BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Matsumae M, Kuroda K, Yatsushiro S, Hirayama A, Hayashi N, Takizawa K, Atsumi H, Sorimachi T. Changing the Currently Held Concept of Cerebrospinal Fluid Dynamics Based on Shared Findings of Cerebrospinal Fluid Motion in the Cranial Cavity Using Various Types of Magnetic Resonance Imaging Techniques. Neurol Med Chir (Tokyo) 2019;59:133-46. [PMID: 30814424 DOI: 10.2176/nmc.ra.2018-0272] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Roques M, De Barros A, Bonneville F. Rethink the classical view of cerebrospinal fluid production. Nat Rev Neurol 2021;17:590. [PMID: 34253899 DOI: 10.1038/s41582-021-00538-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Sarker A, Suh M, Choi Y, Park JY, Kwon S, Kim H, Lee E, Seo H, Lee Y, Lee DS. [64Cu]Cu-Albumin Clearance Imaging to Evaluate Lymphatic Efflux of Cerebrospinal Space Fluid in Mouse Model. Nucl Med Mol Imaging. [DOI: 10.1007/s13139-022-00746-6] [Reference Citation Analysis]
3 Tan C, Wang X, Wang Y, Wang C, Tang Z, Zhang Z, Liu J, Xiao G. The Pathogenesis Based on the Glymphatic System, Diagnosis, and Treatment of Idiopathic Normal Pressure Hydrocephalus. Clin Interv Aging 2021;16:139-53. [PMID: 33488070 DOI: 10.2147/CIA.S290709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Horie T, Kajihara N, Saito H, Shibukawa S, Obara M, Ogino T, Niwa T, Kuroda K, Matsumae M. Visualization of Cerebrospinal Fluid Motion in the Whole Brain Using Three-dimensional Dynamic Improved Motion-sensitized Driven-equilibrium Steady-state Free Precession. Magn Reson Med Sci 2021;20:112-8. [PMID: 32188834 DOI: 10.2463/mrms.tn.2019-0171] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Muñoz-montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022;9:801652. [DOI: 10.3389/fcell.2021.801652] [Reference Citation Analysis]
6 Yang HS, Inglis B, Talavage TM, Nair VV, Yao JF, Fitzgerald B, Schwichtenberg AJ, Tong Y. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: An fMRI study. J Cereb Blood Flow Metab 2022;:271678X221074639. [PMID: 35037498 DOI: 10.1177/0271678X221074639] [Reference Citation Analysis]
7 Atsumi H, Horie T, Kajihara N, Sunaga A, Sakakibara Y, Matsumae M. Simple Identification of Cerebrospinal Fluid Turbulent Motion Using a Dynamic Improved Motion-sensitized Driven-equilibrium Steady-state Free Precession Method Applied to Various Types of Cerebrospinal Fluid Motion Disturbance. Neurol Med Chir (Tokyo) 2020;60:30-6. [PMID: 31776307 DOI: 10.2176/nmc.oa.2019-0170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yatsushiro S, Sunohara S, Matsumae M, Atsumi H, Horie T, Kajihara N, Kuroda K. Evaluation of Cardiac- and Respiratory-driven Cerebrospinal Fluid Motions by Applying the S-transform to Steady-state Free Precession Phase Contrast Imaging. Magn Reson Med Sci 2022. [PMID: 35173115 DOI: 10.2463/mrms.mp.2021-0126] [Reference Citation Analysis]
9 Lee DS, Suh M, Sarker A, Choi Y. Brain Glymphatic/Lymphatic Imaging by MRI and PET. Nucl Med Mol Imaging 2020;54:207-23. [PMID: 33088350 DOI: 10.1007/s13139-020-00665-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Trumbore CN. Shear-Induced Amyloid Aggregation in the Brain: V. Are Alzheimer's and Other Amyloid Diseases Initiated in the Lower Brain and Brainstem by Cerebrospinal Fluid Flow Stresses? J Alzheimers Dis 2021;79:979-1002. [PMID: 33386802 DOI: 10.3233/JAD-201025] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Cai X, Qiao J, Kulkarni P, Harding IC, Ebong E, Ferris CF. Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats. Proc Natl Acad Sci U S A 2020;117:668-76. [PMID: 31848247 DOI: 10.1073/pnas.1914017117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
12 Ludwig HC, Bock HC, Gärtner J, Schiller S, Frahm J, Dreha-Kulaczewski S. Hydrocephalus Revisited: New Insights into Dynamics of Neurofluids on Macro- and Microscales. Neuropediatrics 2021;52:233-41. [PMID: 34192788 DOI: 10.1055/s-0041-1731981] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Eide PK, Valnes LM, Lindstrøm EK, Mardal KA, Ringstad G. Direction and magnitude of cerebrospinal fluid flow vary substantially across central nervous system diseases. Fluids Barriers CNS 2021;18:16. [PMID: 33794929 DOI: 10.1186/s12987-021-00251-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]