BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Malgwi IH, Halas V, Grünvald P, Schiavon S, Jócsák I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals (Basel) 2022;12:150. [PMID: 35049772 DOI: 10.3390/ani12020150] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, You R, Lv Y, Liu H, Yang G. Conjugated linoleic acid regulates adipocyte fatty acid binding protein expression via peroxisome proliferator-activated receptor α signaling pathway and increases intramuscular fat content. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.1029864] [Reference Citation Analysis]
2 Cui Y, Tian Z, Yu M, Liu Z, Rong T, Ma X. Effect of guanidine acetic acid on meat quality, muscle amino acids, and fatty acids in Tibetan pigs. Front Vet Sci 2022;9:998956. [PMID: 36304417 DOI: 10.3389/fvets.2022.998956] [Reference Citation Analysis]
3 Pewan SB, Otto JR, Kinobe RT, Adegboye OA, Malau-aduli AEO. Fortification of diets with omega-3 long-chain polyunsaturated fatty acids enhances feedlot performance, intramuscular fat content, fat melting point, and carcass characteristics of Tattykeel Australian White MARGRA lambs. Front Vet Sci 2022;9. [DOI: 10.3389/fvets.2022.933038] [Reference Citation Analysis]
4 Haq ZU, Saleem A, Khan AA, Dar MA, Ganaie AM, Beigh YA, Hamadani H, Ahmad SM. Nutrigenomics in livestock sector and its human-animal interface-a review. Veterinary and Animal Science 2022;17:100262. [DOI: 10.1016/j.vas.2022.100262] [Reference Citation Analysis]
5 Soares MH, de Amorim Rodrigues G, Júnior DTV, da Silva CB, Costa TC, de Souza Duarte M, Saraiva A. Performance, Carcass Traits, Pork Quality and Expression of Genes Related to Intramuscular Fat Metabolism of Two Diverse Genetic Lines of Pigs. Foods 2022;11:2280. [DOI: 10.3390/foods11152280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hu X, Huo B, Yang J, Wang K, Huang L, Che L, Feng B, Lin Y, Xu S, Zhuo Y, Wu C, Wu D, Fang Z. Effects of Dietary Lysine Levels on Growth Performance, Nutrient Digestibility, Serum Metabolites, and Meat Quality of Baqing Pigs. Animals 2022;12:1884. [DOI: 10.3390/ani12151884] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Lemus-flores C, Lemus-flores G, Bugarín-prado JO, Grageola-núñez F, Mejía-martínez K, Valdivia-bernal R. Identificación ARN-Seq de genes del metabolismo lipídico asociados a grasa intramuscular mediante análisis de transcriptoma del Longissimus dorsi e hígado en cerdos alimentados con suplemento de harina de aguacate. RC FCV-LUZ 2022;XXXII:1-7. [DOI: 10.52973/rcfcv-e32144] [Reference Citation Analysis]
8 Fanalli SL, da Silva BPM, Gomes JD, de Almeida VV, Freitas FAO, Moreira GCM, Silva-vignato B, Afonso J, Reecy J, Koltes J, Koltes D, de Almeida Regitano LC, Garrick DJ, de Carvalho Balieiro JC, Meira AN, Freitas L, Coutinho LL, Fukumasu H, Mourão GB, de Alencar SM, Luchiari Filho A, Cesar ASM. Differential Gene Expression Associated with Soybean Oil Level in the Diet of Pigs. Animals 2022;12:1632. [DOI: 10.3390/ani12131632] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Shu Z, Wang L, Wang J, Zhang L, Hou X, Yan H, Wang L. Integrative Analysis of Nanopore and Illumina Sequencing Reveals Alternative Splicing Complexity in Pig Longissimus Dorsi Muscle. Front Genet 2022;13:877646. [DOI: 10.3389/fgene.2022.877646] [Reference Citation Analysis]
10 Sringarm K, Chaiwang N, Wattanakul W, Mahinchai P, Satsook A, Norkeaw R, Seel-Audom M, Moonmanee T, Mekchay S, Sommano SR, Ruksiriwanich W, Rachtanapun P, Jantanasakulwong K, Arjin C. Improvement of Intramuscular Fat in longissimus Muscle of Finishing Thai Crossbred Black Pigs by Perilla Cake Supplementation in a Low-Lysine Diet. Foods 2022;11:907. [PMID: 35406994 DOI: 10.3390/foods11070907] [Reference Citation Analysis]