BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, Brown AE, Triggiano MA, Hux JA, Pham CD, Bartsevich VV, Turner CA, Lape J, Kirkland S, Beard CW, Smith J, Hirsch ML, Nicholson MG, Jantz D, McCreedy B. Integration of a CD19 CAR into the TCR Alpha Chain Locus Streamlines Production of Allogeneic Gene-Edited CAR T Cells. Mol Ther 2017;25:949-61. [PMID: 28237835 DOI: 10.1016/j.ymthe.2017.02.005] [Cited by in Crossref: 109] [Cited by in F6Publishing: 96] [Article Influence: 27.3] [Reference Citation Analysis]
Number Citing Articles
1 Milone MC, Bhoj VG. The Pharmacology of T Cell Therapies. Mol Ther Methods Clin Dev 2018;8:210-21. [PMID: 29552577 DOI: 10.1016/j.omtm.2018.01.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 15.0] [Reference Citation Analysis]
2 Morgan MA, Büning H, Sauer M, Schambach A. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells. Front Immunol 2020;11:1965. [PMID: 32903482 DOI: 10.3389/fimmu.2020.01965] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
3 Bachtarzi H. Ex vivo and in vivo genome editing: a regulatory scientific framework from early development to clinical implementation. Regenerative Medicine 2017;12:1015-30. [DOI: 10.2217/rme-2017-0095] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
4 Mukherjee S, Reddy O, Panch S, Stroncek D. Establishment of a cell processing laboratory to support hematopoietic stem cell transplantation and chimeric antigen receptor (CAR)-T cell therapy. Transfus Apher Sci 2021;60:103066. [PMID: 33472742 DOI: 10.1016/j.transci.2021.103066] [Reference Citation Analysis]
5 Mardiana S, Solomon BJ, Darcy PK, Beavis PA. Supercharging adoptive T cell therapy to overcome solid tumor–induced immunosuppression. Sci Transl Med 2019;11:eaaw2293. [DOI: 10.1126/scitranslmed.aaw2293] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 30.0] [Reference Citation Analysis]
6 Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8+ T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021;10:2379. [PMID: 34572028 DOI: 10.3390/cells10092379] [Reference Citation Analysis]
7 Stone D, Kenkel EJ, Loprieno MA, Tanaka M, De Silva Feelixge HS, Kumar AJ, Stensland L, Obenza WM, Wangari S, Ahrens CY, Murnane RD, Peterson CW, Kiem HP, Huang ML, Aubert M, Hu SL, Jerome KR. Gene Transfer in Adeno-Associated Virus Seropositive Rhesus Macaques Following Rapamycin Treatment and Subcutaneous Delivery of AAV6, but Not Retargeted AAV6 Vectors. Hum Gene Ther 2021;32:96-112. [PMID: 32998579 DOI: 10.1089/hum.2020.113] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Albers JJ, Ammon T, Gosmann D, Audehm S, Thoene S, Winter C, Secci R, Wolf A, Stelzl A, Steiger K, Ruland J, Bassermann F, Kupatt C, Anton M, Krackhardt AM. Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection. Life Sci Alliance 2019;2:e201900367. [PMID: 30877233 DOI: 10.26508/lsa.201900367] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
9 Fisher J, Anderson J. Engineering Approaches in Human Gamma Delta T Cells for Cancer Immunotherapy. Front Immunol 2018;9:1409. [PMID: 29997614 DOI: 10.3389/fimmu.2018.01409] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 13.3] [Reference Citation Analysis]
10 Wiebking V, Lee CM, Mostrel N, Lahiri P, Bak R, Bao G, Roncarolo MG, Bertaina A, Porteus MH. Genome editing of donor-derived T-cells to generate allogenic chimeric antigen receptor-modified T cells: Optimizing αβ T cell-depleted haploidentical hematopoietic stem cell transplantation. Haematologica 2021;106:847-58. [PMID: 32241852 DOI: 10.3324/haematol.2019.233882] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
11 Wu MR, Jusiak B, Lu TK. Engineering advanced cancer therapies with synthetic biology. Nat Rev Cancer 2019;19:187-95. [PMID: 30837696 DOI: 10.1038/s41568-019-0121-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
12 Mardiana S, Lai J, House IG, Beavis PA, Darcy PK. Switching on the green light for chimeric antigen receptor T-cell therapy. Clin Transl Immunology 2019;8:e1046. [PMID: 31073403 DOI: 10.1002/cti2.1046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
13 Moço PD, Aharony N, Kamen A. Adeno-Associated Viral Vectors for Homology-Directed Generation of CAR-T Cells. Biotechnol J 2020;15:e1900286. [PMID: 31642193 DOI: 10.1002/biot.201900286] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
14 Georgiadis C, Qasim W. Emerging applications of gene edited T cells for the treatment of leukemia. Expert Review of Hematology 2017;10:753-5. [DOI: 10.1080/17474086.2017.1350575] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
15 Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell 2017;8:573-89. [PMID: 28434147 DOI: 10.1007/s13238-017-0411-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 10.0] [Reference Citation Analysis]
16 Yazdanifar M, Barbarito G, Bertaina A, Airoldi I. γδ T Cells: The Ideal Tool for Cancer Immunotherapy. Cells 2020;9:E1305. [PMID: 32456316 DOI: 10.3390/cells9051305] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
17 Hong M, Clubb JD, Chen YY. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell 2020;38:473-88. [DOI: 10.1016/j.ccell.2020.07.005] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 45.0] [Reference Citation Analysis]
18 Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2021;6:ysaa024. [PMID: 33817342 DOI: 10.1093/synbio/ysaa024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ajina A, Maher J. Synergistic combination of oncolytic virotherapy with CAR T-cell therapy. Prog Mol Biol Transl Sci 2019;164:217-92. [PMID: 31383406 DOI: 10.1016/bs.pmbts.2019.06.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
20 Paroder M, Le N, Pham HP, Thibodeaux SR. Important aspects of T‐cell collection by apheresis for manufacturing chimeric antigen receptor T cells. Adv Cell Gene Ther 2020;3. [DOI: 10.1002/acg2.75] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Lam AJ, Lin DTS, Gillies JK, Uday P, Pesenacker AM, Kobor MS, Levings MK. Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Rep 2021;36:109494. [PMID: 34348163 DOI: 10.1016/j.celrep.2021.109494] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Mirzaei HR, Pourghadamyari H, Rahmati M, Mohammadi A, Nahand JS, Rezaei A, Mirzaei H, Hadjati J. Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Letters 2018;423:95-104. [DOI: 10.1016/j.canlet.2018.03.010] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
23 Xu D, Jin G, Chai D, Zhou X, Gu W, Chong Y, Song J, Zheng J. The development of CAR design for tumor CAR-T cell therapy. Oncotarget 2018;9:13991-4004. [PMID: 29568411 DOI: 10.18632/oncotarget.24179] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
24 Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J, Lee CM, Park SH, Wiebking V, Bak RO, Gomez-Ospina N, Pavel-Dinu M, Sun W, Bao G, Porteus MH, Behlke MA. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med 2018;24:1216-24. [PMID: 30082871 DOI: 10.1038/s41591-018-0137-0] [Cited by in Crossref: 294] [Cited by in F6Publishing: 248] [Article Influence: 98.0] [Reference Citation Analysis]
25 Halim L, Ajina A, Maher J. Pre-clinical development of chimeric antigen receptor T-cell immunotherapy: Implications of design for efficacy and safety. Best Pract Res Clin Haematol 2018;31:117-25. [PMID: 29909912 DOI: 10.1016/j.beha.2018.04.002] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Guo Y, Xu B, Wu Z, Bo J, Tong C, Chen D, Wang J, Wang H, Wang Y, Han W. Mutant B2M-HLA-E and B2M-HLA-G fusion proteins protects universal chimeric antigen receptor-modified T cells from allogeneic NK cell-mediated lysis. Eur J Immunol 2021. [PMID: 34323289 DOI: 10.1002/eji.202049107] [Reference Citation Analysis]
27 Pavani G, Amendola M. Targeted Gene Delivery: Where to Land. Front Genome Ed 2020;2:609650. [PMID: 34713234 DOI: 10.3389/fgeed.2020.609650] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Azimi CS, Tang Q, Roybal KT, Bluestone JA. NextGen cell-based immunotherapies in cancer and other immune disorders. Current Opinion in Immunology 2019;59:79-87. [DOI: 10.1016/j.coi.2019.03.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
29 Alzubi J, Lock D, Rhiel M, Schmitz S, Wild S, Mussolino C, Hildenbeutel M, Brandes C, Rositzka J, Lennartz S, Haas SA, Chmielewski KO, Schaser T, Kaiser A, Cathomen T, Cornu TI. Automated generation of gene-edited CAR T cells at clinical scale. Mol Ther Methods Clin Dev 2021;20:379-88. [PMID: 33575430 DOI: 10.1016/j.omtm.2020.12.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Richardson NH, Luttrell JB, Bryant JS, Chamberlain D, Khawaja S, Neeli I, Radic M. Tuning the performance of CAR T cell immunotherapies. BMC Biotechnol 2019;19:84. [PMID: 31783836 DOI: 10.1186/s12896-019-0576-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
31 Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020;17:147-67. [PMID: 31848460 DOI: 10.1038/s41571-019-0297-y] [Cited by in Crossref: 199] [Cited by in F6Publishing: 192] [Article Influence: 99.5] [Reference Citation Analysis]
32 Badieyan ZS, Hoseini SS. Adverse Effects Associated with Clinical Applications of CAR Engineered T Cells. Arch Immunol Ther Exp (Warsz) 2018;66:283-8. [PMID: 29427174 DOI: 10.1007/s00005-018-0507-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J 2021;18:85. [PMID: 33892762 DOI: 10.1186/s12985-021-01555-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Gowrishankar K, Birtwistle L, Micklethwaite K. Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm Genome 2018;29:739-56. [PMID: 29987406 DOI: 10.1007/s00335-018-9756-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
35 Ho JY, Wang L, Liu Y, Ba M, Yang J, Zhang X, Chen D, Lu P, Li J. Promoter usage regulating the surface density of CAR molecules may modulate the kinetics of CAR-T cells in vivo. Mol Ther Methods Clin Dev 2021;21:237-46. [PMID: 33869653 DOI: 10.1016/j.omtm.2021.03.007] [Reference Citation Analysis]
36 Qasim W, Qasim W. Emerging therapeutic applications of CRISPR genome editing. Emerging Topics in Life Sciences 2019;3:257-60. [DOI: 10.1042/etls20190010] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020;11:1689. [PMID: 33013822 DOI: 10.3389/fimmu.2020.01689] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
38 Mussolino C, Alzubi J, Pennucci V, Turchiano G, Cathomen T. Genome and Epigenome Editing to Treat Disorders of the Hematopoietic System. Hum Gene Ther 2017;28:1105-15. [PMID: 28806883 DOI: 10.1089/hum.2017.149] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
39 Timmins LM, Burr AM, Carroll K, Keefe R, Teryek M, Cantolupo LJ, van der Loo JCM, Heathman TRJ, Gormley A, Smith D, Parekkadan B. Selecting a Cell Engineering Methodology During Cell Therapy Product Development. Cell Transplant 2021;30:9636897211003022. [PMID: 34013781 DOI: 10.1177/09636897211003022] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng. 2018;2:377-391. [PMID: 31011197 DOI: 10.1038/s41551-018-0235-9] [Cited by in Crossref: 95] [Cited by in F6Publishing: 85] [Article Influence: 31.7] [Reference Citation Analysis]
41 Flint GT, Drake PR, Goetz JP, Albaker MM, Rosenberg JN. Accelerating vein-to-vein cell therapy workflows with new bioanalytical strategies. Curr Opin Biotechnol 2021;71:164-74. [PMID: 34416662 DOI: 10.1016/j.copbio.2021.07.007] [Reference Citation Analysis]
42 Kim DW, Cho JY. Recent Advances in Allogeneic CAR-T Cells. Biomolecules 2020;10:E263. [PMID: 32050611 DOI: 10.3390/biom10020263] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
43 Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. Cytometry B Clin Cytom 2020;98:299-327. [PMID: 32352629 DOI: 10.1002/cyto.b.21880] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
44 Hsi P, Christianson RJ, Dubay RA, Lissandrello CA, Fiering J, Balestrini JL, Tandon V. Acoustophoretic rapid media exchange and continuous-flow electrotransfection of primary human T cells for applications in automated cellular therapy manufacturing. Lab Chip 2019;19:2978-92. [DOI: 10.1039/c9lc00458k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
45 Filley AC, Henriquez M, Dey M. CART Immunotherapy: Development, Success, and Translation to Malignant Gliomas and Other Solid Tumors. Front Oncol 2018;8:453. [PMID: 30386740 DOI: 10.3389/fonc.2018.00453] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 15.7] [Reference Citation Analysis]
46 Lichtman EI, Dotti G. Chimeric antigen receptor T-cells for B-cell malignancies. Transl Res 2017;187:59-82. [PMID: 28719798 DOI: 10.1016/j.trsl.2017.06.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
47 Lin C, Gobius I, Souza-fonseca-guimaraes F. Natural killer cell engineering – a new hope for cancer immunotherapy. Seminars in Hematology 2020;57:194-200. [DOI: 10.1053/j.seminhematol.2020.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
48 Atsavapranee ES, Billingsley MM, Mitchell MJ. Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine 2021;67:103354. [PMID: 33910123 DOI: 10.1016/j.ebiom.2021.103354] [Reference Citation Analysis]
49 Lambert M, Leijonhufvud C, Segerberg F, Melenhorst JJ, Carlsten M. CRISPR/Cas9-Based Gene Engineering of Human Natural Killer Cells: Protocols for Knockout and Readouts to Evaluate Their Efficacy. Methods Mol Biol 2020;2121:213-39. [PMID: 32147798 DOI: 10.1007/978-1-0716-0338-3_18] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
50 Strohl WR. Current progress in innovative engineered antibodies. Protein Cell 2018;9:86-120. [PMID: 28822103 DOI: 10.1007/s13238-017-0457-8] [Cited by in Crossref: 151] [Cited by in F6Publishing: 123] [Article Influence: 37.8] [Reference Citation Analysis]
51 Martínez Bedoya D, Dutoit V, Migliorini D. Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Front Immunol 2021;12:640082. [PMID: 33746981 DOI: 10.3389/fimmu.2021.640082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Straetemans T, Kierkels GJJ, Doorn R, Jansen K, Heijhuurs S, Dos Santos JM, van Muyden ADD, Vie H, Clemenceau B, Raymakers R, de Witte M, Sebestyén Z, Kuball J. GMP-Grade Manufacturing of T Cells Engineered to Express a Defined γδTCR. Front Immunol 2018;9:1062. [PMID: 29899740 DOI: 10.3389/fimmu.2018.01062] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 10.3] [Reference Citation Analysis]
53 Highfill SL, Stroncek DF. Overcoming Challenges in Process Development of Cellular Therapies. Curr Hematol Malig Rep 2019;14:269-77. [PMID: 31278568 DOI: 10.1007/s11899-019-00529-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
54 Daniyan AF, Brentjens RJ. CARs of the future. Am J Hematol 2019;94:S55-8. [PMID: 30680777 DOI: 10.1002/ajh.25416] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
55 Biondi A, Magnani CF, Tettamanti S, Gaipa G, Biagi E. Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. J Autoimmun 2017;85:141-52. [PMID: 28843422 DOI: 10.1016/j.jaut.2017.08.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
56 Zhang X, Cheng C, Sun W, Wang H. Engineering T Cells Using CRISPR/Cas9 for Cancer Therapy. In: Sioud M, editor. RNA Interference and CRISPR Technologies. New York: Springer US; 2020. pp. 419-33. [DOI: 10.1007/978-1-0716-0290-4_23] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Irving M, Lanitis E, Migliorini D, Ivics Z, Guedan S. Choosing the Right Tool for Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. Hum Gene Ther 2021;32:1044-58. [PMID: 34662233 DOI: 10.1089/hum.2021.173] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Ellis GI, Sheppard NC, Riley JL. Genetic engineering of T cells for immunotherapy. Nat Rev Genet 2021;22:427-47. [PMID: 33603158 DOI: 10.1038/s41576-021-00329-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
59 Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. 'Off-the-shelf' allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov 2020;19:185-99. [PMID: 31900462 DOI: 10.1038/s41573-019-0051-2] [Cited by in Crossref: 154] [Cited by in F6Publishing: 142] [Article Influence: 154.0] [Reference Citation Analysis]
60 Rezaei R, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, Mirzaei Nodooshan M, Ghorbani Alvanegh A. Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2021. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Reference Citation Analysis]
61 Mosti L, Langner LM, Chmielewski KO, Arbuthnot P, Alzubi J, Cathomen T. Targeted multi-epitope switching enables straightforward positive/negative selection of CAR T cells. Gene Ther 2021. [PMID: 33526841 DOI: 10.1038/s41434-021-00220-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, Rettig MP, Wang B, Eissenberg LG, Ghobadi A, Gehrs LN, Prior JL, Achilefu S, Miller CA, Fronick CC, O'Neal J, Gao F, Weinstock DM, Gutierrez A, Fulton RS, DiPersio JF. An "off-the-shelf" fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 2018;32:1970-83. [PMID: 29483708 DOI: 10.1038/s41375-018-0065-5] [Cited by in Crossref: 132] [Cited by in F6Publishing: 120] [Article Influence: 44.0] [Reference Citation Analysis]
63 Cutmore LC, Marshall JF. Current Perspectives on the Use of off the Shelf CAR-T/NK Cells for the Treatment of Cancer. Cancers (Basel) 2021;13:1926. [PMID: 33923528 DOI: 10.3390/cancers13081926] [Reference Citation Analysis]
64 Kamiya T, Wong D, Png YT, Campana D. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells. Blood Adv 2018;2:517-28. [PMID: 29507075 DOI: 10.1182/bloodadvances.2017012823] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
65 Shah UA, Mailankody S. CAR T and CAR NK cells in multiple myeloma: Expanding the targets. Best Pract Res Clin Haematol 2020;33:101141. [PMID: 32139020 DOI: 10.1016/j.beha.2020.101141] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 21.0] [Reference Citation Analysis]
66 Sachdeva M, Busser BW, Temburni S, Jahangiri B, Gautron AS, Maréchal A, Juillerat A, Williams A, Depil S, Duchateau P, Poirot L, Valton J. Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality. Nat Commun 2019;10:5100. [PMID: 31723132 DOI: 10.1038/s41467-019-13088-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
67 Qasim W. Allogeneic CAR T cell therapies for leukemia. Am J Hematol 2019;94:S50-4. [PMID: 30632623 DOI: 10.1002/ajh.25399] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 13.0] [Reference Citation Analysis]
68 Zhang Y, Mu W, Wang H. Gene editing in T cell therapy. Journal of Genetics and Genomics 2017;44:415-22. [DOI: 10.1016/j.jgg.2017.09.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
69 McCreedy BJ, Senyukov VV, Nguyen KT. Off the shelf T cell therapies for hematologic malignancies. Best Pract Res Clin Haematol 2018;31:166-75. [PMID: 29909917 DOI: 10.1016/j.beha.2018.03.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
70 Petersen CT, Krenciute G. Next Generation CAR T Cells for the Immunotherapy of High-Grade Glioma. Front Oncol 2019;9:69. [PMID: 30863720 DOI: 10.3389/fonc.2019.00069] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 16.5] [Reference Citation Analysis]
71 Roth TL. Editing of Endogenous Genes in Cellular Immunotherapies. Curr Hematol Malig Rep 2020;15:235-40. [PMID: 32415407 DOI: 10.1007/s11899-020-00587-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
72 Cui L, Yin F, Cheng J, Liu H, Zheng M, Liu D, Wu Z, Qian Q. Optimized cytotoxicity assay for co-suspended effector and target cells. J Immunol Methods 2021;:113100. [PMID: 34270976 DOI: 10.1016/j.jim.2021.113100] [Reference Citation Analysis]
73 Rana J, Biswas M. Regulatory T cell therapy: Current and future design perspectives. Cell Immunol 2020;356:104193. [PMID: 32823038 DOI: 10.1016/j.cellimm.2020.104193] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
74 Odé Z, Condori J, Peterson N, Zhou S, Krenciute G. CRISPR-Mediated Non-Viral Site-Specific Gene Integration and Expression in T Cells: Protocol and Application for T-Cell Therapy. Cancers (Basel) 2020;12:E1704. [PMID: 32604839 DOI: 10.3390/cancers12061704] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
75 Zych AO, Bajor M, Zagozdzon R. Application of Genome Editing Techniques in Immunology. Arch Immunol Ther Exp (Warsz) 2018;66:289-98. [PMID: 29344676 DOI: 10.1007/s00005-018-0504-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
76 Graham C, Jozwik A, Pepper A, Benjamin R. Allogeneic CAR-T Cells: More than Ease of Access? Cells 2018;7:E155. [PMID: 30275435 DOI: 10.3390/cells7100155] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 21.3] [Reference Citation Analysis]
77 Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers (Basel) 2020;12:E1889. [PMID: 32674264 DOI: 10.3390/cancers12071889] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
78 Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F, Khoshtinat Nikkhoi S. Strategies for Dodging the Obstacles in CAR T Cell Therapy. Front Oncol 2021;11:627549. [PMID: 33869011 DOI: 10.3389/fonc.2021.627549] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
79 Chang ZL, Chen YY. CARs: Synthetic Immunoreceptors for Cancer Therapy and Beyond. Trends Mol Med 2017;23:430-50. [PMID: 28416139 DOI: 10.1016/j.molmed.2017.03.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 14.0] [Reference Citation Analysis]
80 Nawaz W, Xu S, Li Y, Huang B, Wu X, Wu Z. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy. Acta Biomater 2020;109:21-36. [PMID: 32294554 DOI: 10.1016/j.actbio.2020.04.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
81 Manriquez-Roman C, Siegler EL, Kenderian SS. CRISPR Takes the Front Seat in CART-Cell Development. BioDrugs 2021;35:113-24. [PMID: 33638865 DOI: 10.1007/s40259-021-00473-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Liu J, Zhou G, Zhang L, Zhao Q. Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing. Front Immunol 2019;10:456. [PMID: 30941126 DOI: 10.3389/fimmu.2019.00456] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 19.0] [Reference Citation Analysis]
83 Landoni E, Savoldo B. Treating hematological malignancies with cell therapy: where are we now? Expert Opinion on Biological Therapy 2017;18:65-75. [DOI: 10.1080/14712598.2018.1384810] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
84 Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 2019;19:587-602. [PMID: 31492927 DOI: 10.1038/s41568-019-0186-9] [Cited by in Crossref: 169] [Cited by in F6Publishing: 159] [Article Influence: 84.5] [Reference Citation Analysis]
85 Guerrouahen B, Elnaggar M, Al-Mohannadi A, Kizhakayil D, Bonini C, Benjamin R, Brentjens R, Buchholz CJ, Casorati G, Ferrone S, Locke FL, Martin F, Schambach A, Turtle C, Veys P, van der Vliet HJ, Maccalli C; EICCI Faculty Group. Proceedings From the First International Workshop at Sidra Medicine: "Engineered Immune Cells in Cancer Immunotherapy (EICCI): From Discovery to Off-the-Shelf Development", 15th-16th February 2019, Doha, Qatar. Front Immunol 2020;11:589381. [PMID: 33584653 DOI: 10.3389/fimmu.2020.589381] [Reference Citation Analysis]
86 Aftab BT, Sasu B, Krishnamurthy J, Gschweng E, Alcazer V, Depil S. Toward “off‐the‐shelf” allogeneic CAR T cells. Adv Cell Gene Ther 2020;3. [DOI: 10.1002/acg2.86] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
87 Juillerat A, Tkach D, Yang M, Boyne A, Valton J, Poirot L, Duchateau P. Straightforward Generation of Ultrapure Off-the-Shelf Allogeneic CAR-T Cells. Front Bioeng Biotechnol 2020;8:678. [PMID: 32671047 DOI: 10.3389/fbioe.2020.00678] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
88 Goldsmith SR, Ghobadi A, DiPersio JF. Hematopoeitic Cell Transplantation and CAR T-Cell Therapy: Complements or Competitors? Front Oncol 2020;10:608916. [PMID: 33415078 DOI: 10.3389/fonc.2020.608916] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Lissandrello CA, Santos JA, Hsi P, Welch M, Mott VL, Kim ES, Chesin J, Haroutunian NJ, Stoddard AG, Czarnecki A, Coppeta JR, Freeman DK, Flusberg DA, Balestrini JL, Tandon V. High-throughput continuous-flow microfluidic electroporation of mRNA into primary human T cells for applications in cellular therapy manufacturing. Sci Rep 2020;10:18045. [PMID: 33093518 DOI: 10.1038/s41598-020-73755-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
90 Watanabe N, Mamonkin M. Off-the-Shelf Chimeric Antigen Receptor T Cells: How Do We Get There? Cancer J 2021;27:176-81. [PMID: 33750078 DOI: 10.1097/PPO.0000000000000511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Huang D, Miller M, Ashok B, Jain S, Peppas NA. CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Adv Drug Deliv Rev 2020;158:17-35. [PMID: 32707148 DOI: 10.1016/j.addr.2020.07.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
92 Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol 2019;37:1425-34. [DOI: 10.1038/s41587-019-0137-8] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 37.5] [Reference Citation Analysis]
93 Preece R, Georgiadis C. Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerg Top Life Sci 2019;3:261-75. [PMID: 33523139 DOI: 10.1042/ETLS20180144] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 Lo Presti V, Buitenwerf F, van Til NP, Nierkens S. Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors. Vaccines (Basel) 2020;8:E733. [PMID: 33287413 DOI: 10.3390/vaccines8040733] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
95 Guedan S, Calderon H, Posey AD Jr, Maus MV. Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev 2019;12:145-56. [PMID: 30666307 DOI: 10.1016/j.omtm.2018.12.009] [Cited by in Crossref: 100] [Cited by in F6Publishing: 97] [Article Influence: 33.3] [Reference Citation Analysis]
96 Paul B, Ibarra GSR, Hubbard N, Einhaus T, Astrakhan A, Rawlings DJ, Kiem HP, Peterson CW. Efficient Enrichment of Gene-Modified Primary T Cells via CCR5-Targeted Integration of Mutant Dihydrofolate Reductase. Mol Ther Methods Clin Dev 2018;9:347-57. [PMID: 30038938 DOI: 10.1016/j.omtm.2018.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]