BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Irwin CR, Hitt MM, Evans DH. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front Oncol 2017;7:229. [PMID: 29018771 DOI: 10.3389/fonc.2017.00229] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Uchiumi F, Sato A, Asai M, Tanuma S; 1 Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda-shi, Chiba-ken 278-8510, Japan, 2 Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda-shi, Chiba-ken 278-8510, Japan, 3 Department of Genomic Medical Science, Research Institute of Science and Technology (RIST), Tokyo University of Science, Yamazaki 2641, Noda-shi, Chiba-ken 278-8510, Japan. + dependent/sensitive transcription system: Toward a novel anti-cancer therapy]]>. AIMS Molecular Science 2020;7:12-28. [DOI: 10.3934/molsci.2020002] [Reference Citation Analysis]
2 Dong Q, Smith KR, Oldenburg DG, Shapiro M, Schutt WR, Malik L, Plummer JB, Mu Y, MacCarthy T, White DW, McBride KM, Krug LT. Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome. mBio 2018;9:e01831-18. [PMID: 30377280 DOI: 10.1128/mBio.01831-18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Nagata LP, Irwin CR, Hu WG, Evans DH. Vaccinia-based vaccines to biothreat and emerging viruses. Biotechnol Genet Eng Rev 2018;34:107-21. [PMID: 29779454 DOI: 10.1080/02648725.2018.1471643] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
4 Reale A, Vitiello A, Conciatori V, Parolin C, Calistri A, Palù G. Perspectives on immunotherapy via oncolytic viruses.Infect Agent Cancer. 2019;14:5. [PMID: 30792754 DOI: 10.1186/s13027-018-0218-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
5 Trompet E, Topalis D, Gillemot S, Snoeck R, Andrei G. Viral fitness of MHV-68 viruses harboring drug resistance mutations in the protein kinase or thymidine kinase. Antiviral Res 2020;182:104901. [PMID: 32763314 DOI: 10.1016/j.antiviral.2020.104901] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Islam SMBU, Lee B, Jiang F, Kim EK, Ahn SC, Hwang TH. Engineering and Characterization of Oncolytic Vaccinia Virus Expressing Truncated Herpes Simplex Virus Thymidine Kinase. Cancers (Basel) 2020;12:E228. [PMID: 31963415 DOI: 10.3390/cancers12010228] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
7 Li C, Stoma S, Lotta LA, Warner S, Albrecht E, Allione A, Arp PP, Broer L, Buxton JL, Da Silva Couto Alves A, Deelen J, Fedko IO, Gordon SD, Jiang T, Karlsson R, Kerrison N, Loe TK, Mangino M, Milaneschi Y, Miraglio B, Pervjakova N, Russo A, Surakka I, van der Spek A, Verhoeven JE, Amin N, Beekman M, Blakemore AI, Canzian F, Hamby SE, Hottenga JJ, Jones PD, Jousilahti P, Mägi R, Medland SE, Montgomery GW, Nyholt DR, Perola M, Pietiläinen KH, Salomaa V, Sillanpää E, Suchiman HE, van Heemst D, Willemsen G, Agudo A, Boeing H, Boomsma DI, Chirlaque MD, Fagherazzi G, Ferrari P, Franks P, Gieger C, Eriksson JG, Gunter M, Hägg S, Hovatta I, Imaz L, Kaprio J, Kaaks R, Key T, Krogh V, Martin NG, Melander O, Metspalu A, Moreno C, Onland-Moret NC, Nilsson P, Ong KK, Overvad K, Palli D, Panico S, Pedersen NL, Penninx BWJH, Quirós JR, Jarvelin MR, Rodríguez-Barranco M, Scott RA, Severi G, Slagboom PE, Spector TD, Tjonneland A, Trichopoulou A, Tumino R, Uitterlinden AG, van der Schouw YT, van Duijn CM, Weiderpass E, Denchi EL, Matullo G, Butterworth AS, Danesh J, Samani NJ, Wareham NJ, Nelson CP, Langenberg C, Codd V. Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. Am J Hum Genet 2020;106:389-404. [PMID: 32109421 DOI: 10.1016/j.ajhg.2020.02.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
8 Lyu C, Li WD, Peng JM, Cai XH. Identification of interaction domains in the pseudorabies virus ribonucleotide reductase large and small subunits. Vet Microbiol 2020;246:108740. [PMID: 32605757 DOI: 10.1016/j.vetmic.2020.108740] [Reference Citation Analysis]
9 Thaker SK, Ch'ng J, Christofk HR. Viral hijacking of cellular metabolism. BMC Biol 2019;17:59. [PMID: 31319842 DOI: 10.1186/s12915-019-0678-9] [Cited by in Crossref: 97] [Cited by in F6Publishing: 91] [Article Influence: 32.3] [Reference Citation Analysis]
10 Garcia DR, Souza FR, Guimarães AP, Valis M, Pavelek Z, Kuca K, Ramalho TC, França TCC. In Silico Studies of Potential Selective Inhibitors of Thymidylate Kinase from Variola virus. Pharmaceuticals (Basel) 2021;14:1027. [PMID: 34681251 DOI: 10.3390/ph14101027] [Reference Citation Analysis]
11 Wu Q, Wu Z, Bao C, Li W, He H, Sun Y, Chen Z, Zhang H, Ning Z. Cancer stem cells in esophageal squamous cell cancer. Oncol Lett 2019;18:5022-32. [PMID: 31612013 DOI: 10.3892/ol.2019.10900] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
12 Mondal D, Koehn EM, Yao J, Wiemer DF, Kohen A. Chemo-enzymatic synthesis of the exocyclic olefin isomer of thymidine monophosphate. Bioorg Med Chem 2018;26:2365-71. [PMID: 29606487 DOI: 10.1016/j.bmc.2018.03.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]