BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Naganawa S, Nakane T, Kawai H, Taoka T. Gd-based Contrast Enhancement of the Perivascular Spaces in the Basal Ganglia. Magn Reson Med Sci 2017;16:61-5. [PMID: 27430361 DOI: 10.2463/mrms.mp.2016-0039] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 10.2] [Reference Citation Analysis]
Number Citing Articles
1 Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB. Chelated or dechelated gadolinium deposition – Authors' reply. The Lancet Neurology 2017;16:955-6. [DOI: 10.1016/s1474-4422(17)30365-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Kanda T, Nakai Y, Hagiwara A, Oba H, Toyoda K, Furui S. Distribution and chemical forms of gadolinium in the brain: a review. Br J Radiol 2017;90:20170115. [PMID: 28749164 DOI: 10.1259/bjr.20170115] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
3 Hara S, Hori M, Inaji M, Maehara T, Aoki S, Nariai T. Regression of White Matter Hyperintensity after Indirect Bypass Surgery in a Patient with Moyamoya Disease. Magn Reson Med Sci 2019;18:247-8. [PMID: 30518734 DOI: 10.2463/mrms.ci.2018-0088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
4 Taoka T, Naganawa S. Glymphatic imaging using MRI. J Magn Reson Imaging 2020;51:11-24. [PMID: 31423710 DOI: 10.1002/jmri.26892] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 12.3] [Reference Citation Analysis]
5 Kanda T, Nakai Y, Oba H, Toyoda K, Kitajima K, Furui S. Gadolinium deposition in the brain. Magnetic Resonance Imaging 2016;34:1346-50. [DOI: 10.1016/j.mri.2016.08.024] [Cited by in Crossref: 88] [Cited by in F6Publishing: 74] [Article Influence: 14.7] [Reference Citation Analysis]
6 Bezerra MLS, Ferreira ACAF, de Oliveira-Souza R. Pseudotumor Cerebri and Glymphatic Dysfunction. Front Neurol 2017;8:734. [PMID: 29387036 DOI: 10.3389/fneur.2017.00734] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
7 Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018;168:250-68. [PMID: 27890804 DOI: 10.1016/j.neuroimage.2016.11.056] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 8.3] [Reference Citation Analysis]
8 Barisano G, Bigjahan B, Metting S, Cen S, Amezcua L, Lerner A, Toga AW, Law M. Signal Hyperintensity on Unenhanced T1-Weighted Brain and Cervical Spinal Cord MR Images after Multiple Doses of Linear Gadolinium-Based Contrast Agent. AJNR Am J Neuroradiol 2019;40:1274-81. [PMID: 31345942 DOI: 10.3174/ajnr.A6148] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium Retention and Toxicity—An Update. Advances in Chronic Kidney Disease 2017;24:138-46. [DOI: 10.1053/j.ackd.2017.03.004] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 10.4] [Reference Citation Analysis]
10 Naganawa S, Ito R, Kato Y, Kawai H, Taoka T, Yoshida T, Maruyama K, Murata K, Körzdörfer G, Pfeuffer J, Nittka M, Sone M. Intracranial Distribution of Intravenously Administered Gadolinium-based Contrast Agent over a Period of 24 Hours: Evaluation with 3D-real IR Imaging and MR Fingerprinting. Magn Reson Med Sci 2021;20:91-8. [PMID: 32295977 DOI: 10.2463/mrms.mp.2020-0030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Kim HK, Lee GH, Chang Y. Gadolinium as an MRI contrast agent. Future Med Chem 2018;10:639-61. [PMID: 29412006 DOI: 10.4155/fmc-2017-0215] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
12 Wang ST, Hua ZX, Fan DX, Zhang X, Ren K. Gadolinium Retention and Clearance in the Diabetic Brain after Administrations of Gadodiamide, Gadopentetate Dimeglumine, and Gadoterate Meglumine in a Rat Model. Biomed Res Int 2019;2019:3901907. [PMID: 31192255 DOI: 10.1155/2019/3901907] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
13 Hara S, Hori M, Ueda R, Hagiwara A, Hayashi S, Inaji M, Tanaka Y, Maehara T, Ishii K, Aoki S, Nariai T. Intravoxel incoherent motion perfusion in patients with Moyamoya disease: comparison with 15O-gas positron emission tomography. Acta Radiol Open 2019;8:2058460119846587. [PMID: 31205752 DOI: 10.1177/2058460119846587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018;289:517-34. [PMID: 30204075 DOI: 10.1148/radiol.2018181151] [Cited by in Crossref: 121] [Cited by in F6Publishing: 93] [Article Influence: 30.3] [Reference Citation Analysis]
15 Korogi Y, Naganawa S. Emerging neuroradiological topics in journals from related societies. Jpn J Radiol 2017;35:1-2. [PMID: 28070794 DOI: 10.1007/s11604-016-0600-0] [Reference Citation Analysis]
16 Kikuta J, Kamagata K, Takabayashi K, Taoka T, Yokota H, Andica C, Wada A, Someya Y, Tamura Y, Kawamori R, Watada H, Naganawa S, Aoki S. An Investigation of Water Diffusivity Changes along the Perivascular Space in Elderly Subjects with Hypertension. AJNR Am J Neuroradiol 2021. [PMID: 34794943 DOI: 10.3174/ajnr.A7334] [Reference Citation Analysis]
17 Saade C, Bou-Fakhredin R, Yousem DM, Asmar K, Naffaa L, El-Merhi F. Gadolinium and Multiple Sclerosis: Vessels, Barriers of the Brain, and Glymphatics. AJNR Am J Neuroradiol 2018;39:2168-76. [PMID: 30385472 DOI: 10.3174/ajnr.A5773] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
18 Okada I, Iwamoto K, Miyata S, Fujimoto A, Tanaka M, Amano M, Matsuyama N, Taoka T, Naganawa S, Ozaki N. FLUID study: study protocol for an open-label, single-centre pilot study to investigate the efFect of Lemborexant on sleep management in Japanese sUbjects aged 50 years and older with Insomnia Disorder. BMJ Open 2021;11:e054885. [PMID: 34836909 DOI: 10.1136/bmjopen-2021-054885] [Reference Citation Analysis]
19 McKnight CD, Rouleau RM, Donahue MJ, Claassen DO. The Regulation of Cerebral Spinal Fluid Flow and Its Relevance to the Glymphatic System. Curr Neurol Neurosci Rep 2020;20:58. [PMID: 33074399 DOI: 10.1007/s11910-020-01077-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Lee S, Yoo RE, Choi SH, Oh SH, Ji S, Lee J, Huh KY, Lee JY, Hwang I, Kang KM, Yun TJ, Kim JH, Sohn CH. Contrast-enhanced MRI T1 Mapping for Quantitative Evaluation of Putative Dynamic Glymphatic Activity in the Human Brain in Sleep-Wake States. Radiology 2021;:203784. [PMID: 34156299 DOI: 10.1148/radiol.2021203784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Saito S, Yamamoto Y, Ihara M. Development of a Multicomponent Intervention to Prevent Alzheimer's Disease. Front Neurol 2019;10:490. [PMID: 31139139 DOI: 10.3389/fneur.2019.00490] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
22 Benveniste H, Lee H, Ozturk B, Chen X, Koundal S, Vaska P, Tannenbaum A, Volkow ND. Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging. Neuroscience 2020:S0306-4522(20)30730-2. [PMID: 33248153 DOI: 10.1016/j.neuroscience.2020.11.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
23 Yankova G, Bogomyakova O, Tulupov A. The glymphatic system and meningeal lymphatics of the brain: new understanding of brain clearance. Rev Neurosci 2021. [PMID: 33618444 DOI: 10.1515/revneuro-2020-0106] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Schneider GK, Stroeder J, Roditi G, Colosimo C, Armstrong P, Martucci M, Buecker A, Raczeck P. T1 Signal Measurements in Pediatric Brain: Findings after Multiple Exposures to Gadobenate Dimeglumine for Imaging of Nonneurologic Disease. AJNR Am J Neuroradiol 2017;38:1799-806. [PMID: 28642266 DOI: 10.3174/ajnr.A5270] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 4.8] [Reference Citation Analysis]
25 Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, Faerman A, Bhowmick C, Schulte T. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson's disease. Neurosci Biobehav Rev 2019;103:305-15. [PMID: 31132378 DOI: 10.1016/j.neubiorev.2019.05.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
26 Naganawa S, Nakane T, Kawai H, Taoka T. Differences in Signal Intensity and Enhancement on MR Images of the Perivascular Spaces in the Basal Ganglia versus Those in White Matter. Magn Reson Med Sci 2018;17:301-7. [PMID: 29343658 DOI: 10.2463/mrms.mp.2017-0137] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Naganawa S, Kawai H, Taoka T, Sone M. Improved HYDROPS: Imaging of Endolymphatic Hydrops after Intravenous Administration of Gadolinium. Magn Reson Med Sci 2017;16:357-61. [PMID: 28529249 DOI: 10.2463/mrms.tn.2016-0126] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
28 Piantino JA, Iliff JJ, Lim MM. The Bidirectional Link Between Sleep Disturbances and Traumatic Brain Injury Symptoms: A Role for Glymphatic Dysfunction? Biol Psychiatry 2021:S0006-3223(21)01442-6. [PMID: 34481662 DOI: 10.1016/j.biopsych.2021.06.025] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Taoka T, Jost G, Frenzel T, Naganawa S, Pietsch H. Impact of the Glymphatic System on the Kinetic and Distribution of Gadodiamide in the Rat Brain: Observations by Dynamic MRI and Effect of Circadian Rhythm on Tissue Gadolinium Concentrations. Investigative Radiology 2018;53:529-34. [DOI: 10.1097/rli.0000000000000473] [Cited by in Crossref: 40] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
30 Vergauwen E, Vanbinst AM, Brussaard C, Janssens P, De Clerck D, Van Lint M, Houtman AC, Michel O, Keymolen K, Lefevere B, Bohler S, Michielsen D, Jansen AC, Van Velthoven V, Gläsker S. Central nervous system gadolinium accumulation in patients undergoing periodical contrast MRI screening for hereditary tumor syndromes. Hered Cancer Clin Pract 2018;16:2. [PMID: 29312473 DOI: 10.1186/s13053-017-0084-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
31 Naganawa S, Nakane T, Kawai H, Taoka T. Lack of Contrast Enhancement in a Giant Perivascular Space of the Basal Ganglion on Delayed FLAIR Images: Implications for the Glymphatic System. Magn Reson Med Sci 2017;16:89-90. [PMID: 28123166 DOI: 10.2463/mrms.ci.2016-0114] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
32 Naganawa S, Nakane T, Kawai H, Taoka T, Kawaguchi H, Maruyama K, Murata K, Körzdörfer G, Pfeuffer J, Nittka M, Sone M. Detection of IV-gadolinium Leakage from the Cortical Veins into the CSF Using MR Fingerprinting. Magn Reson Med Sci 2020;19:141-6. [PMID: 31217367 DOI: 10.2463/mrms.mp.2019-0048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
33 Naganawa S, Taoka T, Kawai H, Yamazaki M, Suzuki K. Appearance of the Organum Vasculosum of the Lamina Terminalis on Contrast-enhanced MR Imaging. Magn Reson Med Sci 2018;17:132-7. [PMID: 28966303 DOI: 10.2463/mrms.mp.2017-0088] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
34 Taoka T, Naganawa S, Kawai H, Nakane T, Murata K. Can low b value diffusion weighted imaging evaluate the character of cerebrospinal fluid dynamics? Jpn J Radiol 2019;37:135-44. [DOI: 10.1007/s11604-018-0790-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
35 Taoka T, Naganawa S. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain. Magn Reson Med Sci 2018;17:111-9. [PMID: 29367513 DOI: 10.2463/mrms.rev.2017-0116] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 12.3] [Reference Citation Analysis]
36 Taoka T. Neurofluid as Assessed by Diffusion-Weighted Imaging. Magn Reson Imaging Clin N Am 2021;29:243-51. [PMID: 33902906 DOI: 10.1016/j.mric.2021.01.002] [Reference Citation Analysis]
37 Deike-hofmann K, Reuter J, Haase R, Paech D, Gnirs R, Bickelhaupt S, Forsting M, Heußel CP, Schlemmer H, Radbruch A. Glymphatic Pathway of Gadolinium-Based Contrast Agents Through the Brain: Overlooked and Misinterpreted. Investigative Radiology 2019;54:229-37. [DOI: 10.1097/rli.0000000000000533] [Cited by in Crossref: 41] [Cited by in F6Publishing: 16] [Article Influence: 13.7] [Reference Citation Analysis]
38 Ozturk K, Nas OF, Soylu E, Hakyemez B. Signal Changes in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted Magnetic Resonance Images After Intrathecal Administration of Macrocyclic Gadolinium Contrast Agent: . Investigative Radiology 2018;53:535-40. [DOI: 10.1097/rli.0000000000000472] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
39 Jost G, Frenzel T, Lohrke J, Lenhard DC, Naganawa S, Pietsch H. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol 2017;27:2877-85. [PMID: 27832312 DOI: 10.1007/s00330-016-4654-2] [Cited by in Crossref: 86] [Cited by in F6Publishing: 85] [Article Influence: 14.3] [Reference Citation Analysis]
40 Ohashi T, Naganawa S, Iwata S, Kuno K. Distribution of Gadolinium-based Contrast Agent after Leaking into the Cerebrospinal Fluid: Comparison between the Cerebral Cisterns and the Lateral Ventricles. Magn Reson Med Sci 2021;20:175-81. [PMID: 32641590 DOI: 10.2463/mrms.mp.2020-0016] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Choi JW, Moon WJ. Gadolinium Deposition in the Brain: Current Updates.Korean J Radiol. 2019;20:134-147. [PMID: 30627029 DOI: 10.3348/kjr.2018.0356] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 13.8] [Reference Citation Analysis]
42 Mijnders LS, Steup FW, Lindhout M, van der Kleij PA, Brink WM, van der Molen AJ. Optimal sequences and sequence parameters for GBCA-enhanced MRI of the glymphatic system: a systematic literature review. Acta Radiol 2021;62:1324-32. [PMID: 33153270 DOI: 10.1177/0284185120969950] [Reference Citation Analysis]
43 Verheggen I, Van Boxtel M, Verhey F, Jansen J, Backes W. Interaction between blood-brain barrier and glymphatic system in solute clearance. Neuroscience & Biobehavioral Reviews 2018;90:26-33. [DOI: 10.1016/j.neubiorev.2018.03.028] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 11.5] [Reference Citation Analysis]
44 Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, Kishimoto T, Naganawa S. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol 2017;35:172-8. [PMID: 28197821 DOI: 10.1007/s11604-017-0617-z] [Cited by in Crossref: 79] [Cited by in F6Publishing: 70] [Article Influence: 15.8] [Reference Citation Analysis]
45 Ohashi T, Naganawa S, Ogawa E, Katagiri T, Kuno K. Signal Intensity of the Cerebrospinal Fluid after Intravenous Administration of Gadolinium-based Contrast Agents: Strong Contrast Enhancement around the Vein of Labbe. Magn Reson Med Sci 2019;18:194-9. [PMID: 30416181 DOI: 10.2463/mrms.mp.2018-0043] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
46 Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond) 2017;131:2257-74. [PMID: 28798076 DOI: 10.1042/CS20160381] [Cited by in Crossref: 93] [Cited by in F6Publishing: 54] [Article Influence: 18.6] [Reference Citation Analysis]
47 Naganawa S, Nakane T, Kawai H, Taoka T. Age Dependence of Gadolinium Leakage from the Cortical Veins into the Cerebrospinal Fluid Assessed with Whole Brain 3D-real Inversion Recovery MR Imaging. Magn Reson Med Sci 2019;18:163-9. [PMID: 30393275 DOI: 10.2463/mrms.mp.2018-0053] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
48 Jost G, Frenzel T, Boyken J, Schoeckel L, Pietsch H. Gadolinium Presence in the Brain After Administration of the Liver-Specific Gadolinium-Based Contrast Agent Gadoxetate: A Systematic Comparison to Multipurpose Agents in Rats. Investigative Radiology 2019;54:468-74. [DOI: 10.1097/rli.0000000000000559] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
49 Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 2021;127:171-83. [PMID: 33930471 DOI: 10.1016/j.neubiorev.2021.04.025] [Reference Citation Analysis]
50 Berger F, Kubik-huch RA, Niemann T, Schmid HR, Poetzsch M, Froehlich JM, Beer JH, Thali MJ, Kraemer T. Gadolinium Distribution in Cerebrospinal Fluid after Administration of a Gadolinium-based MR Contrast Agent in Humans. Radiology 2018;288:703-9. [DOI: 10.1148/radiol.2018171829] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
51 Kato Y, Bokura K, Taoka T, Naganawa S. Increased signal intensity of low-concentration gadolinium contrast agent by longer repetition time in heavily T2-weighted-3D-FLAIR. Jpn J Radiol 2019;37:431-5. [PMID: 30863972 DOI: 10.1007/s11604-019-00828-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
52 Ohashi T, Naganawa S, Katagiri T, Kuno K. Relationship between Contrast Enhancement of the Perivascular Space in the Basal Ganglia and Endolymphatic Volume Ratio. Magn Reson Med Sci 2018;17:67-72. [PMID: 28592709 DOI: 10.2463/mrms.mp.2017-0001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
53 Rozenfeld MN, Podberesky DJ. Gadolinium-based contrast agents in children. Pediatr Radiol 2018;48:1188-96. [DOI: 10.1007/s00247-018-4165-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
54 Maekawa T, Hagiwara A, Hori M, Andica C, Haruyama T, Kuramochi M, Nakazawa M, Koshino S, Irie R, Kamagata K, Wada A, Abe O, Aoki S. Effect of Gadolinium on the Estimation of Myelin and Brain Tissue Volumes Based on Quantitative Synthetic MRI. AJNR Am J Neuroradiol 2019;40:231-7. [PMID: 30591507 DOI: 10.3174/ajnr.A5921] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
55 Wu CH, Lirng JF, Ling YH, Wang YF, Wu HM, Fuh JL, Lin PC, Wang SJ, Chen SP. Noninvasive Characterization of Human Glymphatics and Meningeal Lymphatics in an in vivo Model of Blood-Brain Barrier Leakage. Ann Neurol 2021;89:111-24. [PMID: 33030257 DOI: 10.1002/ana.25928] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
56 Deike-hofmann K, von Lampe P, Schlemmer H, Bechrakis N, Kleinschnitz C, Forsting M, Radbruch A. The anterior eye chamber: entry of the natural excretion pathway of gadolinium contrast agents? Eur Radiol 2020;30:4633-40. [DOI: 10.1007/s00330-020-06762-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Taoka T, Naganawa S. Neurofluid Dynamics and the Glymphatic System: A Neuroimaging Perspective. Korean J Radiol 2020;21:1199-209. [PMID: 32783417 DOI: 10.3348/kjr.2020.0042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
58 Bussi S, Coppo A, Botteron C, Fraimbault V, Fanizzi A, De Laurentiis E, Colombo Serra S, Kirchin MA, Tedoldi F, Maisano F. Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats. J Magn Reson Imaging 2018;47:746-52. [PMID: 28730643 DOI: 10.1002/jmri.25822] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 13.6] [Reference Citation Analysis]
59 Kanal E. Intracranial Gadolinium Retention: “Nothing More to See Here… Move Along…”. Radiology 2020;294:386-7. [DOI: 10.1148/radiol.2019192315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Taoka T, Naganawa S. Imaging for central nervous system (CNS) interstitial fluidopathy: disorders with impaired interstitial fluid dynamics. Jpn J Radiol 2021;39:1-14. [PMID: 32653987 DOI: 10.1007/s11604-020-01017-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]