kameoka M. Multiplexed tat-Targeting CRISPR-Cas9 Protects T Cells from Acute HIV-1 Infection with Inhibition of Viral Escape. Viruses 2020;12:E1223. [PMID: 33126728 DOI: 10.3390/v12111223] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Singh V, Braddick D, Dhar PK. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017;599:1-18. [DOI: 10.1016/j.gene.2016.11.008] [Cited by in Crossref: 82] [Cited by in F6Publishing: 59] [Article Influence: 20.5] [Reference Citation Analysis]
96 Lee C. CRISPR/Cas9-Based Antiviral Strategy: Current Status and the Potential Challenge. Molecules 2019;24:E1349. [PMID: 30959782 DOI: 10.3390/molecules24071349] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
97 Wang Z, Wang W, Cui YC, Pan Q, Zhu W, Gendron P, Guo F, Cen S, Witcher M, Liang C. HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site. J Virol 2018;92:e01135-18. [PMID: 30068653 DOI: 10.1128/JVI.01135-18] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
98 Debyser Z, Bruggemans A, Van Belle S, Janssens J, Christ F. LEDGINs, Inhibitors of the Interaction Between HIV-1 Integrase and LEDGF/p75, Are Potent Antivirals with a Potential to Cure HIV Infection. Adv Exp Med Biol 2021;1322:97-114. [PMID: 34258738 DOI: 10.1007/978-981-16-0267-2_4] [Reference Citation Analysis]
99 Javaid N, Pham TLH, Choi S. Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells. Int J Mol Sci 2021;22:E397. [PMID: 33401508 DOI: 10.3390/ijms22010397] [Reference Citation Analysis]
100 Wu CJ, Cho S, Huang HY, Lu CH, Russ J, Cruz LO, da Cunha FF, Chen MC, Lin LL, Warner LM, Liao HK, Utzschneider DT, Quon S, Berner J, Camara NOS, Zehn D, Belmonte JCI, Chen LC, Huang SF, Kuo ML, Lu LF. MiR-23~27~24-mediated control of humoral immunity reveals a TOX-driven regulatory circuit in follicular helper T cell differentiation. Sci Adv 2019;5:eaaw1715. [PMID: 31844658 DOI: 10.1126/sciadv.aaw1715] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
101 Kotowski M, Sharma S. CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells. Methods Protoc 2020;3:E79. [PMID: 33217926 DOI: 10.3390/mps3040079] [Reference Citation Analysis]
102 Kaushik A, Yndart A, Atluri V, Tiwari S, Tomitaka A, Gupta P, Jayant RD, Alvarez-Carbonell D, Khalili K, Nair M. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci Rep 2019;9:3928. [PMID: 30850620 DOI: 10.1038/s41598-019-40222-4] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
103 Smith LM, Ladner JT, Hodara VL, Parodi LM, Harris RA, Callery JE, Lai Z, Zou Y, Raveedran M, Rogers J, Giavedoni LD. Multiplexed Simian Immunodeficiency Virus-Specific Paired RNA-Guided Cas9 Nickases Inactivate Proviral DNA. J Virol 2021;95:e0088221. [PMID: 34549979 DOI: 10.1128/JVI.00882-21] [Reference Citation Analysis]
104 Wei ZZ, Zhu YB, Zhang JY, McCrary MR, Wang S, Zhang YB, Yu SP, Wei L. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy. Chin Med J (Engl) 2017;130:2361-74. [PMID: 28937044 DOI: 10.4103/0366-6999.215324] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
105 Baker C, Hayden MS. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease. F1000Res 2020;9:281. [PMID: 32528662 DOI: 10.12688/f1000research.23185.2] [Reference Citation Analysis]
106 Panfil AR, London JA, Green PL, Yoder KE. CRISPR/Cas9 Genome Editing to Disable the Latent HIV-1 Provirus. Front Microbiol 2018;9:3107. [PMID: 30619186 DOI: 10.3389/fmicb.2018.03107] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
107 Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Front Cell Infect Microbiol 2019;9:69. [PMID: 30968001 DOI: 10.3389/fcimb.2019.00069] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 22.0] [Reference Citation Analysis]
108 Moghadam F, LeGraw R, Velazquez JJ, Yeo NC, Xu C, Park J, Chavez A, Ebrahimkhani MR, Kiani S. Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nat Cell Biol 2020;22:1143-54. [PMID: 32884147 DOI: 10.1038/s41556-020-0563-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
109 Wang L, Zheng W, Liu S, Li B, Jiang X. Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy. Chembiochem 2019;20:634-43. [PMID: 30393919 DOI: 10.1002/cbic.201800629] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
110 Dey R, Pillai B. Cell-based gene therapy against HIV. Gene Ther 2015;22:851-5. [PMID: 26079406 DOI: 10.1038/gt.2015.58] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
111 Yang D, Wang Z, Ma J, Fu Q, Wu L, Wang H, Wang S, Yan Y, Sun J. Glycine Cleavage System and cAMP Receptor Protein Co-Regulate CRISPR/cas3 Expression to Resist Bacteriophage. Viruses 2020;12:E90. [PMID: 31941083 DOI: 10.3390/v12010090] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
112 Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021;12:828-56. [PMID: 33125070 DOI: 10.1093/jmcb/mjaa060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Sullivan NT, Dampier W, Chung CH, Allen AG, Atkins A, Pirrone V, Homan G, Passic S, Williams J, Zhong W, Kercher K, Desimone M, Li L, C Antell G, Mell JC, Ehrlich GD, Szep Z, Jacobson JM, Nonnemacher MR, Wigdahl B. Novel gRNA design pipeline to develop broad-spectrum CRISPR/Cas9 gRNAs for safe targeting of the HIV-1 quasispecies in patients. Sci Rep 2019;9:17088. [PMID: 31745112 DOI: 10.1038/s41598-019-52353-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
114 Yin C, Zhang T, Li F, Yang F, Putatunda R, Young WB, Khalili K, Hu W, Zhang Y. Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. AIDS 2016;30:1163-74. [PMID: 26990633 DOI: 10.1097/QAD.0000000000001079] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
115 Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O'Keefe DD, Núñez-Delicado E, Guillen P, Campistol JM, Wu CJ, Lu LF, Esteban CR, Izpisua Belmonte JC. In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell 2017;171:1495-1507.e15. [PMID: 29224783 DOI: 10.1016/j.cell.2017.10.025] [Cited by in Crossref: 221] [Cited by in F6Publishing: 193] [Article Influence: 55.3] [Reference Citation Analysis]
116 Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020;10:134. [PMID: 32318356 DOI: 10.3389/fcimb.2020.00134] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
117 Spragg C, De Silva Feelixge H, Jerome KR. Cell and gene therapy strategies to eradicate HIV reservoirs. Curr Opin HIV AIDS 2016;11:442-9. [PMID: 27031009 DOI: 10.1097/COH.0000000000000284] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
118 Ratner HK, Sampson TR, Weiss DS. Overview of CRISPR-Cas9 Biology. Cold Spring Harb Protoc 2016;2016. [PMID: 27934695 DOI: 10.1101/pdb.top088849] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
119 Verma R, Sahu R, Singh DD, Egbo TE. A CRISPR/Cas9 based polymeric nanoparticles to treat/inhibit microbial infections. Semin Cell Dev Biol 2019;96:44-52. [PMID: 30986568 DOI: 10.1016/j.semcdb.2019.04.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
120 Guan L, Han Y, Zhu S, Lin J. Application of CRISPR-Cas system in gene therapy: Pre-clinical progress in animal model. DNA Repair (Amst) 2016;46:1-8. [PMID: 27519625 DOI: 10.1016/j.dnarep.2016.07.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
121 Chan JL, Miller JG, Singh AK, Horvath KA, Corcoran PC, Mohiuddin MM. Consideration of appropriate clinical applications for cardiac xenotransplantation. Clin Transplant 2018;32:e13330. [DOI: 10.1111/ctr.13330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
122 Wang G, Zhao N, Berkhout B, Das AT. A Combinatorial CRISPR-Cas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures. Cell Reports 2016;17:2819-26. [DOI: 10.1016/j.celrep.2016.11.057] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 15.2] [Reference Citation Analysis]
123 Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017;8:608. [PMID: 28932198 DOI: 10.3389/fphys.2017.00608] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 16.5] [Reference Citation Analysis]
124 Wahid B, Usman S, Ali A, Saleem K, Rafique S, Naz Z, Ahsan Ashfaq H, Idrees M. Therapeutic Strategies of Clustered Regularly Interspaced Palindromic Repeats-Cas Systems for Different Viral Infections. Viral Immunology 2017;30:552-9. [DOI: 10.1089/vim.2017.0055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
125 Liang C, Wainberg MA, Das AT, Berkhout B. CRISPR/Cas9: a double-edged sword when used to combat HIV infection. Retrovirology 2016;13:37. [PMID: 27230886 DOI: 10.1186/s12977-016-0270-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 8.4] [Reference Citation Analysis]
126 Buchholz F, Hauber J. Antiviral therapy of persistent viral infection using genome editing. Curr Opin Virol 2016;20:85-91. [PMID: 27723558 DOI: 10.1016/j.coviro.2016.09.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
127 Cao RY, Li J, Dai Q, Li Q, Yang J. Muscle Atrophy: Present and Future. In: Xiao J, editor. Muscle Atrophy. Singapore: Springer; 2018. pp. 605-24. [DOI: 10.1007/978-981-13-1435-3_29] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
128 Xu W, Li H, Wang Q, Hua C, Zhang H, Li W, Jiang S, Lu L. Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. Biomed Res Int 2017;2017:6096134. [PMID: 28529952 DOI: 10.1155/2017/6096134] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
129 Reddy P, Vilella F, Izpisua Belmonte JC, Simón C. Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes (Basel) 2020;11:E976. [PMID: 32842577 DOI: 10.3390/genes11090976] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
130 Killian T, Dickopf S, Haas AK, Kirstenpfad C, Mayer K, Brinkmann U. Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Sci Rep 2017;7:15480. [PMID: 29133816 DOI: 10.1038/s41598-017-15206-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
131 Saayman S, Ali SA, Morris KV, Weinberg MS. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. 2015;15:819-830. [PMID: 25865334 DOI: 10.1517/14712598.2015.1036736] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
132 Qu D, Li C, Sang F, Li Q, Jiang ZQ, Xu LR, Guo HJ, Zhang C, Wang JH. The variances of Sp1 and NF-κB elements correlate with the greater capacity of Chinese HIV-1 B'-LTR for driving gene expression. Sci Rep 2016;6:34532. [PMID: 27698388 DOI: 10.1038/srep34532] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
133 Zhang Q, Fu Y, Thakur C, Bi Z, Wadgaonkar P, Qiu Y, Xu L, Rice M, Zhang W, Almutairy B, Chen F. CRISPR-Cas9 gene editing causes alternative splicing of the targeting mRNA. Biochem Biophys Res Commun 2020;528:54-61. [PMID: 32460957 DOI: 10.1016/j.bbrc.2020.04.145] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Tang YD, Liu JT, Wang TY, An TQ, Sun MX, Wang SJ, Fang QQ, Hou LL, Tian ZJ, Cai XH. Live attenuated pseudorabies virus developed using the CRISPR/Cas9 system. Virus Res 2016;225:33-9. [PMID: 27619840 DOI: 10.1016/j.virusres.2016.09.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
135 Rodrigues J, Ferreira D, Rodrigues L. Synthetic biology strategies towards the development of new bioinspired technologies for medical applications. Bioinspired Materials for Medical Applications. Elsevier; 2017. pp. 451-97. [DOI: 10.1016/b978-0-08-100741-9.00016-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
136 Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 2016;34:933-41. [DOI: 10.1038/nbt.3659] [Cited by in Crossref: 491] [Cited by in F6Publishing: 403] [Article Influence: 98.2] [Reference Citation Analysis]
137 Rogers GL, Cannon PM. Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases. Hematol Oncol Clin North Am 2017;31:883-95. [PMID: 28895854 DOI: 10.1016/j.hoc.2017.06.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
138 Khalili K, White MK, Jacobson JM. Novel AIDS therapies based on gene editing. Cell Mol Life Sci 2017;74:2439-50. [PMID: 28210784 DOI: 10.1007/s00018-017-2479-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
139 Li Z, Araoka T, Belmonte JCI. Gene Editing in 3D Cultured Nephron Progenitor Cell Lines. Methods Mol Biol 2019;1926:151-9. [PMID: 30742270 DOI: 10.1007/978-1-4939-9021-4_13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Ellwanger JH, Veit TD, Chies JAB. Exosomes in HIV infection: A review and critical look. Infect Genet Evol 2017;53:146-54. [PMID: 28546080 DOI: 10.1016/j.meegid.2017.05.021] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]
141 Liu C, Ma X, Liu B, Chen C, Zhang H. HIV-1 functional cure: will the dream come true? BMC Med 2015;13:284. [PMID: 26588898 DOI: 10.1186/s12916-015-0517-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
142 Trevisan M, Palù G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti Infect Ther 2017;15:1001-13. [PMID: 29090592 DOI: 10.1080/14787210.2017.1400379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
143 Martinez-Lage M, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 Technology: Applications and Human Disease Modeling. Prog Mol Biol Transl Sci 2017;152:23-48. [PMID: 29150003 DOI: 10.1016/bs.pmbts.2017.09.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
144 Dong Z, Chen T, Zhang J, Hu N, Cao M, Dong F, Jiang Y, Chen P, Lu C, Pan M. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Research 2016;130:50-7. [DOI: 10.1016/j.antiviral.2016.03.009] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
145 Das AT, Binda CS, Berkhout B. Elimination of infectious HIV DNA by CRISPR-Cas9. Curr Opin Virol 2019;38:81-8. [PMID: 31450074 DOI: 10.1016/j.coviro.2019.07.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
146 Chung CH, Allen AG, Atkins A, Link RW, Nonnemacher MR, Dampier W, Wigdahl B. Computational Design of gRNAs Targeting Genetic Variants Across HIV-1 Subtypes for CRISPR-Mediated Antiviral Therapy. Front Cell Infect Microbiol 2021;11:593077. [PMID: 33768011 DOI: 10.3389/fcimb.2021.593077] [Reference Citation Analysis]
147 Yoder KE. A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness. Acta Virol 2019;63:129-38. [PMID: 31230441 DOI: 10.4149/av_2019_201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
148 Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, Karn J, Hu W, Khalili K. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Sci Rep 2016;6:22555. [PMID: 26939770 DOI: 10.1038/srep22555] [Cited by in Crossref: 176] [Cited by in F6Publishing: 167] [Article Influence: 35.2] [Reference Citation Analysis]
149 Chou YY, Krupp A, Kaynor C, Gaudin R, Ma M, Cahir-McFarland E, Kirchhausen T. Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9. Sci Rep 2016;6:36921. [PMID: 27841295 DOI: 10.1038/srep36921] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
150 Klemm V, Mitchell J, Cortez-Jugo C, Cavalieri F, Symonds G, Caruso F, Kelleher AD, Ahlenstiel C. Achieving HIV-1 Control through RNA-Directed Gene Regulation. Genes (Basel) 2016;7:E119. [PMID: 27941595 DOI: 10.3390/genes7120119] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
151 Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, Li H, Booze R, Gordon J, Hu W, Khalili K. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 2016;23:690-5. [PMID: 27194423 DOI: 10.1038/gt.2016.41] [Cited by in Crossref: 105] [Cited by in F6Publishing: 101] [Article Influence: 21.0] [Reference Citation Analysis]
152 Singh V, Gohil N, Ramírez García R, Braddick D, Fofié CK. Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations. J Cell Biochem 2018;119:81-94. [PMID: 28544016 DOI: 10.1002/jcb.26165] [Cited by in Crossref: 44] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
153 Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Genet Res Int 2018;2018:3797214. [PMID: 30319822 DOI: 10.1155/2018/3797214] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
154 Hwang IY, Lee HL, Huang JG, Lim YY, Yew WS, Lee YS, Chang MW. Engineering microbes for targeted strikes against human pathogens. Cell Mol Life Sci 2018;75:2719-33. [PMID: 29736607 DOI: 10.1007/s00018-018-2827-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
155 Delhove JMKM, Qasim W. Genome-Edited T Cell Therapies. Curr Stem Cell Rep 2017;3:124-36. [PMID: 28596938 DOI: 10.1007/s40778-017-0077-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
156 Roychoudhury P, De Silva Feelixge HS, Pietz HL, Stone D, Jerome KR, Schiffer JT. Pharmacodynamics of anti-HIV gene therapy using viral vectors and targeted endonucleases. J Antimicrob Chemother 2016;71:2089-99. [PMID: 27090632 DOI: 10.1093/jac/dkw104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
157 Lin H, Li G, Peng X, Deng A, Ye L, Shi L, Wang T, He J. The Use of CRISPR/Cas9 as a Tool to Study Human Infectious Viruses. Front Cell Infect Microbiol 2021;11:590989. [PMID: 34513721 DOI: 10.3389/fcimb.2021.590989] [Reference Citation Analysis]
158 Mei Y, Wang Y, Chen H, Sun ZS, Ju X. Recent Progress in CRISPR/Cas9 Technology. Journal of Genetics and Genomics 2016;43:63-75. [DOI: 10.1016/j.jgg.2016.01.001] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 11.4] [Reference Citation Analysis]
159 Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 2016;168:15-21. [PMID: 26470680 DOI: 10.1016/j.trsl.2015.09.008] [Cited by in Crossref: 106] [Cited by in F6Publishing: 100] [Article Influence: 17.7] [Reference Citation Analysis]
160 He Z, Zhang Y, Yang Y, Ma C, Wang P, Du W, Li L, Xiang R, Song X, Zhao X, Yao S, Wei Y. In Vivo Ovarian Cancer Gene Therapy Using CRISPR-Cas9. Human Gene Therapy 2018;29:223-33. [DOI: 10.1089/hum.2017.209] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
161 van Diemen FR, Kruse EM, Hooykaas MJ, Bruggeling CE, Schürch AC, van Ham PM, Imhof SM, Nijhuis M, Wiertz EJ, Lebbink RJ. CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections. PLoS Pathog 2016;12:e1005701. [PMID: 27362483 DOI: 10.1371/journal.ppat.1005701] [Cited by in Crossref: 151] [Cited by in F6Publishing: 139] [Article Influence: 30.2] [Reference Citation Analysis]
162 Lebbink RJ, de Jong DC, Wolters F, Kruse EM, van Ham PM, Wiertz EJ, Nijhuis M. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 2017;7:41968. [PMID: 28176813 DOI: 10.1038/srep41968] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 18.5] [Reference Citation Analysis]
163 Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020;12:E84. [PMID: 31936859 DOI: 10.3390/v12010084] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 32.0] [Reference Citation Analysis]
164 Jacobson JM, Khalili K. Toward the Cure of HIV-1 Infection: Lessons Learned and Yet to be Learned as New Strategies are Developed. AIDS Rev 2018;20:220-5. [PMID: 30548022 DOI: 10.24875/AIDSRev.18000027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
165 Atkins A, Chung CH, Allen AG, Dampier W, Gurrola TE, Sariyer IK, Nonnemacher MR, Wigdahl B. Off-Target Analysis in Gene Editing and Applications for Clinical Translation of CRISPR/Cas9 in HIV-1 Therapy. Front Genome Ed 2021;3:673022. [PMID: 34713260 DOI: 10.3389/fgeed.2021.673022] [Reference Citation Analysis]
166 Bayarsaikhan D, Bayarsaikhan G, Lee B. Recent advances in stem cells and gene editing: Drug discovery and therapeutics. Prog Mol Biol Transl Sci 2021;181:231-69. [PMID: 34127195 DOI: 10.1016/bs.pmbts.2021.01.019] [Reference Citation Analysis]
167 Chung CH, Allen AG, Atkins AJ, Sullivan NT, Homan G, Costello R, Madrid R, Nonnemacher MR, Dampier W, Wigdahl B. Safe CRISPR-Cas9 Inhibition of HIV-1 with High Specificity and Broad-Spectrum Activity by Targeting LTR NF-κB Binding Sites. Mol Ther Nucleic Acids 2020;21:965-82. [PMID: 32818921 DOI: 10.1016/j.omtn.2020.07.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
168 Razzouk S. CRISPR-Cas9: A cornerstone for the evolution of precision medicine. Ann Hum Genet 2018;82:331-57. [PMID: 30014471 DOI: 10.1111/ahg.12271] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
169 Teng M, Yao Y, Nair V, Luo J. Latest Advances of Virology Research Using CRISPR/Cas9-Based Gene-Editing Technology and Its Application to Vaccine Development. Viruses 2021;13:779. [PMID: 33924851 DOI: 10.3390/v13050779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
170 Khan S, Mahmood MS, Rahman SU, Zafar H, Habibullah S, Khan Z, Ahmad A. CRISPR/Cas9: the Jedi against the dark empire of diseases. J Biomed Sci 2018;25:29. [PMID: 29592810 DOI: 10.1186/s12929-018-0425-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
171 Xu Y, Peng X, Zheng Y, Jin C, Lu X, Han D, Fu H, Chen C, Wu N. Inactivation of Latent HIV-1 Proviral DNA Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Treatment and the Assessment of Off-Target Effects. Front Microbiol 2021;12:629153. [PMID: 34122355 DOI: 10.3389/fmicb.2021.629153] [Reference Citation Analysis]
172 Yu L, Tian X, Gao C, Wu P, Wang L, Feng B, Li X, Wang H, Ma D, Hu Z. Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas. Front Med 2018;12:497-508. [PMID: 29651774 DOI: 10.1007/s11684-017-0572-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
173 Tseng YT, Ko CL, Chang CT, Lee YH, Huang Fu WC, Liu IH. Leucine-rich repeat containing 8A contributes to the expansion of brain ventricles in zebrafish embryos. Biol Open 2020;9:bio048264. [PMID: 31941702 DOI: 10.1242/bio.048264] [Reference Citation Analysis]
174 Bella R, Kaminski R, Mancuso P, Young WB, Chen C, Sariyer R, Fischer T, Amini S, Ferrante P, Jacobson JM, Kashanchi F, Khalili K. Removal of HIV DNA by CRISPR from Patient Blood Engrafts in Humanized Mice. Mol Ther Nucleic Acids 2018;12:275-82. [PMID: 30195766 DOI: 10.1016/j.omtn.2018.05.021] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 14.7] [Reference Citation Analysis]
175 Sánchez-Hernández S, Aguilar-González A, Guijarro-Albaladejo B, Maldonado-Pérez N, Ramos-Hernández I, Cortijo-Gutiérrez M, Sánchez Martín RM, Benabdellah K, Martin F. Development of Cellular Models to Study Efficiency and Safety of Gene Edition by Homologous Directed Recombination Using the CRISPR/Cas9 System. Cells 2020;9:E1492. [PMID: 32570971 DOI: 10.3390/cells9061492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Ueda S, Ebina H, Kanemura Y, Misawa N, Koyanagi Y. Anti-HIV-1 potency of the CRISPR/Cas9 system insufficient to fully inhibit viral replication. Microbiol Immunol 2016;60:483-96. [PMID: 27278725 DOI: 10.1111/1348-0421.12395] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
177 Yin L, Hu S, Mei S, Sun H, Xu F, Li J, Zhu W, Liu X, Zhao F, Zhang D, Cen S, Liang C, Guo F. CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection. Human Gene Therapy 2018;29:1264-76. [DOI: 10.1089/hum.2018.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
178 Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018;34:739-59. [PMID: 30056745 DOI: 10.1089/AID.2018.0118] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
179 Zhao N, Wang G, Das AT, Berkhout B. Combinatorial CRISPR-Cas9 and RNA Interference Attack on HIV-1 DNA and RNA Can Lead to Cross-Resistance. Antimicrob Agents Chemother 2017;61:e01486-17. [PMID: 28893790 DOI: 10.1128/AAC.01486-17] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
180 Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene Editing by Extracellular Vesicles. Int J Mol Sci 2020;21:E7362. [PMID: 33028045 DOI: 10.3390/ijms21197362] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
181 Montagna C, Petris G, Casini A, Maule G, Franceschini GM, Zanella I, Conti L, Arnoldi F, Burrone OR, Zentilin L, Zacchigna S, Giacca M, Cereseto A. VSV-G-Enveloped Vesicles for Traceless Delivery of CRISPR-Cas9. Mol Ther Nucleic Acids 2018;12:453-62. [PMID: 30195783 DOI: 10.1016/j.omtn.2018.05.010] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
182 Torres-ruiz R, Rodriguez-perales S. CRISPR-Cas9 technology: applications and human disease modelling. Briefings in Functional Genomics 2017;16:4-12. [DOI: 10.1093/bfgp/elw025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
183 Kolb AL, Reynoso M, Matheny RW Jr. Comparison of CRISPR and adenovirus-mediated Myd88 knockdown in RAW 264.7 cells and responses to lipopolysaccharide stimulation. J Biol Methods 2021;8:e151. [PMID: 34514012 DOI: 10.14440/jbm.2021.359] [Reference Citation Analysis]
184 Liu Y, Xu Z, Zhang Y, Yu M, Wang S, Gao Y, Liu C, Zhang Y, Gao L, Qi X, Cui H, Pan Q, Li K, Wang X. Marek's disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Vet Microbiol 2020;242:108589. [PMID: 32122593 DOI: 10.1016/j.vetmic.2020.108589] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
185 Koskella B. Research highlights for issue 6: the CRISPR/Cas revolution. Evol Appl 2015;8:525-6. [PMID: 26136818 DOI: 10.1111/eva.12279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
186 Köferle A, Worf K, Breunig C, Baumann V, Herrero J, Wiesbeck M, Hutter LH, Götz M, Fuchs C, Beck S, Stricker SH. CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening. BMC Genomics 2016;17:917. [PMID: 27842490 DOI: 10.1186/s12864-016-3268-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
187 Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, Wainberg MA, Liang C. CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. Cell Rep. 2016;15:481-489. [PMID: 27068471 DOI: 10.1016/j.celrep.2016.03.042] [Cited by in Crossref: 152] [Cited by in F6Publishing: 138] [Article Influence: 30.4] [Reference Citation Analysis]
188 Herskovitz J, Hasan M, Patel M, Blomberg WR, Cohen JD, Machhi J, Shahjin F, Mosley RL, McMillan J, Kevadiya BD, Gendelman HE. CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination. EBioMedicine 2021;73:103678. [PMID: 34774454 DOI: 10.1016/j.ebiom.2021.103678] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Pineda M, Moghadam F, Ebrahimkhani MR, Kiani S. Engineered CRISPR Systems for Next Generation Gene Therapies. ACS Synth Biol 2017;6:1614-26. [PMID: 28558198 DOI: 10.1021/acssynbio.7b00011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
190 Price AA, Grakoui A, Weiss DS. Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense. Trends Microbiol 2016;24:294-306. [PMID: 26852268 DOI: 10.1016/j.tim.2016.01.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
191 Doerflinger M, Forsyth W, Ebert G, Pellegrini M, Herold MJ. CRISPR/Cas9-The ultimate weapon to battle infectious diseases? Cell Microbiol 2017;19. [PMID: 27860197 DOI: 10.1111/cmi.12693] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 6.2] [Reference Citation Analysis]
192 Sar P, Dalai S. CRISPR/Cas9 in epigenetics studies of health and disease. Prog Mol Biol Transl Sci 2021;181:309-43. [PMID: 34127198 DOI: 10.1016/bs.pmbts.2021.01.022] [Reference Citation Analysis]
193 Martin F, Sánchez-Hernández S, Gutiérrez-Guerrero A, Pinedo-Gomez J, Benabdellah K. Biased and Unbiased Methods for the Detection of Off-Target Cleavage by CRISPR/Cas9: An Overview. Int J Mol Sci 2016;17:E1507. [PMID: 27618019 DOI: 10.3390/ijms17091507] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 8.4] [Reference Citation Analysis]
194 Kaminski R, Chen Y, Salkind J, Bella R, Young WB, Ferrante P, Karn J, Malcolm T, Hu W, Khalili K. Negative Feedback Regulation of HIV-1 by Gene Editing Strategy. Sci Rep 2016;6:31527. [PMID: 27528385 DOI: 10.1038/srep31527] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
195 Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017;7:4445-69. [PMID: 29158838 DOI: 10.7150/thno.18456] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]