BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McClorey G, Banerjee S. Cell-Penetrating Peptides to Enhance Delivery of Oligonucleotide-Based Therapeutics. Biomedicines 2018;6:E51. [PMID: 29734750 DOI: 10.3390/biomedicines6020051] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 13.3] [Reference Citation Analysis]
Number Citing Articles
1 McNally EM, Leverson BD. Better living through peptide-conjugated chemistry: next-generation antisense oligonucleotides. J Clin Invest 2019;129:4570-1. [PMID: 31566581 DOI: 10.1172/JCI131933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Li Y, Cong H, Wang S, Yu B, Shen Y. Liposomes modified with bio-substances for cancer treatment. Biomater Sci 2020;8:6442-68. [DOI: 10.1039/d0bm01531h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
3 Gagliardi M, Ashizawa AT. The Challenges and Strategies of Antisense Oligonucleotide Drug Delivery. Biomedicines 2021;9:433. [PMID: 33923688 DOI: 10.3390/biomedicines9040433] [Reference Citation Analysis]
4 Yokoo H, Oba M, Uchida S. Cell-Penetrating Peptides: Emerging Tools for mRNA Delivery. Pharmaceutics 2021;14:78. [PMID: 35056974 DOI: 10.3390/pharmaceutics14010078] [Reference Citation Analysis]
5 Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021;13:5555. [PMID: 34771719 DOI: 10.3390/cancers13215555] [Reference Citation Analysis]
6 Chen S, Sbuh N, Veedu RN. Antisense Oligonucleotides as Potential Therapeutics for Type 2 Diabetes. Nucleic Acid Ther 2021;31:39-57. [PMID: 33026966 DOI: 10.1089/nat.2020.0891] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
7 Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021;:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Barkau CL, O'Reilly D, Eddington SB, Damha MJ, Gagnon KT. Small nucleic acids and the path to the clinic for anti-CRISPR. Biochem Pharmacol 2021;189:114492. [PMID: 33647260 DOI: 10.1016/j.bcp.2021.114492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021;178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 González-Paredes A, Sitia L, Ruyra A, Morris CJ, Wheeler GN, McArthur M, Gasco P. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur J Pharm Biopharm 2019;134:166-77. [PMID: 30468838 DOI: 10.1016/j.ejpb.2018.11.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
11 Coutinho MF, Matos L, Santos JI, Alves S. RNA Therapeutics: How Far Have We Gone? Adv Exp Med Biol 2019;1157:133-77. [PMID: 31342441 DOI: 10.1007/978-3-030-19966-1_7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
12 Zarei M, Rahbar MR, Negahdaripour M, Morowvat MH, Nezafat N, Ghasemi Y. Cell Penetrating Peptide: Sequence-Based Computational Prediction for Intercellular Delivery of Arginine Deiminase. CP 2020;17:117-31. [DOI: 10.2174/1570164616666190701120351] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol 2020;11:101-23. [PMID: 31976201 DOI: 10.3762/bjnano.11.10] [Cited by in Crossref: 62] [Cited by in F6Publishing: 51] [Article Influence: 31.0] [Reference Citation Analysis]
14 Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2021;180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Reference Citation Analysis]
15 Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020;8:218. [PMID: 32296681 DOI: 10.3389/fchem.2020.00218] [Reference Citation Analysis]
16 Gait MJ, Arzumanov AA, McClorey G, Godfrey C, Betts C, Hammond S, Wood MJA. Cell-Penetrating Peptide Conjugates of Steric Blocking Oligonucleotides as Therapeutics for Neuromuscular Diseases from a Historical Perspective to Current Prospects of Treatment. Nucleic Acid Ther 2019;29:1-12. [PMID: 30307373 DOI: 10.1089/nat.2018.0747] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 7.5] [Reference Citation Analysis]
17 Han G, Gu B, Lin C, Ning H, Song J, Gao X, Moulton HM, Yin H. Hexose Potentiates Peptide-Conjugated Morpholino Oligomer Efficacy in Cardiac Muscles of Dystrophic Mice in an Age-Dependent Manner. Mol Ther Nucleic Acids 2019;18:341-50. [PMID: 31629961 DOI: 10.1016/j.omtn.2019.09.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Masaki Y, Maruyama A, Yoshida K, Tomori T, Kishimura T, Seio K. Oligodeoxynucleotides Modified with 2'-O-(Cysteinylaminobutyl)carbamoylethylribothymidine Residues for Native Chemical Ligation with Peptide at Internal Positions. Bioconjug Chem 2022. [PMID: 35129971 DOI: 10.1021/acs.bioconjchem.1c00575] [Reference Citation Analysis]
19 Feger G, Angelov B, Angelova A. Prediction of Amphiphilic Cell-Penetrating Peptide Building Blocks from Protein-Derived Amino Acid Sequences for Engineering of Drug Delivery Nanoassemblies. J Phys Chem B 2020;124:4069-78. [PMID: 32337991 DOI: 10.1021/acs.jpcb.0c01618] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
20 Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R, Buee L, Zilka N. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019;7:22. [PMID: 30767766 DOI: 10.1186/s40478-019-0664-z] [Cited by in Crossref: 103] [Cited by in F6Publishing: 103] [Article Influence: 34.3] [Reference Citation Analysis]
21 Duffy K, Arangundy-Franklin S, Holliger P. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 2020;18:112. [PMID: 32878624 DOI: 10.1186/s12915-020-00803-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
22 Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.02.010] [Reference Citation Analysis]
23 Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release 2021;341:166-83. [PMID: 34822907 DOI: 10.1016/j.jconrel.2021.11.032] [Reference Citation Analysis]
24 Villamizar O, Waters SA, Scott T, Saayman S, Grepo N, Urak R, Davis A, Jaffe A, Morris KV. Targeted Activation of Cystic Fibrosis Transmembrane Conductance Regulator. Mol Ther 2019;27:1737-48. [PMID: 31383454 DOI: 10.1016/j.ymthe.2019.07.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
25 Esposito CL, Catuogno S, Condorelli G, Ungaro P, de Franciscis V. Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes (Basel) 2018;9:E529. [PMID: 30384431 DOI: 10.3390/genes9110529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
26 Luna Velez MV, Paulino da Silva Filho O, Verhaegh GW, van Hooij O, El Boujnouni N, Brock R, Schalken JA. Delivery of antisense oligonucleotides for splice-correction of androgen receptor pre-mRNA in castration-resistant prostate cancer models using cell-penetrating peptides. Prostate 2022. [PMID: 35098567 DOI: 10.1002/pros.24309] [Reference Citation Analysis]
27 Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. Futur J Pharm Sci 2022;8. [DOI: 10.1186/s43094-022-00413-9] [Reference Citation Analysis]
28 Klein AF, Varela MA, Arandel L, Holland A, Naouar N, Arzumanov A, Seoane D, Revillod L, Bassez G, Ferry A, Jauvin D, Gourdon G, Puymirat J, Gait MJ, Furling D, Wood MJ. Peptide-conjugated oligonucleotides evoke long-lasting myotonic dystrophy correction in patient-derived cells and mice. J Clin Invest 2019;129:4739-44. [PMID: 31479430 DOI: 10.1172/JCI128205] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
29 Yan W, Leung SS, To KK. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond) 2020;15:303-18. [PMID: 31802702 DOI: 10.2217/nnm-2019-0308] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
30 Wei Y, Zhang M, Jiao P, Zhang X, Yang G, Xu X. Intracellular Paclitaxel Delivery Facilitated by a Dual-Functional CPP with a Hydrophobic Hairpin Tail. ACS Appl Mater Interfaces 2021;13:4853-60. [DOI: 10.1021/acsami.0c20180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Choi DH, Park YS. Arginine-rich Peptide Coated PLGA Nanoparticles Enhance Polymeric Delivery of Antisense HIF1α-oligonucleotide to Fully Differentiated Stiff Adipocytes. Toxicol Environ Health Sci 2019;11:1-10. [DOI: 10.1007/s13530-019-0382-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Hadianamrei R, Wang J, Brown S, Zhao X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int J Pharm 2022;:121619. [PMID: 35218898 DOI: 10.1016/j.ijpharm.2022.121619] [Reference Citation Analysis]
33 Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021;26:5420. [PMID: 34500849 DOI: 10.3390/molecules26175420] [Reference Citation Analysis]
34 Aho A, Sulkanen M, Korhonen H, Virta P. Conjugation of Oligonucleotides to Peptide Aldehydes via a pH-Responsive N-Methoxyoxazolidine Linker. Org Lett 2020;22:6714-8. [PMID: 32804515 DOI: 10.1021/acs.orglett.0c01815] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Markov OV, Filatov AV, Kupryushkin MS, Chernikov IV, Patutina OA, Strunov AA, Chernolovskaya EL, Vlassov VV, Pyshnyi DV, Zenkova MA. Transport Oligonucleotides-A Novel System for Intracellular Delivery of Antisense Therapeutics. Molecules 2020;25:E3663. [PMID: 32796768 DOI: 10.3390/molecules25163663] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
36 Morais CM, Cardoso AM, Aguiar L, Vale N, Nóbrega C, Zuzarte M, Gomes P, Pedroso de Lima MC, Jurado AS. Lauroylated Histidine-Enriched S413-PV Peptide as an Efficient Gene Silencing Mediator in Cancer Cells. Pharm Res 2020;37:188. [PMID: 32888084 DOI: 10.1007/s11095-020-02904-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019;30:1006-27. [PMID: 30882208 DOI: 10.1021/acs.bioconjchem.9b00112] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
38 Tang Z, Zhao J, Pearson ZJ, Boskovic ZV, Wang J. RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021;26:2263. [PMID: 33919699 DOI: 10.3390/molecules26082263] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020;11:697. [PMID: 32508641 DOI: 10.3389/fphar.2020.00697] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 21.5] [Reference Citation Analysis]
40 Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjörner EK, Stevens MM, El-Andaloussi S. Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano 2021;15:13993-4021. [PMID: 34505766 DOI: 10.1021/acsnano.1c05099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
41 van der Bent ML, Paulino da Silva Filho O, Willemse M, Hällbrink M, Wansink DG, Brock R. The nuclear concentration required for antisense oligonucleotide activity in myotonic dystrophy cells. FASEB J 2019;33:11314-25. [PMID: 31311315 DOI: 10.1096/fj.201900263R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
42 López-Vidal EM, Schissel CK, Mohapatra S, Bellovoda K, Wu CL, Wood JA, Malmberg AB, Loas A, Gómez-Bombarelli R, Pentelute BL. Deep Learning Enables Discovery of a Short Nuclear Targeting Peptide for Efficient Delivery of Antisense Oligomers. JACS Au 2021;1:2009-20. [PMID: 34841414 DOI: 10.1021/jacsau.1c00327] [Reference Citation Analysis]
43 Shiraishi T, Ghavami M, Nielsen PE. In Vitro Cellular Delivery of Peptide Nucleic Acid (PNA). Methods Mol Biol 2020;2105:173-85. [PMID: 32088870 DOI: 10.1007/978-1-0716-0243-0_10] [Reference Citation Analysis]
44 Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021;18:1491-506. [PMID: 33734715 DOI: 10.1021/acs.molpharmaceut.0c01238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
45 Monreal IA, Contreras EM, Wayman GA, Aguilar HC, Saludes JP. SialoPen peptides are new cationic foldamers with remarkable cell permeability. Heliyon 2020;6:e05780. [PMID: 33409387 DOI: 10.1016/j.heliyon.2020.e05780] [Reference Citation Analysis]
46 Ding Y, Zhao X, Geng J, Guo X, Ma J, Wang H, Liu C. Intracellular delivery of nucleic acid by cell-permeable hPP10 peptide. J Cell Physiol 2019;234:11670-8. [PMID: 30515802 DOI: 10.1002/jcp.27826] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
47 Hegde S, Tang Z, Zhao J, Wang J. Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. Front Chem 2021;9:802766. [PMID: 35004621 DOI: 10.3389/fchem.2021.802766] [Reference Citation Analysis]
48 Wang Z, Lin J, Zhang Y, Yang C, Zhao Y, Leng Z, Wang H, Zhang D, Zhu J, Li Z. Synthesis and short DNA in situ loading and delivery of 4 nm-aperture flexible organic frameworks. Mater Chem Front 2021;5:869-75. [DOI: 10.1039/d0qm00791a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Crosio MA, Via MA, Cámara CI, Mangiarotti A, Del Pópolo MG, Wilke N. Interaction of a Polyarginine Peptide with Membranes of Different Mechanical Properties. Biomolecules 2019;9:E625. [PMID: 31635304 DOI: 10.3390/biom9100625] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
50 Ghadiri M, Young PM, Traini D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 2019;11:E113. [PMID: 30861990 DOI: 10.3390/pharmaceutics11030113] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 18.0] [Reference Citation Analysis]
51 Ren S, Wang M, Wang C, Wang Y, Sun C, Zeng Z, Cui H, Zhao X. Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021;13:3307. [PMID: 34641123 DOI: 10.3390/polym13193307] [Reference Citation Analysis]
52 Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-bryant A. Peptide-based delivery of therapeutics in cancer treatment. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100248] [Reference Citation Analysis]
53 Tarn WY, Cheng Y, Ko SH, Huang LM. Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021;13:2015. [PMID: 34959297 DOI: 10.3390/pharmaceutics13122015] [Reference Citation Analysis]
54 Echigoya Y, Lim KRQ, Nakamura A, Yokota T. Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. J Pers Med 2018;8:E41. [PMID: 30544634 DOI: 10.3390/jpm8040041] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
55 Popplewell LJ. Editorial of the Special Issue: Antisense Therapies. Biomedicines 2018;6:E95. [PMID: 30262783 DOI: 10.3390/biomedicines6040095] [Reference Citation Analysis]