1 |
Brandenburg C, Blatt GJ. Region-Specific Alterations of Perineuronal Net Expression in Postmortem Autism Brain Tissue. Front Mol Neurosci 2022;15:838918. [DOI: 10.3389/fnmol.2022.838918] [Reference Citation Analysis]
|
2 |
Mandic-maravic V, Grujicic R, Milutinovic L, Munjiza-jovanovic A, Pejovic-milovancevic M. Dopamine in Autism Spectrum Disorders—Focus on D2/D3 Partial Agonists and Their Possible Use in Treatment. Front Psychiatry 2022;12:787097. [DOI: 10.3389/fpsyt.2021.787097] [Reference Citation Analysis]
|
3 |
Lin L, Lan Y, Zhu H, Yu L, Wu S, Wan W, Shu Y, Xiang H, Hou T, Zhang H, Ma Y, Su W, Li M. Effects of Chemogenetic Inhibition of D1 or D2 Receptor-Containing Neurons of the Substantia Nigra and Striatum in Mice With Tourette Syndrome. Front Mol Neurosci 2021;14:779436. [PMID: 34955745 DOI: 10.3389/fnmol.2021.779436] [Reference Citation Analysis]
|
4 |
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022;16:780407. [DOI: 10.3389/fnins.2022.780407] [Reference Citation Analysis]
|
5 |
Janouschek H, Chase HW, Sharkey RJ, Peterson ZJ, Camilleri JA, Abel T, Eickhoff SB, Nickl-Jockschat T. The functional neural architecture of dysfunctional reward processing in autism. Neuroimage Clin 2021;31:102700. [PMID: 34161918 DOI: 10.1016/j.nicl.2021.102700] [Reference Citation Analysis]
|
6 |
DiCarlo GE, Wallace MT. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci Biobehav Rev 2021;133:104494. [PMID: 34906613 DOI: 10.1016/j.neubiorev.2021.12.017] [Reference Citation Analysis]
|
7 |
Brady M, Beltramini A, Vaughan G, Bechard AR. Benefits of a ketogenic diet on repetitive motor behavior in mice. Behav Brain Res 2022;:113748. [PMID: 35038463 DOI: 10.1016/j.bbr.2022.113748] [Reference Citation Analysis]
|