BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel) 2017;10:E334. [PMID: 28772697 DOI: 10.3390/ma10040334] [Cited by in Crossref: 336] [Cited by in F6Publishing: 179] [Article Influence: 67.2] [Reference Citation Analysis]
Number Citing Articles
1 Basu S, Basu B. Unravelling Doped Biphasic Calcium Phosphate: Synthesis to Application. ACS Appl Bio Mater 2019;2:5263-97. [DOI: 10.1021/acsabm.9b00488] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
2 Mulongo-masamba R, El Hazzat M, El Hamidi A, Halim M, Arsalane S. New functional β-chitin/calcium phosphate as promising support of copper nanocatalyst for the reductive degradation of methylene blue. Int J Environ Sci Technol 2019;16:8117-28. [DOI: 10.1007/s13762-019-02353-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
3 Mocanu AC, Miculescu F, Stan GE, Pandele AM, Pop MA, Ciocoiu RC, Voicu ȘI, Ciocan LT. Fiber-Templated 3D Calcium-Phosphate Scaffolds for Biomedical Applications: The Role of the Thermal Treatment Ambient on Physico-Chemical Properties. Materials (Basel) 2021;14:2198. [PMID: 33922963 DOI: 10.3390/ma14092198] [Reference Citation Analysis]
4 Bozkurt D, Akarsu MK, Akin I, Goller G. Phase analysis, mechanical properties and in vitro bioactivity of graphene nanoplatelet-reinforced silicon nitride-calcium phosphate composites. Journal of Asian Ceramic Societies 2021;9:471-86. [DOI: 10.1080/21870764.2021.1891664] [Reference Citation Analysis]
5 Galli C, Pedrazzi G, Mattioli-Belmonte M, Guizzardi S. The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater. 2018;2018:8935750. [PMID: 30254677 DOI: 10.1155/2018/8935750] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
6 Jacobs A, Renaudin G, Charbonnel N, Nedelec JM, Forestier C, Descamps S. Copper-Doped Biphasic Calcium Phosphate Powders: Dopant Release, Cytotoxicity and Antibacterial Properties. Materials (Basel) 2021;14:2393. [PMID: 34064435 DOI: 10.3390/ma14092393] [Reference Citation Analysis]
7 Ooi JP, Kasim SR, Shaari RB, Saidin NA. In vivo efficacy and toxicity of synthesized nano-β-tricalcium phosphate in a rabbit tibial defect model. Toxicology Research and Application 2018;2:239784731881949. [DOI: 10.1177/2397847318819499] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Schmidt LE, Hadad H, Vasconcelos IR, Colombo LT, da Silva RC, Santos AFP, Cervantes LCC, Poli PP, Signorino F, Maiorana C, Carvalho PSP, Souza FÁ. Critical Defect Healing Assessment in Rat Calvaria Filled with Injectable Calcium Phosphate Cement. J Funct Biomater 2019;10:E21. [PMID: 31085984 DOI: 10.3390/jfb10020021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Procter P, Hulsart-Billström G, Alves A, Pujari-Palmer M, Wenner D, Insley G, Engqvist H, Larsson S. Gluing Living Bone Using a Biomimetic Bioadhesive: From Initial Cut to Final Healing. Front Bioeng Biotechnol 2021;9:728042. [PMID: 34820360 DOI: 10.3389/fbioe.2021.728042] [Reference Citation Analysis]
10 Abouzeid RE, Khiari R, Salama A, Diab M, Beneventi D, Dufresne A. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. International Journal of Biological Macromolecules 2020;160:538-47. [DOI: 10.1016/j.ijbiomac.2020.05.181] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
11 Grigoraviciute-puroniene I, Tanaka Y, Vegelyte V, Nishimoto Y, Ishikawa K, Kareiva A. A novel synthetic approach to low-crystallinity calcium deficient hydroxyapatite. Ceramics International 2019;45:15620-3. [DOI: 10.1016/j.ceramint.2019.05.072] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
12 Leonés A, Lieblich M, Benavente R, Gonzalez JL, Peponi L. Potential Applications of Magnesium-Based Polymeric Nanocomposites Obtained by Electrospinning Technique. Nanomaterials (Basel) 2020;10:E1524. [PMID: 32759696 DOI: 10.3390/nano10081524] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Velasco-Ortega E, Sierra-Baztan A, Jiménez-Guerra A, España-López A, Ortiz-Garcia I, Núñez-Márquez E, Moreno-Muñoz J, Rondón-Romero JL, López-López J, Monsalve-Guil L. Long-Term Clinical Study of Implants Placed in Maxillary Sinus Floor Augmentation Using Beta-Tricalcium Phosphate. Int J Environ Res Public Health 2021;18:9975. [PMID: 34639277 DOI: 10.3390/ijerph18199975] [Reference Citation Analysis]
14 Osmond MJ, Krebs MD. Tunable chitosan-calcium phosphate composites as cell-instructive dental pulp capping agents. J Biomater Sci Polym Ed 2021;32:1450-65. [PMID: 33941040 DOI: 10.1080/09205063.2021.1925390] [Reference Citation Analysis]
15 Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv Sci (Weinh) 2021;:e2100368. [PMID: 34351704 DOI: 10.1002/advs.202100368] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Schröter L, Kaiser F, Stein S, Gbureck U, Ignatius A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater 2020;117:1-20. [PMID: 32979583 DOI: 10.1016/j.actbio.2020.09.031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
17 Deng F, Rao J, Ning C. Ferric oxide: A favorable additive to balance mechanical strength and biological activity of silicocarnotite bioceramic. J Mech Behav Biomed Mater 2020;109:103819. [PMID: 32543394 DOI: 10.1016/j.jmbbm.2020.103819] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Woźniak A, Staszuk M, Reimann Ł, Bialas O, Brytan Z, Voinarovych S, Kyslytsia O, Kaliuzhnyi S, Basiaga M, Admiak M. The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application. Archiv Civ Mech Eng 2021;21. [DOI: 10.1007/s43452-021-00297-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Sharma G, Kaur M, Punj S, Singh K. Biomass as a sustainable resource for value‐added modern materials: a review. Biofuels, Bioprod Bioref 2020;14:673-95. [DOI: 10.1002/bbb.2079] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
20 Rödel M, Teßmar J, Groll J, Gbureck U. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement. Acta Biomater 2018;79:182-201. [PMID: 30149213 DOI: 10.1016/j.actbio.2018.08.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
21 Besprozvannykh VK, Nifant’ev IE, Tavtorkin AN, Levin IS, Shlyakhtin AV, Ivchenko PV. Hydroxyapatite of plate-like morphology obtained by low temperature hydrothermal synthesis. Mendeleev Communications 2021;31:97-9. [DOI: 10.1016/j.mencom.2021.01.030] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C. Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radic Biol Med 2021;164:107-18. [PMID: 33401009 DOI: 10.1016/j.freeradbiomed.2020.12.437] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
23 Hosseini S, Epple M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. Nano Select 2021;2:561-72. [DOI: 10.1002/nano.202000150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 B P, U V. In Vitro bioactivity, biocompatibility and corrosion resistance of multi-ionic (Ce/Si) co-doped hydroxyapatite porous coating on Ti-6Al-4 V for bone regeneration applications. Mater Sci Eng C Mater Biol Appl 2021;119:111620. [PMID: 33321662 DOI: 10.1016/j.msec.2020.111620] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
25 Vrchovecká K, Pávková-goldbergová M, Engqvist H, Pujari-palmer M. Cytocompatibility and Bioactive Ion Release Profiles of Phosphoserine Bone Adhesive: Bridge from In Vitro to In Vivo. Biomedicines 2022;10:736. [DOI: 10.3390/biomedicines10040736] [Reference Citation Analysis]
26 Curtin C, Nolan J, Conlon R, Deneweth L, Gallagher C, Tan Y, Cavanagh B, Asraf A, Harvey H, Miller-delaney S, Shohet J, Bray I, O'brien F, Stallings R, Piskareva O. A physiologically relevant 3D collagen-based scaffold–neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomaterialia 2018;70:84-97. [DOI: 10.1016/j.actbio.2018.02.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
27 Kirillova A, Nillissen O, Liu S, Kelly C, Gall K. Reinforcement and Fatigue of a Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2021;10:e2001058. [PMID: 33111508 DOI: 10.1002/adhm.202001058] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Deng Y, Liu M, Chen X, Wang M, Li X, Xiao Y, Zhang X. Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite. J Mater Chem B 2018;6:6572-84. [DOI: 10.1039/c8tb01637b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 3.8] [Reference Citation Analysis]
29 Chadha RK, Singh KL, Sharma C, Singh AP, Naithani V. Effect of microwave and conventional processing techniques on mechanical properties of Strontium substituted hydroxyapatite. Ceramics International 2020;46:1091-8. [DOI: 10.1016/j.ceramint.2019.09.076] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
30 Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232-43. [PMID: 29922441 DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1] [Cited by in Crossref: 181] [Cited by in F6Publishing: 57] [Article Influence: 45.3] [Reference Citation Analysis]
31 Uskoković V, Janković-častvan I, Wu VM. Bone Mineral Crystallinity Governs the Orchestration of Ossification and Resorption during Bone Remodeling. ACS Biomater Sci Eng 2019;5:3483-98. [DOI: 10.1021/acsbiomaterials.9b00255] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
32 Chen Y, Wang J, Zhu X, Chen X, Yang X, Zhang K, Fan Y, Zhang X. The directional migration and differentiation of mesenchymal stem cells toward vascular endothelial cells stimulated by biphasic calcium phosphate ceramic. Regen Biomater 2018;5:129-39. [PMID: 29977596 DOI: 10.1093/rb/rbx028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
33 Li X, Yang X, Liu L, Zhou P, Zhou J, Shi X, Wang Y. A microarray platform designed for high-throughput screening the reaction conditions for the synthesis of micro/nanosized biomedical materials. Bioact Mater 2020;5:286-96. [PMID: 32128467 DOI: 10.1016/j.bioactmat.2020.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020;12:E2858. [PMID: 33260490 DOI: 10.3390/polym12122858] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
35 Dashevskiy I, Balueva A, Todebush P, Campbell C, Magana J, Clement N. On Estimation of Adhesive Strength of Implants Bioactive Coating with Titanium by Density Functional Theory and Molecular Dynamics Simulations. Mat Res 2019;22:e20190030. [DOI: 10.1590/1980-5373-mr-2019-0030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater 2018;79:37-59. [PMID: 30165201 DOI: 10.1016/j.actbio.2018.08.026] [Cited by in Crossref: 153] [Cited by in F6Publishing: 115] [Article Influence: 38.3] [Reference Citation Analysis]
37 Abbasi N, Hamlet S, Love RM, Nguyen N. Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices 2020;5:1-9. [DOI: 10.1016/j.jsamd.2020.01.007] [Cited by in Crossref: 47] [Cited by in F6Publishing: 13] [Article Influence: 23.5] [Reference Citation Analysis]
38 Eliaz N. Corrosion of Metallic Biomaterials: A Review. Materials (Basel) 2019;12:E407. [PMID: 30696087 DOI: 10.3390/ma12030407] [Cited by in Crossref: 151] [Cited by in F6Publishing: 59] [Article Influence: 50.3] [Reference Citation Analysis]
39 Tamjid E, Bohlouli M, Mohammadi S, Alipour H, Nikkhah M. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. J Biomed Mater Res A 2020;108:1426-38. [PMID: 32134569 DOI: 10.1002/jbm.a.36914] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
40 Abdul Jalil R, Amin Matori K, Mohd Zaid MH, Zainuddin N, Ahmad Khiri MZ, Abdul Rahman NA, Wan Jusoh WN, Kul E. A Study of Fluoride-Containing Bioglass System for Dental Materials Derived from Clam Shell and Soda Lime Silica Glass. Journal of Spectroscopy 2020;2020:1-9. [DOI: 10.1155/2020/9170412] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. Materials (Basel) 2021;14:5338. [PMID: 34576562 DOI: 10.3390/ma14185338] [Reference Citation Analysis]
42 Narendran P, Rajendran A, Garhnayak M, Garhnayak L, Nivedhitha J, Devi KC, Pattanayak DK. Influence of pH on wet-synthesis of silver decorated hydroxyapatite nanopowder. Colloids Surf B Biointerfaces 2018;169:143-50. [PMID: 29763771 DOI: 10.1016/j.colsurfb.2018.04.039] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
43 Fan L, Zhang Y, Hu J, Fang Y, Hu R, Shi W, Ren B, Lin C, Tian ZQ. Surface Properties of Octacalcium Phosphate Nanocrystals Are Crucial for Their Bioactivities. ACS Omega 2021;6:25372-80. [PMID: 34632195 DOI: 10.1021/acsomega.1c03278] [Reference Citation Analysis]
44 Deering J, Clifford A, D'elia A, Zhitomirsky I, Grandfield K. Composite dip coating improves biocompatibility of porous metallic scaffolds. Materials Letters 2020;274:128057. [DOI: 10.1016/j.matlet.2020.128057] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Natarajan ABM, Sivadas VPD, Nair PDPD. 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues. Biomed Mater 2021;16. [PMID: 34265754 DOI: 10.1088/1748-605X/ac14cb] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Zhi W, Wang X, Sun D, Chen T, Yuan B, Li X, Chen X, Wang J, Xie Z, Zhu X, Zhang K, Zhang X. Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioact Mater 2022;11:240-53. [PMID: 34977429 DOI: 10.1016/j.bioactmat.2021.09.024] [Reference Citation Analysis]
47 Scribante A, Poggio C, Gallo S, Riva P, Cuocci A, Carbone M, Arciola CR, Colombo M. In Vitro Re-Hardening of Bleached Enamel Using Mineralizing Pastes: Toward Preventing Bacterial Colonization. Materials (Basel) 2020;13:E818. [PMID: 32054090 DOI: 10.3390/ma13040818] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
48 Rothrauff BB, Tuan RS. Decellularized bone extracellular matrix in skeletal tissue engineering. Biochem Soc Trans 2020;48:755-64. [PMID: 32369551 DOI: 10.1042/BST20190079] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
49 Xiao J, Rogachev A, Yarmolenko V, Rogachev A, Liu Y, Jiang X, Sun D, Yarmolenko M. Formation features, structure and properties of bioactive coatings based on phosphate‑calcium layers, deposited by a low energy electron beam. Surface and Coatings Technology 2019;359:6-15. [DOI: 10.1016/j.surfcoat.2018.12.051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Babaie E, Bacino M, White J, Nurrohman H, Marshall GW, Saeki K, Habelitz S. Polymer-Induced Liquid Precursor (PILP) remineralization of artificial and natural dentin carious lesions evaluated by nanoindentation and microcomputed tomography. J Dent 2021;109:103659. [PMID: 33836248 DOI: 10.1016/j.jdent.2021.103659] [Reference Citation Analysis]
51 Strubbe-Rivera JO, Schrad JR, Pavlov EV, Conway JF, Parent KN, Bazil JN. The mitochondrial permeability transition phenomenon elucidated by cryo-EM reveals the genuine impact of calcium overload on mitochondrial structure and function. Sci Rep 2021;11:1037. [PMID: 33441863 DOI: 10.1038/s41598-020-80398-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
52 Kalbarczyk M, Szcześ A. Potential biomedical application of calcium phosphates obtained using eggshells as a biosource of calcium at different initial pH values. Ceramics International 2021;47:33687-96. [DOI: 10.1016/j.ceramint.2021.08.278] [Reference Citation Analysis]
53 Pan M, Hua S, Wu J, Yuan X, Deng Z, Xiao J, Shi Y. Preparation and properties of T-ZnOw enhanced BCP scaffolds with double-layer structure by digital light processing. J Adv Ceram. [DOI: 10.1007/s40145-021-0557-z] [Reference Citation Analysis]
54 Truite CVR, Noronha JNG, Prado GC, Santos LN, Palácios RS, do Nascimento A, Volnistem EA, da Silva Crozatti TT, Francisco CP, Sato F, Weinand WR, Hernandes L, Matioli G. Bioperformance Studies of Biphasic Calcium Phosphate Scaffolds Extracted from Fish Bones Impregnated with Free Curcumin and Complexed with β-Cyclodextrin in Bone Regeneration. Biomolecules 2022;12:383. [DOI: 10.3390/biom12030383] [Reference Citation Analysis]
55 Kirillova A, Kelly C, von Windheim N, Gall K. Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2018;7:e1800467. [PMID: 29938916 DOI: 10.1002/adhm.201800467] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
56 Li X, Zou Q, Chen H, Li W. In vivo changes of nanoapatite crystals during bone reconstruction and the differences with native bone apatite. Sci Adv 2019;5:eaay6484. [PMID: 31763458 DOI: 10.1126/sciadv.aay6484] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
57 Qu H. Additive manufacturing for bone tissue engineering scaffolds. Materials Today Communications 2020;24:101024. [DOI: 10.1016/j.mtcomm.2020.101024] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 10.5] [Reference Citation Analysis]
58 Visentin F, El Habra N, Fabrizio M, Brianese N, Gerbasi R, Nodari L, Zin V, Galenda A. TiO2-HA bi-layer coatings for improving the bioactivity and service-life of Ti dental implants. Surface and Coatings Technology 2019;378:125049. [DOI: 10.1016/j.surfcoat.2019.125049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
59 Zhao Q, Tang H, Ren L, Wei J. In vitro Apatite Mineralization, Degradability, Cytocompatibility and in vivo New Bone Formation and Vascularization of Bioactive Scaffold of Polybutylene Succinate/Magnesium Phosphate/Wheat Protein Ternary Composite. Int J Nanomedicine 2020;15:7279-95. [PMID: 33061381 DOI: 10.2147/IJN.S255477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Lin YY, Schuphan J, Dickmeis C, Buhl EM, Commandeur U, Fischer H. Attachment of Ultralow Amount of Engineered Plant Viral Nanoparticles to Mesenchymal Stem Cells Enhances Osteogenesis and Mineralization. Adv Healthc Mater 2020;9:e2001245. [PMID: 32940006 DOI: 10.1002/adhm.202001245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
61 Sundar R, Joseph J, Babu S, Varma H, John A, Abraham A. 3D-bulk to nanoforms of modified hydroxyapatite: Characterization and osteogenic potency in an in vitro 3D bone model system. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34918849 DOI: 10.1002/jbm.b.34989] [Reference Citation Analysis]
62 Sfeir G, Zogheib C, Patel S, Giraud T, Nagendrababu V, Bukiet F. Calcium Silicate-Based Root Canal Sealers: A Narrative Review and Clinical Perspectives. Materials (Basel) 2021;14:3965. [PMID: 34300886 DOI: 10.3390/ma14143965] [Reference Citation Analysis]
63 Pistone A, Celesti C, Piperopoulos E, Ashok D, Cembran A, Tricoli A, Nisbet D. Engineering of Chitosan-Hydroxyapatite-Magnetite Hierarchical Scaffolds for Guided Bone Growth. Materials (Basel) 2019;12:E2321. [PMID: 31330857 DOI: 10.3390/ma12142321] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
64 Wattanaanek N, Suttapreyasri S, Samruajbenjakun B. 3D Printing of Calcium Phosphate/Calcium Sulfate with Alginate/Cellulose-Based Scaffolds for Bone Regeneration: Multilayer Fabrication and Characterization. JFB 2022;13:47. [DOI: 10.3390/jfb13020047] [Reference Citation Analysis]
65 Iaquinta MR, Mazzoni E, Manfrini M, D'Agostino A, Trevisiol L, Nocini R, Trombelli L, Barbanti-Brodano G, Martini F, Tognon M. Innovative Biomaterials for Bone Regrowth. Int J Mol Sci 2019;20:E618. [PMID: 30709008 DOI: 10.3390/ijms20030618] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 15.3] [Reference Citation Analysis]
66 Marcello E, Maqbool M, Nigmatullin R, Cresswell M, Jackson PR, Basnett P, Knowles JC, Boccaccini AR, Roy I. Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration. Front Bioeng Biotechnol 2021;9:647007. [PMID: 33898403 DOI: 10.3389/fbioe.2021.647007] [Reference Citation Analysis]
67 Sassoni E, Graziani G, Franzoni E, Scherer GW. Conversion of calcium sulfate dihydrate into calcium phosphates as a route for conservation of gypsum stuccoes and sulfated marble. Construction and Building Materials 2018;170:290-301. [DOI: 10.1016/j.conbuildmat.2018.03.075] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
68 Geuli O, Metoki N, Zada T, Reches M, Eliaz N, Mandler D. Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J Mater Chem B 2017;5:7819-30. [PMID: 32264383 DOI: 10.1039/c7tb02105d] [Cited by in Crossref: 48] [Cited by in F6Publishing: 8] [Article Influence: 9.6] [Reference Citation Analysis]
69 Lowe B, Ottensmeyer MP, Xu C, He Y, Ye Q, Troulis MJ. The Regenerative Applicability of Bioactive Glass and Beta-Tricalcium Phosphate in Bone Tissue Engineering: A Transformation Perspective. J Funct Biomater 2019;10:E16. [PMID: 30909518 DOI: 10.3390/jfb10010016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
70 Corrêa T, Toledo R, Silva N, Holanda J. Novel nano-sized biphasic calcium phosphate bioceramics (β-CPP/β-TCP) derived of lime mud waste. Materials Letters 2019;243:17-20. [DOI: 10.1016/j.matlet.2019.02.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
71 Li Y, Zhang Q, Xie X, Xiao D, Lin Y. Review of craniofacial regeneration in China. J Oral Rehabil 2020;47 Suppl 1:107-17. [PMID: 30868603 DOI: 10.1111/joor.12793] [Reference Citation Analysis]
72 Alagarsamy K, Vishwakarma V, Kaliaraj GS, Kanagasabai V, Ramasamy S. Investigating biological impact of HAp from goat femur reinforced with Zr–Ag for bone tissue engineering application. J Korean Ceram Soc . [DOI: 10.1007/s43207-022-00199-9] [Reference Citation Analysis]
73 Barua R, Daly-Seiler CS, Chenreghanianzabi Y, Markel D, Li Y, Zhou M, Ren W. Comparing the physicochemical properties of dicalcium phosphate dihydrate (DCPD) and polymeric DCPD (P-DCPD) cement particles. J Biomed Mater Res B Appl Biomater 2021;109:1644-55. [PMID: 33655715 DOI: 10.1002/jbm.b.34822] [Reference Citation Analysis]
74 Kjalarsdóttir L, Dýrfjörd A, Dagbjartsson A, Laxdal EH, Örlygsson G, Gíslason J, Einarsson JM, Ng CH, Jónsson H Jr. Bone remodeling effect of a chitosan and calcium phosphate-based composite. Regen Biomater 2019;6:241-7. [PMID: 31402983 DOI: 10.1093/rb/rbz009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
75 Srinath P, Abdul Azeem P, Venugopal Reddy K. Review on calcium silicate‐based bioceramics in bone tissue engineering. Int J Appl Ceram Technol 2020;17:2450-64. [DOI: 10.1111/ijac.13577] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
76 Zhang Y, Lin T, Meng H, Wang X, Peng H, Liu G, Wei S, Lu Q, Wang Y, Wang A, Xu W, Shao H, Peng J. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. Journal of Orthopaedic Translation 2022;33:13-23. [DOI: 10.1016/j.jot.2021.11.005] [Reference Citation Analysis]
77 Epple M, Enax J, Meyer F. Prevention of Caries and Dental Erosion by Fluorides-A Critical Discussion Based on Physico-Chemical Data and Principles. Dent J (Basel) 2022;10:6. [PMID: 35049604 DOI: 10.3390/dj10010006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Boonrawd W, Awad KR, Varanasi V, Meletis EI. Wettability and in-vitro study of titanium surface profiling prepared by electrolytic plasma processing. Surf Coat Technol 2021;414:127119. [PMID: 34966191 DOI: 10.1016/j.surfcoat.2021.127119] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
79 Khalifehzadeh R, Arami H. DNA-Templated Strontium-Doped Calcium Phosphate Nanoparticles for Gene Delivery in Bone Cells. ACS Biomater Sci Eng 2019;5:3201-11. [PMID: 31592442 DOI: 10.1021/acsbiomaterials.8b01587] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
80 Costa-Pinto AR, Lemos AL, Tavaria FK, Pintado M. Chitosan and Hydroxyapatite Based Biomaterials to Circumvent Periprosthetic Joint Infections. Materials (Basel) 2021;14:804. [PMID: 33567675 DOI: 10.3390/ma14040804] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
81 Cai J, Ai C, Chen J, Chen S. Biomineralizaion of hydroxyapatite on polyethylene terephthalate artificial ligaments promotes graft-bone healing after anterior cruciate ligament reconstruction: An in vitro and in vivo study. J Biomater Appl 2020;35:193-204. [PMID: 32338167 DOI: 10.1177/0885328220921530] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Ribeiro SBN, da Veiga Junior VF, de Campos JB, dos Santos JL, Lopes IJVR, da Rocha DN, da Silva MHP. Influences of biosilica content from Amazonian freshwater sponge on calcium phosphates. J Aust Ceram Soc 2021;57:55-65. [DOI: 10.1007/s41779-020-00509-6] [Reference Citation Analysis]
83 Borkowski L, Przekora A, Belcarz A, Palka K, Jojczuk M, Lukasiewicz P, Nogalski A, Ginalska G. Highly Porous Fluorapatite/β-1,3-Glucan Composite for Bone Tissue Regeneration: Characterization and In-Vitro Assessment of Biomedical Potential. Int J Mol Sci 2021;22:10414. [PMID: 34638753 DOI: 10.3390/ijms221910414] [Reference Citation Analysis]
84 Saulacic N, Fujioka-Kobayashi M, Kimura Y, Bracher AI, Zihlmann C, Lang NP. The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. J Mater Sci Mater Med 2021;32:14. [PMID: 33475862 DOI: 10.1007/s10856-020-06483-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
85 Pina S, Rebelo R, Correlo VM, Oliveira JM, Reis RL. Bioceramics for Osteochondral Tissue Engineering and Regeneration. In: Oliveira JM, Pina S, Reis RL, San Roman J, editors. Osteochondral Tissue Engineering. Cham: Springer International Publishing; 2018. pp. 53-75. [DOI: 10.1007/978-3-319-76711-6_3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
86 Sapino S, Chindamo G, Chirio D, Manzoli M, Peira E, Riganti C, Gallarate M. Calcium Phosphate-Coated Lipid Nanoparticles as a Potential Tool in Bone Diseases Therapy. Nanomaterials (Basel) 2021;11:2983. [PMID: 34835747 DOI: 10.3390/nano11112983] [Reference Citation Analysis]
87 Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. J Mater Sci: Mater Med 2020;31. [DOI: 10.1007/s10856-020-06364-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
88 Shaban NZ, Kenawy MY, Taha NA, Abd El-Latif MM, Ghareeb DA. Synthesized Nanorods Hydroxyapatite by Microwave-Assisted Technology for In Vitro Osteoporotic Bone Regeneration through Wnt/β-Catenin Pathway. Materials (Basel) 2021;14:5823. [PMID: 34640220 DOI: 10.3390/ma14195823] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
89 Hu X, Xu R, Yu X, Chen J, Wan S, Ouyang J, Deng F. Enhanced antibacterial efficacy of selective laser melting titanium surface with nanophase calcium phosphate embedded to TiO 2 nanotubes. Biomed Mater 2018;13:045015. [DOI: 10.1088/1748-605x/aac1a3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
90 Gao C, Yao M, Shuai C, Feng P, Peng S. Advances in biocermets for bone implant applications. Bio-des Manuf 2020;3:307-30. [DOI: 10.1007/s42242-020-00087-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Díaz-Arca A, Ros-Tárraga P, Tomé MJM, De Aza AH, Meseguer-Olmo L, Mazón P, De Aza PN. Micro-/Nano-Structured Ceramic Scaffolds That Mimic Natural Cancellous Bone. Materials (Basel) 2021;14:1439. [PMID: 33809533 DOI: 10.3390/ma14061439] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 Kozelskaya A, Kulkova S, Fedotkin A, Bolbasov E, Zhukov Y, Stipniece L, Bakulin A, Useinov A, Shesterikov E, Locs J, Tverdokhlebov S. Radio frequency magnetron sputtering of Sr- and Mg-substituted β-tricalcium phosphate: Analysis of the physicochemical properties and deposition rate of coatings. Applied Surface Science 2020;509:144763. [DOI: 10.1016/j.apsusc.2019.144763] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
93 Grün NG, Donohue N, Holweg P, Weinberg A. Resorbierbare Implantate in der Unfallchirurgie. J Miner Stoffwechs Muskuloskelet Erkrank 2018;25:82-9. [DOI: 10.1007/s41970-018-0041-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 He H, Ren H, Ding Z, Ji M, Chen H, Yan Y. Developing a novel magnesium calcium phosphate/sodium alginate composite cement with high strength and proper self-setting time for bone repair. J Biomater Appl 2021;36:346-57. [PMID: 34053305 DOI: 10.1177/08853282211021535] [Reference Citation Analysis]
95 Grigoraviciute-puroniene I, Zarkov A, Tsuru K, Ishikawa K, Kareiva A. A novel synthetic approach for the calcium hydroxyapatite from the food products. J Sol-Gel Sci Technol 2019;91:63-71. [DOI: 10.1007/s10971-019-05020-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
96 Sassoni E. Hydroxyapatite and Other Calcium Phosphates for the Conservation of Cultural Heritage: A Review. Materials (Basel) 2018;11:E557. [PMID: 29617322 DOI: 10.3390/ma11040557] [Cited by in Crossref: 45] [Cited by in F6Publishing: 13] [Article Influence: 11.3] [Reference Citation Analysis]
97 Luginina M, Orru R, Cao G, Grossin D, Brouillet F, Chevallier G, Thouron C, Drouet C. First successful stabilization of consolidated amorphous calcium phosphate (ACP) by cold sintering: toward highly-resorbable reactive bioceramics. J Mater Chem B 2020;8:629-35. [DOI: 10.1039/c9tb02121c] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
98 Venkatraman SK, Swamiappan S. Review on calcium- and magnesium-based silicates for bone tissue engineering applications. J Biomed Mater Res A 2020;108:1546-62. [PMID: 32170908 DOI: 10.1002/jbm.a.36925] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 13.5] [Reference Citation Analysis]
99 Garibay-Alvarado JA, Herrera-Ríos EB, Vargas-Requena CL, de Jesús Ruíz-Baltazar Á, Reyes-López SY. Cell behavior on silica-hydroxyapatite coaxial composite. PLoS One 2021;16:e0246256. [PMID: 33974626 DOI: 10.1371/journal.pone.0246256] [Reference Citation Analysis]
100 Bigham A, Foroughi F, Rezvani Ghomi E, Rafienia M, Neisiany RE, Ramakrishna S. The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Bio-des Manuf 2020;3:281-306. [DOI: 10.1007/s42242-020-00094-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
101 Herber V, Okutan B, Antonoglou G, G Sommer N, Payer M. Bioresorbable Magnesium-Based Alloys as Novel Biomaterials in Oral Bone Regeneration: General Review and Clinical Perspectives. J Clin Med 2021;10:1842. [PMID: 33922759 DOI: 10.3390/jcm10091842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021. [PMID: 33871951 DOI: 10.1002/jbm.b.34835] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
103 Guan K, Zhang L, Zhu F, Sheng H, Li H. Surface modification for carbon/carbon composites with Mg-CaP coating reinforced by SiC nanowire‑carbon nanotube hybrid for biological application. Applied Surface Science 2019;489:856-66. [DOI: 10.1016/j.apsusc.2019.05.370] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
104 Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A 2018;106:2552-62. [PMID: 29689623 DOI: 10.1002/jbm.a.36433] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
105 Guan K, Zhang L, Zhu F, Li H, Sheng H, Guo Y. Multi-layer SiC-graphene oxide-hydroxyapatite bioactive coating for carbon/carbon composites. Journal of Alloys and Compounds 2020;821:153543. [DOI: 10.1016/j.jallcom.2019.153543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
106 Chen X, Taguchi T. Injectable, Non‐Diffusible, and Pre‐Filled Bone Paste Composed of α‐Tricalcium Phosphate and Hydrophobically Modified Poly(Vinyl Alcohol). Adv Eng Mater 2019;21:1900660. [DOI: 10.1002/adem.201900660] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
107 Margenot AJ, Kitt D, Gramig BM, Berkshire TB, Chatterjee N, Hertzberger AJ, Aguiar S, Furneaux A, Sharma N, Cusick RD. Toward a Regional Phosphorus (Re)cycle in the US Midwest. J environ qual 2019;48:1397-413. [DOI: 10.2134/jeq2019.02.0068] [Cited by in Crossref: 11] [Article Influence: 3.7] [Reference Citation Analysis]
108 Shahin M, Munir K, Wen C, Li Y. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. Acta Biomaterialia 2019;96:1-19. [DOI: 10.1016/j.actbio.2019.06.007] [Cited by in Crossref: 42] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
109 Flegeau K, Gauthier O, Rethore G, Autrusseau F, Schaefer A, Lesoeur J, Veziers J, Brésin A, Gautier H, Weiss P. Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits. Biomater Sci 2021;9:5640-51. [PMID: 34254604 DOI: 10.1039/d1bm00403d] [Reference Citation Analysis]
110 Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021;123:123-53. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
111 Bellucci D, Braccini S, Chiellini F, Balasubramanian P, Boccaccini AR, Cannillo V. Bioactive glasses and glass‐ceramics versus hydroxyapatite: Comparison of angiogenic potential and biological responsiveness. J Biomed Mater Res 2019;107:2601-9. [DOI: 10.1002/jbm.a.36766] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
112 Martinez-Marquez D, Delmar Y, Sun S, Stewart RA. Exploring Macroporosity of Additively Manufactured Titanium Metamaterials for Bone Regeneration with Quality by Design: A Systematic Literature Review. Materials (Basel) 2020;13:E4794. [PMID: 33121025 DOI: 10.3390/ma13214794] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
113 Dong S, Zhang YN, Wan J, Cui R, Yu X, Zhao G, Lin K. A novel multifunctional carbon aerogel-coated platform for osteosarcoma therapy and enhanced bone regeneration. J Mater Chem B 2020;8:368-79. [PMID: 31782474 DOI: 10.1039/c9tb02383f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 17.0] [Reference Citation Analysis]
114 Pajor K, Pajchel Ł, Zgadzaj A, Piotrowska U, Kolmas J. Modifications of Hydroxyapatite by Gallium and Silver Ions-Physicochemical Characterization, Cytotoxicity and Antibacterial Evaluation. Int J Mol Sci 2020;21:E5006. [PMID: 32679901 DOI: 10.3390/ijms21145006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 Topsakal A, Ekren N, Kilic O, Oktar FN, Mahirogullari M, Ozkan O, Sasmazel HT, Turk M, Bogdan IM, Stan GE, Gunduz O. Synthesis and characterization of antibacterial drug loaded β-tricalcium phosphate powders for bone engineering applications. J Mater Sci Mater Med 2020;31:16. [PMID: 31965360 DOI: 10.1007/s10856-019-6356-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Yu L, Xia K, Gong C, Chen J, Li W, Zhao Y, Guo W, Dai H. An injectable bioactive magnesium phosphate cement incorporating carboxymethyl chitosan for bone regeneration. International Journal of Biological Macromolecules 2020;160:101-11. [DOI: 10.1016/j.ijbiomac.2020.05.161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
117 Al-amin M, Abdul Rani AM, Abdu Aliyu AA, Bryant MG, Danish M, Ahmad A. Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review. Materials and Manufacturing Processes 2020;35:1157-80. [DOI: 10.1080/10426914.2020.1772483] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
118 Foroutan F, Mcguire J, Gupta P, Nikolaou A, Kyffin BA, Kelly NL, Hanna JV, Gutierrez-merino J, Knowles JC, Baek S, Velliou E, Carta D. Antibacterial Copper-Doped Calcium Phosphate Glasses for Bone Tissue Regeneration. ACS Biomater Sci Eng 2019;5:6054-62. [DOI: 10.1021/acsbiomaterials.9b01291] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
119 Wang H, Zhang X, Mani M, Jaganathan S, Huang Y, Wang C. Microwave-Assisted Dip Coating of Aloe Vera on Metallocene Polyethylene Incorporated with Nano-Rods of Hydroxyapaptite for Bone Tissue Engineering. Coatings 2017;7:182. [DOI: 10.3390/coatings7110182] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
120 Go EJ, Kang EY, Lee SK, Park S, Kim JH, Park W, Kim IH, Choi B, Han DK. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH)2 to improve in vivo bone regeneration. Biomater Sci 2020;8:937-48. [PMID: 31833498 DOI: 10.1039/c9bm01864f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
121 Streckova M, Sopcak T, Stulajterova R, Giretova M, Medvecky L, Kovalcikova A, Balazsi K. Needle-less electrospinning employed for calcium and magnesium phosphate coatings on titanium substrates. Surface and Coatings Technology 2018;340:177-89. [DOI: 10.1016/j.surfcoat.2018.02.063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
122 Xia P, Zhang K, Yan S, Li G, Yin J. Biomimetic, biodegradable, and osteoinductive Microgels with open porous structure and excellent injectability for construction of microtissues for bone tissue engineering. Chemical Engineering Journal 2021;414:128714. [DOI: 10.1016/j.cej.2021.128714] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
123 Figueroa-rosales EX, Martínez-juárez J, García-díaz E, Hernández-cruz D, Sabinas-hernández SA, Robles-águila MJ. Photoluminescent Properties of Hydroxyapatite and Hydroxyapatite/Multi-Walled Carbon Nanotube Composites. Crystals 2021;11:832. [DOI: 10.3390/cryst11070832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Kaya Y, Jodati H, Evis Z. Effects of biomimetic synthesis route and sintering temperature on physicochemical, microstructural, and mechanical properties of hydroxyapatite. J Aust Ceram Soc 2021;57:1117-29. [DOI: 10.1007/s41779-021-00609-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Kumari R, Yadav KB, Barole S, Archana K, Besra L. Microstructural characterisation and wettability behaviour of nano-HA coating on Ti-6Al-4V alloy by electrophoretic deposition method (EPD). Advances in Materials and Processing Technologies. [DOI: 10.1080/2374068x.2021.1959106] [Reference Citation Analysis]
126 Yan C, Ma H, Luo Z, Zhou X, Wang L. Influence of Phosphorus Sources on the Compressive Strength and Microstructure of Ferronickel Slag-Based Magnesium Phosphate Cement. Materials 2022;15:1965. [DOI: 10.3390/ma15051965] [Reference Citation Analysis]
127 Neupane GP, Zhang L, Yildirim T, Zhou K, Wang B, Tang Y, Ma W, Xue Y, Lu Y. A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures. Nano Res 2020;13:1-17. [DOI: 10.1007/s12274-019-2585-3] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
128 Fadeeva IV, Trofimchuk ES, Forysenkova AA, Ahmed AI, Gnezdilov OI, Davydova GA, Kozlova SG, Antoniac A, Rau JV. Composite Polyvinylpyrrolidone-Sodium Alginate-Hydroxyapatite Hydrogel Films for Bone Repair and Wound Dressings Applications. Polymers (Basel) 2021;13:3989. [PMID: 34833286 DOI: 10.3390/polym13223989] [Reference Citation Analysis]
129 Chatterjee C, Schertl P, Frommer M, Ludwig-Husemann A, Mohra A, Dilger N, Naolou T, Meermeyer S, Bergmann TC, Alonso Calleja A, Lee-Thedieck C. Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomater 2021:S1742-7061(21)00211-7. [PMID: 33813090 DOI: 10.1016/j.actbio.2021.03.061] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Hosseini FS, Nair LS, Laurencin CT. Inductive Materials for Regenerative Engineering. J Dent Res 2021;100:1011-9. [PMID: 33906507 DOI: 10.1177/00220345211010436] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Gong C, Fang S, Xia K, Chen J, Guo L, Guo W. Enhancing the mechanical properties and cytocompatibility of magnesium potassium phosphate cement by incorporating oxygen-carboxymethyl chitosan. Regen Biomater 2021;8:rbaa048. [PMID: 33732494 DOI: 10.1093/rb/rbaa048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Kim JA, Yun HS, Choi YA, Kim JE, Choi SY, Kwon TG, Kim YK, Kwon TY, Bae MA, Kim NJ, Bae YC, Shin HI, Park EK. Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 2018;157:51-61. [PMID: 29245051 DOI: 10.1016/j.biomaterials.2017.11.032] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 8.2] [Reference Citation Analysis]
133 Koizumi D, Suzuki K, Minamisawa H, Togawa R, Yasui K, Iohara K, Honda M, Aizawa M. Preparation of protamine-adsorbed calcium phosphate powders and their antibacterial property. Journal of Asian Ceramic Societies. [DOI: 10.1080/21870764.2022.2035488] [Reference Citation Analysis]
134 Turan Y, Kalkandelen C, Palaci Y, Sahin A, Gokce H, Gunduz O, Ben-nissan B. Synthesis and cytotoxicity analysis of porous β-TCP/starch bioceramics. J Aust Ceram Soc. [DOI: 10.1007/s41779-022-00702-9] [Reference Citation Analysis]
135 Tomala AM, Słota D, Florkiewicz W, Piętak K, Dyląg M, Sobczak-kupiec A. Tribological Properties and Physiochemical Analysis of Polymer-Ceramic Composite Coatings for Bone Regeneration. Lubricants 2022;10:58. [DOI: 10.3390/lubricants10040058] [Reference Citation Analysis]
136 Alejandro Chanes-cuevas O, Perez-soria A, Cruz-maya I, Guarino V, Antonio Alvarez-perez M; 1 Tissue Bioengineering Laboratory, DEPeI-FO, Universidad Nacional Autónoma de México, Mexico, 2 Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Italy. . AIMS Materials Science 2018;5:1124-40. [DOI: 10.3934/matersci.2018.6.1124] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
137 Gao J, Su Y, Qin YX. Calcium phosphate coatings enhance biocompatibility and degradation resistance of magnesium alloy: Correlating in vitro and in vivo studies. Bioact Mater 2021;6:1223-9. [PMID: 33210020 DOI: 10.1016/j.bioactmat.2020.10.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
138 Brown ME, Puetzer JL. Driving Native-like Zonal Enthesis Formation in Engineered Ligaments Using Mechanical Boundary Conditions and β-Tricalcium Phosphate. Acta Biomater 2021:S1742-7061(21)00827-8. [PMID: 34954418 DOI: 10.1016/j.actbio.2021.12.020] [Reference Citation Analysis]
139 Nathanael AJ, Oyane A, Nakamura M, Koga K, Nishida E, Tanaka S, Miyaji H. Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process. Heliyon 2018;4:e00734. [PMID: 30140767 DOI: 10.1016/j.heliyon.2018.e00734] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
140 Keppler AM, Saller MM, Alberton P, Westphal I, Heidenau F, Schönitzer V, Böcker W, Kammerlander C, Schieker M, Aszodi A, Neuerburg C. Bone defect reconstruction with a novel biomaterial containing calcium phosphate and aluminum oxide reinforcement. J Orthop Surg Res 2020;15:287. [PMID: 32727506 DOI: 10.1186/s13018-020-01801-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
141 Moskalewicz T, Warcaba M, Cieniek Ł, Sitarz M, Gajewska M, Boccaccini AR. Hydroxyapatite/sodium alginate coatings electrophoretically deposited on titanium substrates: microstructure and properties. Applied Surface Science 2021;540:148353. [DOI: 10.1016/j.apsusc.2020.148353] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
142 Su Y, Cockerill I, Zheng Y, Tang L, Qin YX, Zhu D. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater 2019;4:196-206. [PMID: 31193406 DOI: 10.1016/j.bioactmat.2019.05.001] [Cited by in Crossref: 77] [Cited by in F6Publishing: 46] [Article Influence: 25.7] [Reference Citation Analysis]
143 Li X, Zou Q, Chen L, Li W. A ternary doped single matrix material with dual functions of bone repair and multimodal tracking for applications in orthopedics and dentistry. J Mater Chem B 2018;6:6047-56. [PMID: 32254815 DOI: 10.1039/c8tb02041h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
144 Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021;6:e10206. [PMID: 34027093 DOI: 10.1002/btm2.10206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
145 Goldmann WH. Biosensitive and antibacterial coatings on metallic material for medical applications. Cell Biol Int 2021;45:1624-32. [PMID: 33818836 DOI: 10.1002/cbin.11604] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Ke X, Zhang L, Yang X, Wang J, Zhuang C, Jin Z, Liu A, Zhao T, Xu S, Gao C, Gou Z, Yang G. Low-melt bioactive glass-reinforced 3D printing akermanite porous cages with highly improved mechanical properties for lumbar spinal fusion. J Tissue Eng Regen Med 2018;12:1149-62. [DOI: 10.1002/term.2624] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
147 Duta L, Dorcioman G, Grumezescu V. A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards. Nanomaterials (Basel) 2021;11:2856. [PMID: 34835621 DOI: 10.3390/nano11112856] [Reference Citation Analysis]
148 Sarian MN, Iqbal N, Sotoudehbagha P, Razavi M, Ahmed QU, Sukotjo C, Hermawan H. Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioactive Materials 2022;12:42-63. [DOI: 10.1016/j.bioactmat.2021.10.034] [Reference Citation Analysis]
149 Vassal MF, Nunes-pereira J, Miguel SP, Correia IJ, Silva AP. Microstructural, mechanical and biological properties of hydroxyapatite - CaZrO3 biocomposites. Ceramics International 2019;45:8195-203. [DOI: 10.1016/j.ceramint.2019.01.122] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
150 Ghedjemis A, Ayeche R, Benouadah A. A comparative study on physicochemical properties of hydroxyapatite powder prepared from bovine and dromedary bone. J Aust Ceram Soc. [DOI: 10.1007/s41779-022-00721-6] [Reference Citation Analysis]
151 Millan C, Vivanco JF, Benjumeda-Wijnhoven IM, Bjelica S, Santibanez JF. Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. Adv Exp Med Biol 2018;1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
152 Navarrete-segado P, Tourbin M, Frances C, Grossin D. Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties. Open Ceramics 2022. [DOI: 10.1016/j.oceram.2022.100235] [Reference Citation Analysis]
153 Carella F, Degli Esposti L, Adamiano A, Iafisco M. The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. Materials (Basel) 2021;14:6398. [PMID: 34771927 DOI: 10.3390/ma14216398] [Reference Citation Analysis]
154 Wei Y, Gao H, Hao L, Shi X, Wang Y. Constructing a Sr2+-Substituted Surface Hydroxyapatite Hexagon-Like Microarray on 3D-Plotted Hydroxyapatite Scaffold to Regulate Osteogenic Differentiation. Nanomaterials (Basel) 2020;10:E1672. [PMID: 32859069 DOI: 10.3390/nano10091672] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
155 Figueiredo L, Makhni EC, Dierks M, Ferreira FC, Finkelstein S. Early cost estimating model for new bioabsorbable orthopedic implant candidates: A theoretical study. J Mech Behav Biomed Mater 2021;124:104731. [PMID: 34500353 DOI: 10.1016/j.jmbbm.2021.104731] [Reference Citation Analysis]
156 Deng Y, Wei W, Tang P. Applications of Calcium-Based Nanomaterials in Osteoporosis Treatment. ACS Biomater Sci Eng 2022. [PMID: 35080365 DOI: 10.1021/acsbiomaterials.1c01306] [Reference Citation Analysis]
157 Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021;4:542-63. [DOI: 10.3390/ceramics4040039] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
158 Sánchez-campos D, Mendoza-anaya D, Reyes-valderrama M, Esteban-gómez S, Rodríguez-lugo V. Cationic surfactant at high pH in microwave HAp synthesis. Materials Letters 2020;265:127416. [DOI: 10.1016/j.matlet.2020.127416] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
159 Li C, Hao W, Wu C, Li W, Tao J, Ai F, Xin H, Wang X. Injectable and bioactive bone cement with moderate setting time and temperature using borosilicate bio-glass-incorporated magnesium phosphate. Biomed Mater 2020;15:045015. [PMID: 31851951 DOI: 10.1088/1748-605X/ab633f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
160 Xiang Z, Wu Q, Wang Y, Wang P, He Y, Li J. eIF2α-ATF4 Pathway Activated by a Change in the Calcium Environment Participates in BCP-Mediated Bone Regeneration. ACS Biomater Sci Eng 2021;7:3256-68. [PMID: 34191473 DOI: 10.1021/acsbiomaterials.0c01802] [Reference Citation Analysis]
161 Petrakova NV, Teterina AY, Mikheeva PV, Akhmedova SA, Kuvshinova EA, Sviridova IK, Sergeeva NS, Smirnov IV, Fedotov AY, Kargin YF, Barinov SM, Komlev VS. In Vitro Study of Octacalcium Phosphate Behavior in Different Model Solutions. ACS Omega 2021;6:7487-98. [PMID: 33778261 DOI: 10.1021/acsomega.0c06016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
162 Paulo S, Laranjo M, Paula A, Abrantes AM, Martins J, Marto CM, Coelho A, Casalta-Lopes J, Carvalho L, Carrilho E, Serra A, Botelho MF, Marques Ferreira M. Calcium Phosphate Ceramics Can Prevent Bisphosphonate-Related Osteonecrosis of the Jaw. Materials (Basel) 2020;13:E1955. [PMID: 32331240 DOI: 10.3390/ma13081955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
163 Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 2019;9:26252-62. [DOI: 10.1039/c9ra05214c] [Cited by in Crossref: 127] [Cited by in F6Publishing: 1] [Article Influence: 42.3] [Reference Citation Analysis]
164 Warindra T, Edward M, Hernugrahanto KD, Rantam FA, Mahyudin F, Basuki MH, Bari YA. Implantation of bovine hydroxyapatite and secretome with different oxygen concentration may improve massive bone defect regeneration: An experimental study on animal model. J Biomater Appl 2021;:8853282211051806. [PMID: 34911392 DOI: 10.1177/08853282211051806] [Reference Citation Analysis]
165 Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020;21:1037-59. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
166 Sinusaite L, Kareiva A, Zarkov A. Thermally Induced Crystallization and Phase Evolution of Amorphous Calcium Phosphate Substituted with Divalent Cations Having Different Sizes. Crystal Growth & Design 2021;21:1242-8. [DOI: 10.1021/acs.cgd.0c01534] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
167 El Hazzat M, El Hamidi A, Halim M, Arsalane S. Complex evolution of phase during the thermal investigation of Brushite-type calcium phosphate CaHPO4•2H2O. Materialia 2021;16:101055. [DOI: 10.1016/j.mtla.2021.101055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
168 Beheshtizadeh N, Azami M, Abbasi H, Farzin A. Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.12.012] [Reference Citation Analysis]
169 Santos MLD, Almeida Filho ED, Silva VPD, Tranquilin RL, Carnietto JDS, Guastaldi AC, Perreira RMS, Riccardi CDS. Preparation of Laser-Modified Ti-15Mo Surfaces With Multiphase Calcium Phosphate Coatings. Mat Res 2020;23:e20190594. [DOI: 10.1590/1980-5373-mr-2019-0594] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
170 Las DE, Verwilghen D, Mommaerts MY. A systematic review of cranioplasty material toxicity in human subjects. J Craniomaxillofac Surg 2021;49:34-46. [PMID: 33257187 DOI: 10.1016/j.jcms.2020.10.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
171 Wu V, Uskoković V. Waiting for Aπαταω: 250 Years Later. Found Sci 2019;24:617-40. [PMID: 31938016 DOI: 10.1007/s10699-019-09602-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
172 Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 2019;269:219-35. [PMID: 31096075 DOI: 10.1016/j.cis.2019.04.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
173 Shi Y, Yu L, Gong C, Li W, Zhao Y, Guo W. A bioactive magnesium phosphate cement incorporating chondroitin sulfate for bone regeneration. Biomed Mater 2021;16. [PMID: 33827063 DOI: 10.1088/1748-605X/abf5c4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Bernard F, Terrier LM, Michalak S, Velut S. Hydrogen Peroxide Head Preparation: Enabling Cuttings and Anatomic Studies of Skull Base Dura Mater and Arachnoid Without Use of Drilling. World Neurosurg 2018;119:325-30. [PMID: 30144618 DOI: 10.1016/j.wneu.2018.08.041] [Reference Citation Analysis]
175 Rajendran A, Pattanayak DK. Mechanistic studies of biomineralisation on silver incorporated anatase TiO2. Mater Sci Eng C Mater Biol Appl 2020;109:110558. [PMID: 32228955 DOI: 10.1016/j.msec.2019.110558] [Reference Citation Analysis]
176 Gomes G, Borghi F, Ospina R, López E, Borges F, Mello A. Nd:YAG (532 nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature. Surface and Coatings Technology 2017;329:174-83. [DOI: 10.1016/j.surfcoat.2017.09.008] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 6.8] [Reference Citation Analysis]
177 Zhou Q, Su C, Zheng J. Photocatalytic HA deposition on TiO2 of Ti-0.2Pd surface immersed in simulated body fluid. Surface and Coatings Technology 2020;389:125649. [DOI: 10.1016/j.surfcoat.2020.125649] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
178 Safronova TV. Inorganic Materials for Regenerative Medicine. Inorg Mater 2021;57:443-74. [DOI: 10.1134/s002016852105006x] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
179 Ye J, Huang B, Gong P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res 2021;16:51. [PMID: 33436038 DOI: 10.1186/s13018-020-02177-5] [Reference Citation Analysis]
180 Prakash J, Kumar TS, Venkataprasanna K, Niranjan R, Kaushik M, Samal DB, Venkatasubbu GD. PVA/alginate/hydroxyapatite films for controlled release of amoxicillin for the treatment of periodontal defects. Applied Surface Science 2019;495:143543. [DOI: 10.1016/j.apsusc.2019.143543] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
181 Uskoković V. Disordering the Disorder as the Route to a Higher Order: Incoherent Crystallization of Calcium Phosphate through Amorphous Precursors. Crystal Growth & Design 2019;19:4340-57. [DOI: 10.1021/acs.cgd.9b00061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
182 Oriňaková R, Gorejová R, Orságová Králová Z, Oriňak A. Surface Modifications of Biodegradable Metallic Foams for Medical Applications. Coatings 2020;10:819. [DOI: 10.3390/coatings10090819] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
183 Tavoni M, Dapporto M, Tampieri A, Sprio S. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. J Compos Sci 2021;5:227. [DOI: 10.3390/jcs5090227] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
184 Sopcak T, Medvecky L, Giretova M, Stulajterova R, Molcanova Z, Podobova M, Girman V. Physical, mechanical and in vitro evaluation of a novel cement based on akermantite and dicalcium phosphate dihydrate phase. Biomed Mater 2019;14:045011. [PMID: 31134897 DOI: 10.1088/1748-605X/ab216d] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
185 Jeuken RM, Roth AK, Peters MJM, Welting TJM, van Rhijn LW, Koenen J, Peters RJRW, Thies JC, Emans PJ. In vitro and in vivo study on the osseointegration of BCP-coated versus uncoated nondegradable thermoplastic polyurethane focal knee resurfacing implants. J Biomed Mater Res B Appl Biomater 2020;108:3370-82. [PMID: 32614486 DOI: 10.1002/jbm.b.34672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
186 Nobre CMG, Pütz N, Hannig M. Adhesion of Hydroxyapatite Nanoparticles to Dental Materials under Oral Conditions. Scanning 2020;2020:6065739. [PMID: 32454927 DOI: 10.1155/2020/6065739] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
187 Ruffini A, Sandri M, Dapporto M, Campodoni E, Tampieri A, Sprio S. Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines 2021;9:916. [PMID: 34440120 DOI: 10.3390/biomedicines9080916] [Reference Citation Analysis]
188 Wu J, Ueda K, Narushima T. Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity. Materials Science and Engineering: C 2020;109:110599. [DOI: 10.1016/j.msec.2019.110599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
189 Elrayah A, Zhi W, Feng S, Al-Ezzi S, Lei H, Weng J. Preparation of Micro/Nano-Structure Copper-Substituted Hydroxyapatite Scaffolds with Improved Angiogenesis Capacity for Bone Regeneration. Materials (Basel) 2018;11:E1516. [PMID: 30142939 DOI: 10.3390/ma11091516] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
190 Zhou Y, Hu Z, Ge M, Jin W, Tang R, Li Q, Xu W, Shi J, Xie Z. Intraosseous Injection of Calcium Phosphate Polymer-Induced Liquid Precursor Increases Bone Density and Improves Early Implant Osseointegration in Ovariectomized Rats. Int J Nanomedicine 2021;16:6217-29. [PMID: 34531654 DOI: 10.2147/IJN.S321882] [Reference Citation Analysis]
191 Lin H, Yin C, Mo A, Hong G. Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration. Materials (Basel) 2021;14:E235. [PMID: 33466543 DOI: 10.3390/ma14010235] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
192 Balu S, Sundaradoss MV, Andra S, Jeevanandam J. Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study. Beilstein J Nanotechnol 2020;11:285-95. [PMID: 32117667 DOI: 10.3762/bjnano.11.21] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
193 Svetlizky D, Zheng B, Vyatskikh A, Das M, Bose S, Bandyopadhyay A, Schoenung JM, Lavernia EJ, Eliaz N. Laser-based directed energy deposition (DED-LB) of advanced materials. Materials Science and Engineering: A 2022;840:142967. [DOI: 10.1016/j.msea.2022.142967] [Reference Citation Analysis]
194 Hwang C, Yun J. Flash sintering of hydroxyapatite ceramics. Journal of Asian Ceramic Societies 2021;9:304-11. [DOI: 10.1080/21870764.2020.1864899] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
195 Srinath P, Abdul Azeem P, Venugopal Reddy K, Chiranjeevi P, Bramanandam M, Prasada Rao R. A novel cost-effective approach to fabricate diopside bioceramics: A promising ceramics for orthopedic applications. Advanced Powder Technology 2021;32:875-84. [DOI: 10.1016/j.apt.2021.01.038] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
196 Mazón P, Ros-tárraga P, Serena S, Meseguer-olmo L, De Aza P. In Vitro Bioactivity and Cell Biocompatibility of a Hypereutectic Bioceramic. Symmetry 2019;11:355. [DOI: 10.3390/sym11030355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
197 Prakasam M, Silvain JF, Largeteau A. Innovative High-Pressure Fabrication Processes for Porous Biomaterials-A Review. Bioengineering (Basel) 2021;8:170. [PMID: 34821736 DOI: 10.3390/bioengineering8110170] [Reference Citation Analysis]
198 Sarin N, Kurakula M, Singh K, Kumar A, Singh D, Arora S. Strontium and selenium doped bioceramics incorporated polyacrylamide-carboxymethylcellulose hydrogel scaffolds: mimicking key features of bone regeneration. Journal of Asian Ceramic Societies 2021;9:531-48. [DOI: 10.1080/21870764.2021.1898168] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Głowacki MJ, Kamińska AM, Gnyba M, Pluciński J, Strąkowski MR. The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process. Sensors (Basel) 2021;21:6468. [PMID: 34640787 DOI: 10.3390/s21196468] [Reference Citation Analysis]
200 Daghrery A, Ferreira JA, de Souza Araújo IJ, Clarkson BH, Eckert GJ, Bhaduri SB, Malda J, Bottino MC. A Highly Ordered, Nanostructured Fluorinated CaP-Coated Melt Electrowritten Scaffold for Periodontal Tissue Regeneration. Adv Healthc Mater 2021;:e2101152. [PMID: 34342173 DOI: 10.1002/adhm.202101152] [Reference Citation Analysis]
201 Kim SG. Immunomodulation for maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020;42:5. [PMID: 32206664 DOI: 10.1186/s40902-020-00249-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
202 Murshed M. Mechanism of Bone Mineralization. Cold Spring Harb Perspect Med 2018;8:a031229. [PMID: 29610149 DOI: 10.1101/cshperspect.a031229] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
203 Roopavath UK, Sah MK, Panigrahi BB, Rath SN. Mechanochemically synthesized phase stable and biocompatible β-tricalcium phosphate from avian eggshell for the development of tissue ingrowth system. Ceramics International 2019;45:12910-9. [DOI: 10.1016/j.ceramint.2019.03.217] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
204 Stamnitz S, Klimczak A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021;10:1925. [PMID: 34440694 DOI: 10.3390/cells10081925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
205 Sobierajska P, Pozniak B, Tikhomirov M, Miller J, Mrowczynska L, Piecuch A, Rewak-Soroczynska J, Dorotkiewicz-Jach A, Drulis-Kawa Z, Wiglusz RJ. Multifunctionality of Nanosized Calcium Apatite Dual-Doped with Li+/Eu3+ Ions Related to Cell Culture Studies and Cytotoxicity Evaluation In Vitro. Biomolecules 2021;11:1388. [PMID: 34572601 DOI: 10.3390/biom11091388] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
206 Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F. Comparison between hydroxyapatite and polycaprolactone in inducing osteogenic differentiation and augmenting maxillary bone regeneration in rats. PeerJ 2022;10:e13356. [DOI: 10.7717/peerj.13356] [Reference Citation Analysis]
207 Mahmoud NS, Ahmed HH, Mohamed MR, Amr KS, Aglan HA, Ali MAM, Tantawy MA. Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology 2020;72:1-22. [PMID: 31722051 DOI: 10.1007/s10616-019-00353-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
208 Chen S, He Y, Zhong L, Xie W, Xue Y, Wang J. Lactoferrin/Calcium Phosphate-Modified Porous Ti by Biomimetic Mineralization: Effective Infection Prevention and Excellent Osteoinduction. Materials (Basel) 2021;14:992. [PMID: 33669904 DOI: 10.3390/ma14040992] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
209 Mosa IF, Youssef M, Kamel M, Mosa OF, Helmy Y. Synergistic antioxidant capacity of CsNPs and CurNPs against cytotoxicity, genotoxicity and pro-inflammatory mediators induced by hydroxyapatite nanoparticles in male rats. Toxicol Res (Camb) 2019;8:939-52. [PMID: 32206303 DOI: 10.1039/c9tx00221a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
210 Tu MG, Sun KT, Wang TH, He YZ, Hsia SM, Tsai BH, Shih YH, Shieh TM. Effects of mineral trioxide aggregate and bioceramics on macrophage differentiation and polarization in vitro. J Formos Med Assoc 2019;118:1458-65. [PMID: 31358435 DOI: 10.1016/j.jfma.2019.07.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
211 Wang X, Langelier B, Shah FA, Korinek A, Bugnet M, Hitchcock AP, Palmquist A, Grandfield K. Biomineralization at Titanium Revealed by Correlative 4D Tomographic and Spectroscopic Methods. Adv Mater Interfaces 2018;5:1800262. [DOI: 10.1002/admi.201800262] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
212 Lopes CDCA, Limirio PHJO, Novais VR, Dechichi P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Applied Spectroscopy Reviews 2018;53:747-69. [DOI: 10.1080/05704928.2018.1431923] [Cited by in Crossref: 45] [Cited by in F6Publishing: 18] [Article Influence: 11.3] [Reference Citation Analysis]
213 Oosterlaken BM, Vena MP, de With G. In Vitro Mineralization of Collagen. Adv Mater 2021;33:e2004418. [PMID: 33711177 DOI: 10.1002/adma.202004418] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
214 Mata NA, Ros-tárraga P, Velasquez P, Murciano A, De Aza PN. Synthesis and characterization of 3D multilayer porous Si–Ca–P scaffolds doped with Sr ions to modulate in vitro bioactivity. Ceramics International 2020;46:968-77. [DOI: 10.1016/j.ceramint.2019.09.058] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
215 Priyam A, Afonso LO, Schultz AG, Singh PP. Investigation into the trophic transfer and acute toxicity of phosphorus-based nano-agromaterials in Caenorhabditis elegans. NanoImpact 2021;23:100327. [DOI: 10.1016/j.impact.2021.100327] [Reference Citation Analysis]
216 Rau JV, Fadeeva IV, Fomin AS, Barbaro K, Galvano E, Ryzhov AP, Murzakhanov F, Gafurov M, Orlinskii S, Antoniac I, Uskoković V. Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties. ACS Biomater Sci Eng 2019;5:6632-44. [PMID: 33423482 DOI: 10.1021/acsbiomaterials.9b01528] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
217 Jung JY, Pissarenko A, Yaraghi NA, Naleway SE, Kisailus D, Meyers MA, McKittrick J. A comparative analysis of the avian skull: Woodpeckers and chickens. J Mech Behav Biomed Mater 2018;84:273-80. [PMID: 29852315 DOI: 10.1016/j.jmbbm.2018.05.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
218 Biesuz M, Galotta A, Motta A, Kermani M, Grasso S, Vontorová J, Tyrpekl V, Vilémová M, Sglavo VM. Speedy bioceramics: Rapid densification of tricalcium phosphate by ultrafast high-temperature sintering. Mater Sci Eng C Mater Biol Appl 2021;127:112246. [PMID: 34225885 DOI: 10.1016/j.msec.2021.112246] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
219 Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res 2017;5:17059. [PMID: 29285402 DOI: 10.1038/boneres.2017.59] [Cited by in Crossref: 241] [Cited by in F6Publishing: 198] [Article Influence: 48.2] [Reference Citation Analysis]
220 Metoki N, Baik SI, Isheim D, Mandler D, Seidman DN, Eliaz N. Atomically resolved calcium phosphate coating on a gold substrate. Nanoscale 2018;10:8451-8. [PMID: 29616690 DOI: 10.1039/c8nr00372f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
221 Liu J, Li L, Zhang R, Xu ZP. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment. Journal of Materials Science & Technology 2021;63:73-80. [DOI: 10.1016/j.jmst.2020.02.029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
222 Lin HY, Lu YJ, Chou HH, Ou KL, Huang BH, Lan WC, Saito T, Cho YC, Ou YH, Yang TS, Peng PW. Biomimetic Ceramic Composite: Characterization, Cell Response, and In Vivo Biocompatibility. Materials (Basel) 2021;14:7374. [PMID: 34885530 DOI: 10.3390/ma14237374] [Reference Citation Analysis]
223 Eugen G, Claus M, Anna-maria S, Niklas D, Philipp S, Andrea E, Andrea M, Elke V. Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential. Bioactive Materials 2023;19:376-91. [DOI: 10.1016/j.bioactmat.2022.04.015] [Reference Citation Analysis]
224 Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials (Basel) 2020;10:E2019. [PMID: 33066127 DOI: 10.3390/nano10102019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
225 Glenske K, Donkiewicz P, Köwitsch A, Milosevic-Oljaca N, Rider P, Rofall S, Franke J, Jung O, Smeets R, Schnettler R, Wenisch S, Barbeck M. Applications of Metals for Bone Regeneration. Int J Mol Sci 2018;19:E826. [PMID: 29534546 DOI: 10.3390/ijms19030826] [Cited by in Crossref: 72] [Cited by in F6Publishing: 57] [Article Influence: 18.0] [Reference Citation Analysis]
226 Nobre CMG, König B, Pütz N, Hannig M. Hydroxyapatite-Based Solution as Adjunct Treatment for Biofilm Management: An In Situ Study. Nanomaterials (Basel) 2021;11:2452. [PMID: 34578769 DOI: 10.3390/nano11092452] [Reference Citation Analysis]
227 Yuan J, Wang B, Han C, Huang X, Xiao H, Lu X, Lu J, Zhang D, Xue F, Xie Y. Nanosized-Ag-doped porous β-tricalcium phosphate for biological applications. Mater Sci Eng C Mater Biol Appl 2020;114:111037. [PMID: 32993997 DOI: 10.1016/j.msec.2020.111037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
228 Ardhani R, Ana ID, Tabata Y. Gelatin hydrogel membrane containing carbonate hydroxyapatite for nerve regeneration scaffold. J Biomed Mater Res A 2020;108:2491-503. [PMID: 32418269 DOI: 10.1002/jbm.a.37000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
229 Zhang H, Jiao C, Liu Z, He Z, Mengxing Ge, Zongjun Tian, Wang C, Wei Z, Shen L, Liang H. 3D-printed composite, calcium silicate ceramic doped with CaSO4·2H2O: Degradation performance and biocompatibility. J Mech Behav Biomed Mater 2021;121:104642. [PMID: 34174680 DOI: 10.1016/j.jmbbm.2021.104642] [Reference Citation Analysis]
230 D'Amora U, Ronca A, Raucci MG, Dozio SM, Lin H, Fan Y, Zhang X, Ambrosio L. In situ sol-gel synthesis of hyaluronan derivatives bio-nanocomposite hydrogels. Regen Biomater 2019;6:249-58. [PMID: 31620307 DOI: 10.1093/rb/rbz029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
231 Unagolla JM, Alahmadi TE, Jayasuriya AC. Chitosan microparticles based polyelectrolyte complex scaffolds for bone tissue engineering in vitro and effect of calcium phosphate. Carbohydr Polym 2018;199:426-36. [PMID: 30143148 DOI: 10.1016/j.carbpol.2018.07.044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
232 Mallick M, Are RP, Babu AR. An overview of collagen/bioceramic and synthetic collagen for bone tissue engineering. Materialia 2022;22:101391. [DOI: 10.1016/j.mtla.2022.101391] [Reference Citation Analysis]
233 Alipal J, Lee TC, Koshy P, Abdullah HZ, Idris MI. Evolution of anodised titanium for implant applications. Heliyon 2021;7:e07408. [PMID: 34296002 DOI: 10.1016/j.heliyon.2021.e07408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
234 Uklejewski R, Winiecki M, Krawczyk P, Tokłowicz R. Native Osseous CaP Biomineral Coating on a Biomimetic Multi-Spiked Connecting Scaffold Prototype for Cementless Resurfacing Arthroplasty Achieved by Combined Electrochemical Deposition. Materials (Basel) 2019;12:E3994. [PMID: 31810185 DOI: 10.3390/ma12233994] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
235 Riau AK, Lwin NC, Gelfand L, Hu H, Liedberg B, Chodosh J, Venkatraman SS, Mehta JS. Surface modification of corneal prosthesis with nano-hydroxyapatite to enhance in vivo biointegration. Acta Biomaterialia 2020;107:299-312. [DOI: 10.1016/j.actbio.2020.01.023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
236 Wang J, Chen X, Yang X, Guo B, Li D, Zhu X, Zhang X. Positive role of calcium phosphate ceramics regulated inflammation in the osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2020;108:1305-20. [PMID: 32064734 DOI: 10.1002/jbm.a.36903] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
237 Veiga A, Castro F, Rocha F, Oliveira AL. Recent Advances in Silk Sericin/Calcium Phosphate Biomaterials. Front Mater 2020;7:24. [DOI: 10.3389/fmats.2020.00024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
238 Montes-hernandez G, Renard F. Nucleation of Brushite and Hydroxyapatite from Amorphous Calcium Phosphate Phases Revealed by Dynamic In Situ Raman Spectroscopy. J Phys Chem C 2020;124:15302-11. [DOI: 10.1021/acs.jpcc.0c04028] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
239 Miyaji H, Oyane A, Narazaki A. Biological modification of tooth surface by laser-based apatite coating techniques. J Oral Biosci 2022:S1349-0079(22)00051-2. [PMID: 35351642 DOI: 10.1016/j.job.2022.03.004] [Reference Citation Analysis]
240 Navarrete-segado P, Frances C, Tourbin M, Tenailleau C, Duployer B, Grossin D. Powder bed selective laser process (sintering/melting) applied to tailored calcium phosphate-based powders. Additive Manufacturing 2022;50:102542. [DOI: 10.1016/j.addma.2021.102542] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
241 Trubitsyn MA, Hung HV, Furda LV, Hong NTT. Effect of Molar Ratios in the Crystallochemical Structure of Biomimetic Nanostructured Hydroxyapatite on the Characteristics of the Product. Russ J Inorg Chem 2021;66:654-61. [DOI: 10.1134/s0036023621050211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
242 Maqbool M, Nawaz Q, Atiq Ur Rehman M, Cresswell M, Jackson P, Hurle K, Detsch R, Goldmann WH, Shah AT, Boccaccini AR. Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. Int J Mol Sci 2021;22:4246. [PMID: 33921909 DOI: 10.3390/ijms22084246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
243 Rocha CR, Chávez‐flores D, Zuverza‐mena N, Duarte A, Rocha‐gutiérrez BA, Zaragoza‐contreras EA, Flores‐gallardo S. Surface organo‐modification of hydroxyapatites to improve PLA / HA compatibility. J Appl Polym Sci 2020;137:49293. [DOI: 10.1002/app.49293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
244 Moreira Filho O, Wykrota FHL, Lobo SE. Restoring Facial Contour and Harmony Using Biphasic Calcium Phosphate Bioceramics. Plast Reconstr Surg Glob Open 2021;9:e3516. [PMID: 33854862 DOI: 10.1097/GOX.0000000000003516] [Reference Citation Analysis]
245 Bozo IY, Drobyshev AY, Redko NA, Komlev VS, Isaev AA, Deev RV. Bringing a Gene-Activated Bone Substitute Into Clinical Practice: From Bench to Bedside. Front Bioeng Biotechnol 2021;9:599300. [PMID: 33614609 DOI: 10.3389/fbioe.2021.599300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
246 Schmidt R, Gebert A, Schumacher M, Hoffmann V, Voss A, Pilz S, Uhlemann M, Lode A, Gelinsky M. Electrodeposition of Sr-substituted hydroxyapatite on low modulus beta-type Ti-45Nb and effect on in vitro Sr release and cell response. Materials Science and Engineering: C 2020;108:110425. [DOI: 10.1016/j.msec.2019.110425] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
247 Barabás R, de Souza Ávila E, Ladeira LO, Antônio LM, Tötös R, Simedru D, Bizo L, Cadar O. Graphene Oxides/Carbon Nanotubes–Hydroxyapatite Nanocomposites for Biomedical Applications. Arab J Sci Eng 2020;45:219-27. [DOI: 10.1007/s13369-019-04058-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
248 Kashi N, Momeni M, Hamidinezhad H. Hydroxyapatite thin films doped with Cu ions by pulsed laser deposition for application in the biomedical field. Materials Technology. [DOI: 10.1080/10667857.2022.2045673] [Reference Citation Analysis]
249 Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials (Basel) 2018;11:E2081. [PMID: 30355975 DOI: 10.3390/ma11112081] [Cited by in Crossref: 88] [Cited by in F6Publishing: 51] [Article Influence: 22.0] [Reference Citation Analysis]
250 Mata NA, Arango-ospina M, Velasquez P, Murciano A, De Aza PN, Boccaccini AR. Effect of Sr, Mg and Fe substitution on the physico-chemical and biological properties of Si Ca P multilayer scaffolds. Boletín de la Sociedad Española de Cerámica y Vidrio 2021. [DOI: 10.1016/j.bsecv.2021.11.005] [Reference Citation Analysis]
251 Norkus M, Skaudžius R. Enhanced NIR region emission of chromium by changing the chromium concentration in yttrium aluminum garnet (YAG) host matrix. Journal of Alloys and Compounds 2022;908:164601. [DOI: 10.1016/j.jallcom.2022.164601] [Reference Citation Analysis]
252 Murugesan V, Kreedapathy GE, Vaiyapuri M. Evaluation of the Antioxidant, Antimicrobial, Haemolytic and Cytotoxic Effect of Eggshell Based Hydroxyapatite. J Clust Sci 2022;33:825-34. [DOI: 10.1007/s10876-021-02153-x] [Reference Citation Analysis]
253 Nouri-felekori M, Khakbiz M, Nezafati N, Mohammadi J, Eslaminejad MB, Fani N. Characterization and multiscale modeling of novel calcium phosphate composites containing hydroxyapatite whiskers and gelatin microspheres. Journal of Alloys and Compounds 2020;832:154938. [DOI: 10.1016/j.jallcom.2020.154938] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
254 Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021;7:5397-431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Reference Citation Analysis]
255 Kim J, Kim S, Song I. Biomimetic Octacalcium Phosphate Bone Has Superior Bone Regeneration Ability Compared to Xenogeneic or Synthetic Bone. Materials (Basel) 2021;14:5300. [PMID: 34576527 DOI: 10.3390/ma14185300] [Reference Citation Analysis]
256 Kreller T, Sahm F, Bader R, Boccaccini AR, Jonitz-Heincke A, Detsch R. Biomimetic Calcium Phosphate Coatings for Bioactivation of Titanium Implant Surfaces: Methodological Approach and In Vitro Evaluation of Biocompatibility. Materials (Basel) 2021;14:3516. [PMID: 34202595 DOI: 10.3390/ma14133516] [Reference Citation Analysis]
257 Yılmaz E. Modification of the Micro Arc-oxidized Ti Surface for Implant Applications. J Bionic Eng 2021;18:1391-9. [DOI: 10.1007/s42235-021-00101-z] [Reference Citation Analysis]
258 Othman Z, Fernandes H, Groot AJ, Luider TM, Alcinesio A, Pereira DM, Guttenplan APM, Yuan H, Habibovic P. The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics. Biomaterials 2019;210:12-24. [PMID: 31048198 DOI: 10.1016/j.biomaterials.2019.04.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
259 Gul H, Khan M, Khan AS. Bioceramics. Handbook of Ionic Substituted Hydroxyapatites. Elsevier; 2020. pp. 53-83. [DOI: 10.1016/b978-0-08-102834-6.00003-3] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
260 Fang Z, Chen J, Pan J, Liu G, Zhao C. The Development Tendency of 3D-Printed Bioceramic Scaffolds for Applications Ranging From Bone Tissue Regeneration to Bone Tumor Therapy. Front Bioeng Biotechnol 2021;9:754266. [PMID: 34988065 DOI: 10.3389/fbioe.2021.754266] [Reference Citation Analysis]
261 Ackermann M, Tolba E, Neufurth M, Wang S, Schröder HC, Wang X, Müller WEG. Biomimetic transformation of polyphosphate microparticles during restoration of damaged teeth. Dent Mater 2019;35:244-56. [PMID: 30522697 DOI: 10.1016/j.dental.2018.11.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
262 Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022;10:850110. [DOI: 10.3389/fbioe.2022.850110] [Reference Citation Analysis]
263 Livitska O, Strutynska N, Loza K, Prymak O, Prylutskyy Y, Livitska O, Epple M, Slobodyanik N. Immobilization of cesium from aqueous solution using nanoparticles of synthetic calcium phosphates. Chem Cent J 2018;12:87. [PMID: 30043329 DOI: 10.1186/s13065-018-0455-9] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
264 Polo L, Díaz de Greñu B, Della Bella E, Pagani S, Torricelli P, Vivancos JL, Ruiz-rico M, Barat JM, Aznar E, Martínez-máñez R, Fini M, Sancenón F. Antimicrobial activity of commercial calcium phosphate based materials functionalized with vanillin. Acta Biomaterialia 2018;81:293-303. [DOI: 10.1016/j.actbio.2018.09.033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
265 Basu P, Saha N, Alexandrova R, Andonova-Lilova B, Georgieva M, Miloshev G, Saha P. Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering. Int J Mol Sci 2018;19:E3980. [PMID: 30544895 DOI: 10.3390/ijms19123980] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
266 Grossin D, Montón A, Navarrete-segado P, Özmen E, Urruth G, Maury F, Maury D, Frances C, Tourbin M, Lenormand P, Bertrand G. A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering / melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites. Open Ceramics 2021;5:100073. [DOI: 10.1016/j.oceram.2021.100073] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
267 Sun H, Chan Y, Li X, Xu R, Zhang Z, Hu X, Wu F, Deng F, Yu X. Multi-omics analysis of oral bacterial biofilm on titanium oxide nanostructure modified implant surface: In vivo sequencing-based pilot study in beagle dogs. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100275] [Reference Citation Analysis]
268 Shekofteh A, Molina E, Rueda-quero L, Arizzi A, Cultrone G. The efficiency of nanolime and dibasic ammonium phosphate in the consolidation of beige limestone from the Pasargadae World Heritage Site. Archaeol Anthropol Sci 2019;11:5065-80. [DOI: 10.1007/s12520-019-00863-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
269 Ali M, Hussein M, Al-aqeeli N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. Journal of Alloys and Compounds 2019;792:1162-90. [DOI: 10.1016/j.jallcom.2019.04.080] [Cited by in Crossref: 65] [Cited by in F6Publishing: 14] [Article Influence: 21.7] [Reference Citation Analysis]
270 Foroutan F, Kyffin BA, Abrahams I, Corrias A, Gupta P, Velliou E, Knowles JC, Carta D. Mesoporous Phosphate-Based Glasses Prepared via Sol–Gel. ACS Biomater Sci Eng 2020;6:1428-37. [DOI: 10.1021/acsbiomaterials.9b01896] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
271 Gu X, Sun X, Sun Y, Wang J, Liu Y, Yu K, Wang Y, Zhou Y. Bioinspired Modifications of PEEK Implants for Bone Tissue Engineering. Front Bioeng Biotechnol 2020;8:631616. [PMID: 33511108 DOI: 10.3389/fbioe.2020.631616] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]