BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Orłowski P, Kowalczyk A, Tomaszewska E, Ranoszek-Soliwoda K, Węgrzyn A, Grzesiak J, Celichowski G, Grobelny J, Eriksson K, Krzyzowska M. Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses 2018;10:E524. [PMID: 30261662 DOI: 10.3390/v10100524] [Cited by in Crossref: 42] [Cited by in F6Publishing: 29] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, Danquah MK, Rodrigues J. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostruct Chem. [DOI: 10.1007/s40097-021-00465-y] [Reference Citation Analysis]
2 Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. Journal of Drug Delivery Science and Technology 2021;62:102401. [DOI: 10.1016/j.jddst.2021.102401] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 13.0] [Reference Citation Analysis]
3 Zhang D, Yu F, Li H, Wang Q, Wang M, Qian H, Wu X, Wu F, Liu Y, Jiang S, Li P, Wang R, Li W. AgNPs reduce reproductive capability of female mouse for their toxic effects on mouse early embryo development. Hum Exp Toxicol 2022;41:9603271221080235. [PMID: 35102757 DOI: 10.1177/09603271221080235] [Reference Citation Analysis]
4 El-hammadi MM, Arias JL. Nanotechnology for vaginal drug delivery and targeting. Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier; 2020. pp. 647-82. [DOI: 10.1016/b978-0-08-102985-5.00026-7] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021;:113855. [PMID: 34214638 DOI: 10.1016/j.addr.2021.113855] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yadavalli T, Ames J, Agelidis A, Suryawanshi R, Jaishankar D, Hopkins J, Thakkar N, Koujah L, Shukla D. Drug-encapsulated carbon (DECON): A novel platform for enhanced drug delivery. Sci Adv 2019;5:eaax0780. [PMID: 31453334 DOI: 10.1126/sciadv.aax0780] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 8.7] [Reference Citation Analysis]
7 Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods 2021;10:2277. [PMID: 34681326 DOI: 10.3390/foods10102277] [Reference Citation Analysis]
8 Kaczmarek B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Materials (Basel) 2020;13:E3224. [PMID: 32698426 DOI: 10.3390/ma13143224] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
9 Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Syst Lett 2021;9. [DOI: 10.1186/s40486-021-00131-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
10 El-Sheekh MM, Shabaan MT, Hassan L, Morsi HH. Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. Int J Environ Health Res 2020;:1-12. [PMID: 32627584 DOI: 10.1080/09603123.2020.1789946] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
11 Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022;:1-15. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Reference Citation Analysis]
12 Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, Danquah MK, Rodrigues J. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostruct Chem. [DOI: 10.1007/s40097-021-00465-y] [Reference Citation Analysis]
13 Augustine R, Hasan A. Emerging applications of biocompatible phytosynthesized metal/metal oxide nanoparticles in healthcare. Journal of Drug Delivery Science and Technology 2020;56:101516. [DOI: 10.1016/j.jddst.2020.101516] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
14 Shoieb SM, El-Ghiaty MA, El-Kadi AOS. Targeting arachidonic acid-related metabolites in COVID-19 patients: potential use of drug-loaded nanoparticles. Emergent Mater 2020;:1-13. [PMID: 33225219 DOI: 10.1007/s42247-020-00136-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Ibrahim Fouad G. A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). Bull Natl Res Cent 2021;45:36. [PMID: 33564223 DOI: 10.1186/s42269-021-00487-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Zhang D, Yu F, Li H, Wang Q, Wang M, Qian H, Wu X, Wu F, Liu Y, Jiang S, Li P, Wang R, Li W. AgNPs reduce reproductive capability of female mouse for their toxic effects on mouse early embryo development. Hum Exp Toxicol 2021;:9603271211038742. [PMID: 34414805 DOI: 10.1177/09603271211038742] [Reference Citation Analysis]
17 Tortella GR, Pieretti JC, Rubilar O, Fernández-Baldo M, Benavides-Mendoza A, Diez MC, Seabra AB. Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Crit Rev Biotechnol 2021;:1-19. [PMID: 34233551 DOI: 10.1080/07388551.2021.1939260] [Reference Citation Analysis]
18 Romero EL, Morilla MJ. Preclinical autophagy modulatory nanomedicines: big challenges, slow advances. Expert Opin Drug Deliv 2021;:1-19. [PMID: 34030559 DOI: 10.1080/17425247.2021.1933428] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Choudhary S, Kumar R, Dalal U, Tomar S, Reddy SN. Green synthesis of nanometal impregnated biomass – antiviral potential. Materials Science and Engineering: C 2020;112:110934. [DOI: 10.1016/j.msec.2020.110934] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
20 Anandaradje A, Meyappan V, Kumar I, Sakthivel N. Microbial Synthesis of Silver Nanoparticles and Their Biological Potential. In: Shukla AK, editor. Nanoparticles in Medicine. Singapore: Springer; 2020. pp. 99-133. [DOI: 10.1007/978-981-13-8954-2_4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
21 Umar Y, Al-Batty S, Rahman H, Ashwaq O, Sarief A, Sadique Z, Sreekumar PA, Haque SKM. Polymeric Materials as Potential Inhibitors Against SARS-CoV-2. J Polym Environ 2021;:1-20. [PMID: 34518763 DOI: 10.1007/s10924-021-02272-6] [Reference Citation Analysis]
22 Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang JX, Chen JF, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. Adv Sci (Weinh) 2021;:e2102189. [PMID: 34825783 DOI: 10.1002/advs.202102189] [Reference Citation Analysis]
23 Martins DOS, Santos IA, de Oliveira DM, Grosche VR, Jardim ACG. Antivirals against Chikungunya Virus: Is the Solution in Nature? Viruses 2020;12:E272. [PMID: 32121393 DOI: 10.3390/v12030272] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
24 Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent Advances in Nanosystems and Strategies for Vaginal Delivery of Antimicrobials. Nanomaterials (Basel) 2021;11:311. [PMID: 33530510 DOI: 10.3390/nano11020311] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020. [PMID: 32881384 DOI: 10.1002/cplu.202000460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
26 Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials (Basel) 2021;11:2086. [PMID: 34443916 DOI: 10.3390/nano11082086] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clin Exp Reprod Med 2020;47:245-62. [PMID: 33227186 DOI: 10.5653/cerm.2020.03650] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Di Q, Zhu H, Pu D, Zhao X, Li X, Ma X, Xiao W, Chen W. The natural compound Cirsitakaoside enhances antiviral innate responses against vesicular stomatitis virus in vitro and in vivo. Int Immunopharmacol 2020;86:106783. [PMID: 32652505 DOI: 10.1016/j.intimp.2020.106783] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ghiuță I, Cristea D. Silver nanoparticles for delivery purposes. Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier; 2020. pp. 347-71. [DOI: 10.1016/b978-0-08-102985-5.00015-2] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
30 Zhou J, Hu Z, Zabihi F, Chen Z, Zhu M. Progress and Perspective of Antiviral Protective Material. Adv Fiber Mater 2020;2:123-39. [DOI: 10.1007/s42765-020-00047-7] [Cited by in Crossref: 44] [Cited by in F6Publishing: 8] [Article Influence: 22.0] [Reference Citation Analysis]
31 Cymerys J, Kowalczyk A, Mikołajewicz K, Słońska A, Krzyżowska M. Nitric Oxide Influences HSV-1-Induced Neuroinflammation. Oxid Med Cell Longev 2019;2019:2302835. [PMID: 30886672 DOI: 10.1155/2019/2302835] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
32 Medhi R, Srinoi P, Ngo N, Tran H, Lee TR. Nanoparticle-Based Strategies to Combat COVID-19. ACS Appl Nano Mater 2020;3:8557-80. [DOI: 10.1021/acsanm.0c01978] [Cited by in Crossref: 49] [Cited by in F6Publishing: 15] [Article Influence: 24.5] [Reference Citation Analysis]
33 Hamouda T, Ibrahim HM, Kafafy HH, Mashaly HM, Mohamed NH, Aly NM. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. Int J Biol Macromol 2021;181:990-1002. [PMID: 33864870 DOI: 10.1016/j.ijbiomac.2021.04.071] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials (Basel) 2020;10:E2318. [PMID: 33238486 DOI: 10.3390/nano10112318] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
35 Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim JH, Song H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? Nanomaterials (Basel) 2020;10:E1645. [PMID: 32825737 DOI: 10.3390/nano10091645] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 19.5] [Reference Citation Analysis]
36 Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Albonici L, Cifaldi L, Masuelli L, Bei R. Polyphenols affect the humoral response in cancer, infectious and allergic diseases and autoimmunity by modulating the activity of TH1 and TH2 cells. Curr Opin Pharmacol 2021;60:315-30. [PMID: 34520942 DOI: 10.1016/j.coph.2021.08.005] [Reference Citation Analysis]