BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pathak J, Rajneesh, Maurya PK, Singh SP, Häder D, Sinha RP. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Front Environ Sci 2018;6:7. [DOI: 10.3389/fenvs.2018.00007] [Cited by in Crossref: 45] [Cited by in F6Publishing: 20] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Baniasadi B, Vahabzadeh F. The performance of a cyanobacterial biomass-based microbial fuel cell (MFC) inoculated with Shewanella oneidensis MR-1. Journal of Environmental Chemical Engineering 2021;9:106338. [DOI: 10.1016/j.jece.2021.106338] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
2 Iijima H, Watanabe A, Sukigara H, Shirai T, Kondo A, Osanai T. Simultaneous increases in the levels of compatible solutes by cost-effective cultivation of Synechocystis sp. PCC 6803. Biotechnol Bioeng 2020;117:1649-60. [PMID: 32129469 DOI: 10.1002/bit.27324] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Rocha F, Esteban Lucas-borja M, Pereira P, Muñoz-rojas M. Cyanobacteria as a Nature-Based Biotechnological Tool for Restoring Salt-Affected Soils. Agronomy 2020;10:1321. [DOI: 10.3390/agronomy10091321] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Pathania R, Srivastava S. Synechococcus elongatus BDU 130192, an Attractive Cyanobacterium for Feedstock Applications: Response to Culture Conditions. Bioenerg Res 2021;14:954-63. [DOI: 10.1007/s12155-020-10207-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Sachu M, Kynshi BL, Syiem MB. A biochemical, physiological and molecular evaluation of how the herbicide 2, 4-dichlorophenoxyacetic acid intercedes photosynthesis and diazotrophy in the cyanobacterium Nostoc muscorum Meg 1. Environ Sci Pollut Res Int 2022;29:36684-98. [PMID: 35064489 DOI: 10.1007/s11356-021-18000-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hotos GN, Antoniadis TI. The Effect of Colored and White Light on Growth and Phycobiliproteins, Chlorophyll and Carotenoids Content of the Marine Cyanobacteria Phormidium sp. and Cyanothece sp. in Batch Cultures. Life 2022;12:837. [DOI: 10.3390/life12060837] [Reference Citation Analysis]
7 Enagbonma BJ, Babalola OO. Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture. Ann Microbiol 2019;69:211-9. [DOI: 10.1007/s13213-019-1439-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
8 Vu HP, Nguyen LN, Zdarta J, Nga TTV, Nghiem LD. Blue-Green Algae in Surface Water: Problems and Opportunities. Curr Pollution Rep 2020;6:105-22. [DOI: 10.1007/s40726-020-00140-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
9 Pathak J, Ahmed H, Singh PR, Singh SP, Häder D, Sinha RP. Mechanisms of Photoprotection in Cyanobacteria. Cyanobacteria. Elsevier; 2019. pp. 145-71. [DOI: 10.1016/b978-0-12-814667-5.00007-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Cui J, Sun T, Chen L, Zhang W. Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020;43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
11 Shokravi S, Bahavar N. Effects of chromium (VI) at extreme alkaline condition (pH 11) on the survival, growth, photosystems and phycobilisome operation of the cyanobacterium Synechocystis sp. Strain FS 78. J Appl Phycol 2021;33:2909-19. [DOI: 10.1007/s10811-021-02521-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mondal S, Kumar V, Singh SP. Phylogenetic distribution and structural analyses of cyanobacterial glutaredoxins (Grxs). Comput Biol Chem 2020;84:107141. [PMID: 31839562 DOI: 10.1016/j.compbiolchem.2019.107141] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
13 Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, Kiran GS, Selvin J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022. [PMID: 35014044 DOI: 10.1002/jobm.202100477] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Pathak J, Ahmed H, Rajneesh, Singh SP, Häder D, Sinha RP. Genetic regulation of scytonemin and mycosporine-like amino acids (MAAs) biosynthesis in cyanobacteria. Plant Gene 2019;17:100172. [DOI: 10.1016/j.plgene.2019.100172] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
15 Veerabadhran M, Natesan S, MubarakAli D, Xu S, Yang F. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts. Chemosphere 2021;285:131436. [PMID: 34256200 DOI: 10.1016/j.chemosphere.2021.131436] [Reference Citation Analysis]
16 Sarkar A, Wang H, Rahman A, Memon WH, Qian L. A bibliometric analysis of sustainable agriculture: based on the Web of Science (WOS) platform. Environ Sci Pollut Res Int 2022. [PMID: 35301629 DOI: 10.1007/s11356-022-19632-x] [Reference Citation Analysis]
17 Zhang F, Man YB, Mo WY, Man KY, Wong MH. Direct and indirect effects of microplastics on bivalves, with a focus on edible species: A mini-review. Critical Reviews in Environmental Science and Technology 2020;50:2109-43. [DOI: 10.1080/10643389.2019.1700752] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
18 Al-Qahtani KM, Ali MHH, Abdelkarim MS, Al-Afify ADG. Efficiency of extremophilic microbial mats for removing Pb(II), Cu(II), and Ni(II) ions from aqueous solutions. Environ Sci Pollut Res Int 2021;28:53365-78. [PMID: 34031835 DOI: 10.1007/s11356-021-14571-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Pekkoh J, Lomakool S, Chankham J, Duangjan K, Thurakit T, Phinyo K, Ruangrit K, Tragoolpua Y, Pumas C, Pathom-aree W, Srinuanpan S. Maximizing biomass productivity of cyanobacterium Nostoc sp. through high-throughput bioprocess optimization and application in multiproduct biorefinery towards a holistic zero waste. Biomass Conv Bioref . [DOI: 10.1007/s13399-021-02285-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Singh V, Pathak J, Pandey A, Ahmed H, Rajneesh, Kumar D, Sinha RP. UV-induced physiological changes and biochemical characterization of mycosporine-like amino acid in a rice-field cyanobacterium Fischerella sp. strain HKAR-13. South African Journal of Botany 2022;147:81-97. [DOI: 10.1016/j.sajb.2022.01.004] [Reference Citation Analysis]
21 Samiotis G, Stamatakis K, Amanatidou E. Dimensioning of Synechococcus elongatus PCC 7492 cultivation photobioreactor for valorization of wastewater resources. Chemical Engineering Journal 2022;435:134895. [DOI: 10.1016/j.cej.2022.134895] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Poveda J. Cyanobacteria in plant health: Biological strategy against abiotic and biotic stresses. Crop Protection 2021;141:105450. [DOI: 10.1016/j.cropro.2020.105450] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Samiotis G, Ziagova MG, Amanatidou E. Wastewater substrate disinfection for cyanobacteria cultivation as tertiary treatment. Environ Sci Pollut Res Int 2022. [PMID: 35478395 DOI: 10.1007/s11356-022-20369-w] [Reference Citation Analysis]
24 Nguyen MK, Moon J, Lee Y. Loading effects of low doses of magnesium aminoclay on microalgal Microcystis sp. KW growth, macromolecule productions, and cell harvesting. Biomass and Bioenergy 2020;139:105619. [DOI: 10.1016/j.biombioe.2020.105619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sadeghi SH, Kheirfam H, Zarei Darki B. Controlling runoff generation and soil loss from field experimental plots through inoculating cyanobacteria. Journal of Hydrology 2020;585:124814. [DOI: 10.1016/j.jhydrol.2020.124814] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
26 Kheirfam H, Asadzadeh F. Stabilizing sand from dried-up lakebeds against wind erosion by accelerating biological soil crust development. European Journal of Soil Biology 2020;98:103189. [DOI: 10.1016/j.ejsobi.2020.103189] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
27 Sido. Exploring an Integrated Manure-Seawater System for Sustainable Cyanobacterial Biomass Production. Applied Sciences 2019;9:3888. [DOI: 10.3390/app9183888] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Pan S, Jeevanandam J, Danquah MK. Benefits of Algal Extracts in Sustainable Agriculture. In: Hallmann A, Rampelotto PH, editors. Grand Challenges in Algae Biotechnology. Cham: Springer International Publishing; 2019. pp. 501-34. [DOI: 10.1007/978-3-030-25233-5_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Tiwari S, Prasad SM. Exogenous application of phytohormones modulates pesticide-induced injury in two rice field cyanobacteria: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Plant Stress 2022;3:100046. [DOI: 10.1016/j.stress.2021.100046] [Reference Citation Analysis]
30 Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V. Environmental sustainability: challenges and viable solutions. Environmental Sustainability 2018;1:309-40. [DOI: 10.1007/s42398-018-00038-w] [Cited by in Crossref: 55] [Cited by in F6Publishing: 12] [Article Influence: 13.8] [Reference Citation Analysis]
31 Hwangbo M, Chu K. Recent advances in production and extraction of bacterial lipids for biofuel production. Science of The Total Environment 2020;734:139420. [DOI: 10.1016/j.scitotenv.2020.139420] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
32 Gonçalves AL. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Applied Sciences 2021;11:871. [DOI: 10.3390/app11020871] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
33 Rossi F, Mugnai G, De Philippis R. Cyanobacterial biocrust induction: A comprehensive review on a soil rehabilitation-effective biotechnology. Geoderma 2022;415:115766. [DOI: 10.1016/j.geoderma.2022.115766] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Ahmed H, Pathak J, Rajneesh, Sonkar PK, Ganesan V, Häder DP, Sinha RP. Responses of a hot spring cyanobacterium under ultraviolet and photosynthetically active radiation: photosynthetic performance, antioxidative enzymes, mycosporine-like amino acid profiling and its antioxidative potentials. 3 Biotech 2021;11:10. [PMID: 33442509 DOI: 10.1007/s13205-020-02562-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Saini DK, Chakdar H, Pabbi S, Shukla P. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 2020;60:391-405. [PMID: 30706720 DOI: 10.1080/10408398.2018.1533518] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
36 Nyyssölä A, Suhonen A, Ritala A, Oksman-Caldentey KM. The role of single cell protein in cellular agriculture. Curr Opin Biotechnol 2022;75:102686. [PMID: 35093677 DOI: 10.1016/j.copbio.2022.102686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
37 Hotos GN. Culture Growth of the Cyanobacterium Phormidium sp. in Various Salinity and Light Regimes and Their Influence on Its Phycocyanin and Other Pigments Content. JMSE 2021;9:798. [DOI: 10.3390/jmse9080798] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
38 Mącik M, Gryta A, Frąc M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Elsevier; 2020. pp. 31-87. [DOI: 10.1016/bs.agron.2020.02.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 16] [Article Influence: 24.0] [Reference Citation Analysis]
39 Liu D, Liberton M, Hendry JI, Aminian-Dehkordi J, Maranas CD, Pakrasi HB. Engineering biology approaches for food and nutrient production by cyanobacteria. Curr Opin Biotechnol 2021;67:1-6. [PMID: 33129046 DOI: 10.1016/j.copbio.2020.09.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Perin G, Yunus IS, Valton M, Alobwede E, Jones PR. Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. Algal Research 2019;41:101554. [DOI: 10.1016/j.algal.2019.101554] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]