BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019;20:E5693. [PMID: 31739392 DOI: 10.3390/ijms20225693] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Vandana, Das S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydrate Polymers 2022;291:119536. [DOI: 10.1016/j.carbpol.2022.119536] [Reference Citation Analysis]
2 Dindhoria K, Kumar S, Baliyan N, Raphel S, Halami PM, Kumar R. Bacillus licheniformis MCC 2514 genome sequencing and functional annotation for providing genetic evidence for probiotic gut adhesion properties and its applicability as a bio-preservative agent. Gene 2022;840:146744. [PMID: 35863717 DOI: 10.1016/j.gene.2022.146744] [Reference Citation Analysis]
3 Gongi W, Gomez Pinchetti JL, Cordeiro N, Ouada HB. Extracellular Polymeric Substances Produced by the Thermophilic Cyanobacterium Gloeocapsa gelatinosa: Characterization and Assessment of Their Antioxidant and Metal-Chelating Activities. Marine Drugs 2022;20:227. [DOI: 10.3390/md20040227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Quiroz-arita C, Shinde S, Kim S, Monroe E, George A, Quinn J, Nagle NJ, Knoshaug EP, Kruger JS, Dong T, Pienkos PT, Laurens LML, Davis RW. Bioproducts from high-protein algal biomass: an economic and environmental sustainability review and risk analysis. Sustainable Energy Fuels 2022;6:2398-422. [DOI: 10.1039/d1se01230d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yan N, Hu Y, Tang BZ, Wang WX. Real-Time 3D Framework Tracing of Extracellular Polymeric Substances by an AIE-Active Nanoprobe. ACS Sens 2021;6:4206-16. [PMID: 34739214 DOI: 10.1021/acssensors.1c01821] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Santos M, Pacheco CC, Yao L, Hudson EP, Tamagnini P. CRISPRi as a Tool to Repress Multiple Copies of Extracellular Polymeric Substances (EPS)-Related Genes in the Cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 2021;11:1198. [PMID: 34833074 DOI: 10.3390/life11111198] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, Salem DR, Sani RK. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol 2021;12:721365. [PMID: 34489911 DOI: 10.3389/fmicb.2021.721365] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
8 Potnis AA, Raghavan PS, Rajaram H. Overview on cyanobacterial exopolysaccharides and biofilms: role in bioremediation. Rev Environ Sci Biotechnol 2021;20:781-94. [DOI: 10.1007/s11157-021-09586-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
9 Cassier-Chauvat C, Blanc-Garin V, Chauvat F. Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021;12:500. [PMID: 33805386 DOI: 10.3390/genes12040500] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
10 Santos M, Pereira SB, Flores C, Príncipe C, Couto N, Karunakaran E, Cravo SM, Oliveira P, Tamagnini P. Absence of KpsM (Slr0977) Impairs the Secretion of Extracellular Polymeric Substances (EPS) and Impacts Carbon Fluxes in Synechocystis sp. PCC 6803. mSphere 2021;6:e00003-21. [PMID: 33504656 DOI: 10.1128/mSphere.00003-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cui J, Xie Y, Sun T, Chen L, Zhang W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. Sci Total Environ 2021;761:144111. [PMID: 33352345 DOI: 10.1016/j.scitotenv.2020.144111] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
12 Alvarez X, Alves A, Ribeiro MP, Lazzari M, Coutinho P, Otero A. Biochemical characterization of Nostoc sp. exopolysaccharides and evaluation of potential use in wound healing. Carbohydr Polym 2021;254:117303. [PMID: 33357870 DOI: 10.1016/j.carbpol.2020.117303] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
13 Primo E, Bogino P, Cossovich S, Foresto E, Nievas F, Giordano W. Exopolysaccharide II Is Relevant for the Survival of Sinorhizobium meliloti under Water Deficiency and Salinity Stress. Molecules 2020;25:E4876. [PMID: 33105680 DOI: 10.3390/molecules25214876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
14 Ciebiada M, Kubiak K, Daroch M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int J Mol Sci 2020;21:E7204. [PMID: 33003478 DOI: 10.3390/ijms21197204] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Zuniga EG, Boateng KKA, Bui NU, Kurnfuli S, Muthana SM, Risser DD. Identification of a hormogonium polysaccharide-specific gene set conserved in filamentous cyanobacteria. Mol Microbiol 2020;114:597-608. [PMID: 32614458 DOI: 10.1111/mmi.14566] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
16 Cruz D, Vasconcelos V, Pierre G, Michaud P, Delattre C. Exopolysaccharides from Cyanobacteria: Strategies for Bioprocess Development. Applied Sciences 2020;10:3763. [DOI: 10.3390/app10113763] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]