BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sarker B, Singh R, Silva R, Roether JA, Kaschta J, Detsch R, Schubert DW, Cicha I, Boccaccini AR. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One 2014;9:e107952. [PMID: 25268892 DOI: 10.1371/journal.pone.0107952] [Cited by in Crossref: 125] [Cited by in F6Publishing: 113] [Article Influence: 15.6] [Reference Citation Analysis]
Number Citing Articles
1 Graulus G, Mignon A, Van Vlierberghe S, Declercq H, Fehér K, Cornelissen M, Martins J, Dubruel P. Cross-linkable alginate-graft-gelatin copolymers for tissue engineering applications. European Polymer Journal 2015;72:494-506. [DOI: 10.1016/j.eurpolymj.2015.06.033] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 5.9] [Reference Citation Analysis]
2 Muir VG, Burdick JA. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem Rev 2021;121:10908-49. [DOI: 10.1021/acs.chemrev.0c00923] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
3 Badileanu A, Mora-Navarro C, Gracioso Martins AM, Garcia ME, Sze D, Ozpinar EW, Gaffney L, Enders JR, Branski RC, Freytes DO. Fast Automated Approach for the Derivation of Acellular Extracellular Matrix Scaffolds from Porcine Soft Tissues. ACS Biomater Sci Eng 2020;6:4200-13. [PMID: 33463339 DOI: 10.1021/acsbiomaterials.0c00265] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Nkurunziza D, Ho TC, Protzman RA, Cho Y, Getachew AT, Lee H, Chun BS. Pressurized hot water crosslinking of gelatin-alginate for the enhancement of spent coffee oil emulsion stability. The Journal of Supercritical Fluids 2021;169:105120. [DOI: 10.1016/j.supflu.2020.105120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Sarker B, Li W, Zheng K, Detsch R, Boccaccini AR. Designing Porous Bone Tissue Engineering Scaffolds with Enhanced Mechanical Properties from Composite Hydrogels Composed of Modified Alginate, Gelatin, and Bioactive Glass. ACS Biomater Sci Eng 2016;2:2240-54. [DOI: 10.1021/acsbiomaterials.6b00470] [Cited by in Crossref: 64] [Cited by in F6Publishing: 41] [Article Influence: 10.7] [Reference Citation Analysis]
6 Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen X. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. ACS Biomater Sci Eng 2019;5:2976-87. [PMID: 33405600 DOI: 10.1021/acsbiomaterials.9b00167] [Cited by in Crossref: 46] [Cited by in F6Publishing: 31] [Article Influence: 15.3] [Reference Citation Analysis]
7 Utech S, Prodanovic R, Mao AS, Ostafe R, Mooney DJ, Weitz DA. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Adv Healthc Mater 2015;4:1628-33. [PMID: 26039892 DOI: 10.1002/adhm.201500021] [Cited by in Crossref: 181] [Cited by in F6Publishing: 151] [Article Influence: 25.9] [Reference Citation Analysis]
8 Mommer S, Gehlen D, Akagi T, Akashi M, Keul H, Möller M. Thiolactone-Functional Pullulan for In Situ Forming Biogels. Biomacromolecules 2021;22:4262-73. [PMID: 34546742 DOI: 10.1021/acs.biomac.1c00807] [Reference Citation Analysis]
9 Kasoju N, Hawkins N, Pop-Georgievski O, Kubies D, Vollrath F. Silk fibroin gelation via non-solvent induced phase separation. Biomater Sci 2016;4:460-73. [PMID: 26730413 DOI: 10.1039/c5bm00471c] [Cited by in Crossref: 36] [Cited by in F6Publishing: 5] [Article Influence: 7.2] [Reference Citation Analysis]
10 Monavari M, Homaeigohar S, Fuentes-Chandía M, Nawaz Q, Monavari M, Venkatraman A, Boccaccini AR. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2021;131:112470. [PMID: 34857258 DOI: 10.1016/j.msec.2021.112470] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Mao W, Kang MK, Shin JU, Son YJ, Kim HS, Yoo HS. Coaxial Hydro-Nanofibrils for Self-Assembly of Cell Sheets Producing Skin Bilayers. ACS Appl Mater Interfaces 2018;10:43503-11. [DOI: 10.1021/acsami.8b17740] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
12 Wang J, Zhu Y, Ma H, Chen S, Chao J, Ruan W, Wang D, Du F, Meng Y. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. Materials Science and Engineering: C 2016;62:215-25. [DOI: 10.1016/j.msec.2016.01.045] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
13 Porrelli D, Travan A, Turco G, Marsich E, Borgogna M, Paoletti S, Donati I. Alginate-Hydroxyapatite Bone Scaffolds with Isotropic or Anisotropic Pore Structure: Material Properties and Biological Behavior: Alginate-Hydroxyapatite Bone Scaffolds with Isotropic…. Macromol Mater Eng 2015;300:989-1000. [DOI: 10.1002/mame.201500055] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 3.1] [Reference Citation Analysis]
14 Fu Z, Ouyang L, Xu R, Yang Y, Sun W. Responsive biomaterials for 3D bioprinting: A review. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.01.001] [Reference Citation Analysis]
15 Farasatkia A, Kharaziha M. Robust and double-layer micro-patterned bioadhesive based on silk nanofibril/GelMA-alginate for stroma tissue engineering. Int J Biol Macromol 2021;183:1013-25. [PMID: 33974922 DOI: 10.1016/j.ijbiomac.2021.05.048] [Reference Citation Analysis]
16 Mahou R, Vlahos AE, Shulman A, Sefton MV. Interpenetrating Alginate-Collagen Polymer Network Microspheres for Modular Tissue Engineering. ACS Biomater Sci Eng 2018;4:3704-12. [DOI: 10.1021/acsbiomaterials.7b00356] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
17 Poveda-reyes S, Moulisova V, Sanmartín-masiá E, Quintanilla-sierra L, Salmerón-sánchez M, Ferrer GG. Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromol Biosci 2016;16:1311-24. [DOI: 10.1002/mabi.201500469] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
18 Park JK, Pham-Nguyen OV, Yoo HS. Coaxial Electrospun Nanofibers with Different Shell Contents to Control Cell Adhesion and Viability. ACS Omega 2020;5:28178-85. [PMID: 33163800 DOI: 10.1021/acsomega.0c03902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Cernencu AI, Lungu A, Dragusin DM, Stancu IC, Dinescu S, Balahura LR, Mereuta P, Costache M, Iovu H. 3D Bioprinting of Biosynthetic Nanocellulose-Filled GelMA Inks Highly Reliable for Soft Tissue-Oriented Constructs. Materials (Basel) 2021;14:4891. [PMID: 34500980 DOI: 10.3390/ma14174891] [Reference Citation Analysis]
20 Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication. Front Bioeng Biotechnol 2019;7:184. [PMID: 31417899 DOI: 10.3389/fbioe.2019.00184] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 9.3] [Reference Citation Analysis]
21 Nemati S, Rezabakhsh A, Khoshfetrat AB, Nourazarian A, Biray Avci Ç, Goker Bagca B, Alizadeh Sardroud H, Khaksar M, Ahmadi M, Delkhosh A, Sokullu E, Rahbarghazi R. Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnology and Bioengineering 2017;114:2920-30. [DOI: 10.1002/bit.26395] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
22 Zhang R, Teramura Y, Fukazawa K, Ishihara K. Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromol Biosci 2020;20:e2000114. [PMID: 32567166 DOI: 10.1002/mabi.202000114] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Asadi N, Mehdipour A, Ghorbani M, Mesgari-Abbasi M, Akbarzadeh A, Davaran S. A novel multifunctional bilayer scaffold based on chitosan nanofiber/alginate-gelatin methacrylate hydrogel for full-thickness wound healing. Int J Biol Macromol 2021;193:734-47. [PMID: 34717980 DOI: 10.1016/j.ijbiomac.2021.10.180] [Reference Citation Analysis]
24 Bashiri Z, Amiri I, Gholipourmalekabadi M, Falak R, Asgari H, Maki CB, Moghaddaszadeh A, Koruji M. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomater Sci 2021;9:3465-84. [DOI: 10.1039/d0bm02209h] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Gantumur E, Nakahata M, Kojima M, Sakai S. Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation. Int J Bioprint 2020;6:250. [PMID: 32596552 DOI: 10.18063/ijb.v6i1.250] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Azarpira N, Kaviani M, Sarvestani FS. Incorporation of VEGF-and bFGF-loaded alginate oxide particles in acellular collagen-alginate composite hydrogel to promote angiogenesis. Tissue Cell 2021;72:101539. [PMID: 33838351 DOI: 10.1016/j.tice.2021.101539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zehnder T, Sarker B, Boccaccini AR, Detsch R. Evaluation of an alginate–gelatine crosslinked hydrogel for bioplotting. Biofabrication 2015;7:025001. [DOI: 10.1088/1758-5090/7/2/025001] [Cited by in Crossref: 100] [Cited by in F6Publishing: 91] [Article Influence: 14.3] [Reference Citation Analysis]
28 Rivero R, Alustiza F, Capella V, Liaudat C, Rodriguez N, Bosch P, Barbero C, Rivarola C. Physicochemical properties of ionic and non-ionic biocompatible hydrogels in water and cell culture conditions: Relation with type of morphologies of bovine fetal fibroblasts in contact with the surfaces. Colloids Surf B Biointerfaces 2017;158:488-97. [PMID: 28735221 DOI: 10.1016/j.colsurfb.2017.07.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
29 Umar M, Ullah A, Nawaz H, Areeb T, Hashmi M, Kharaghani D, Kim KO, Kim IS. Wet-spun bi-component alginate based hydrogel fibers: Development and in-vitro evaluation as a potential moist wound care dressing. Int J Biol Macromol 2021;168:601-10. [PMID: 33338524 DOI: 10.1016/j.ijbiomac.2020.12.088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Barros J, Ferraz M, Azeredo J, Fernandes M, Gomes P, Monteiro F. Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration. Materials Science and Engineering: C 2019;105:109985. [DOI: 10.1016/j.msec.2019.109985] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
31 Kombo OR, Wang X, Shen Y, Liu J, Dong X, Shao Q, Long Y, Dong K, Bakhet SFEE, Li B. In Vitro Angiogenic Behavior of HUVECs on Biomimetic SF/SA Composite Scaffolds. J Wuhan Univ Technol -Mat Sci Edit 2021;36:456-64. [DOI: 10.1007/s11595-021-2430-x] [Reference Citation Analysis]
32 Reakasame S, Boccaccini AR. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review. Biomacromolecules 2018;19:3-21. [DOI: 10.1021/acs.biomac.7b01331] [Cited by in Crossref: 120] [Cited by in F6Publishing: 94] [Article Influence: 24.0] [Reference Citation Analysis]
33 Shen G, Hu X, Guan G, Wang L. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin. PLoS One 2015;10:e0124811. [PMID: 25919690 DOI: 10.1371/journal.pone.0124811] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.9] [Reference Citation Analysis]
34 Bociaga D, Bartniak M, Grabarczyk J, Przybyszewska K. Sodium Alginate/Gelatine Hydrogels for Direct Bioprinting-The Effect of Composition Selection and Applied Solvents on the Bioink Properties. Materials (Basel) 2019;12:E2669. [PMID: 31443354 DOI: 10.3390/ma12172669] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
35 Kumar A, I Matari IA, Han SS. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Biofabrication 2020;12:025029. [DOI: 10.1088/1758-5090/ab736e] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
36 Hajiabbas M, Alemzadeh I, Vossoughi M. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Carbohydrate Polymers 2020;245:116465. [DOI: 10.1016/j.carbpol.2020.116465] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
37 Ruther F, Distler T, Boccaccini AR, Detsch R. Biofabrication of vessel-like structures with alginate di-aldehyde—gelatin (ADA-GEL) bioink. J Mater Sci: Mater Med 2019;30. [DOI: 10.1007/s10856-018-6205-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
38 Steiner D, Lingens L, Fischer L, Köhn K, Detsch R, Boccaccini AR, Fey T, Greil P, Weis C, Beier JP, Horch RE, Arkudas A. Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds. Tissue Engineering Part A 2018;24:1320-31. [DOI: 10.1089/ten.tea.2017.0496] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
39 Szabó L, Gerber-Lemaire S, Wandrey C. Strategies to Functionalize the Anionic Biopolymer Na-Alginate without Restricting Its Polyelectrolyte Properties. Polymers (Basel) 2020;12:E919. [PMID: 32326625 DOI: 10.3390/polym12040919] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
40 T Somasekharan L, Kasoju N, Raju R, Bhatt A. Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel) 2020;7:E108. [PMID: 32916945 DOI: 10.3390/bioengineering7030108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Amirian J, Van TTT, Bae S, Jung H, Choi H, Cho H, Lee B. Examination of In vitro and In vivo biocompatibility of alginate-hyaluronic acid microbeads As a promising method in cell delivery for kidney regeneration. International Journal of Biological Macromolecules 2017;105:143-53. [DOI: 10.1016/j.ijbiomac.2017.07.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
42 Cicha I, Detsch R, Singh R, Reakasame S, Alexiou C, Boccaccini AR. Biofabrication of vessel grafts based on natural hydrogels. Current Opinion in Biomedical Engineering 2017;2:83-9. [DOI: 10.1016/j.cobme.2017.05.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
43 Mironov AV, Mironova OA, Mariyanats AO, Komlev VS, Smirnov IV, Kananykhina EY, Fatkhudinov TK, Popov VK. Highly Filled Compositions Based on Alginate Gel and Fine Tricalcium Phosphate for 3D Printing of Tissue-Engineered Matrices. Inorg Mater Appl Res 2020;11:1137-43. [DOI: 10.1134/s2075113320050214] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Sarker B, Rompf J, Silva R, Lang N, Detsch R, Kaschta J, Fabry B, Boccaccini AR. Alginate-based hydrogels with improved adhesive properties for cell encapsulation. International Journal of Biological Macromolecules 2015;78:72-8. [DOI: 10.1016/j.ijbiomac.2015.03.061] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 10.6] [Reference Citation Analysis]
45 Nawaz Q, Ur Rehman MA, Roether JA, Yufei L, Grünewald A, Detsch R, Boccaccini AR. Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating. Ceramics International 2019;45:14608-13. [DOI: 10.1016/j.ceramint.2019.04.179] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
46 Salerno A, Pascual CD. Bio-based polymers, supercritical fluids and tissue engineering. Process Biochemistry 2015;50:826-38. [DOI: 10.1016/j.procbio.2015.02.009] [Cited by in Crossref: 52] [Cited by in F6Publishing: 30] [Article Influence: 7.4] [Reference Citation Analysis]
47 Zandi N, Dolatyar B, Lotfi R, Shallageh Y, Shokrgozar MA, Tamjid E, Annabi N, Simchi A. Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. Acta Biomater 2021;124:191-204. [PMID: 33508511 DOI: 10.1016/j.actbio.2021.01.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
48 Sarker B, Singh R, Zehnder T, Forgber T, Alexiou C, Cicha I, Detsch R, Boccaccini AR. Macromolecular interactions in alginate–gelatin hydrogels regulate the behavior of human fibroblasts. Journal of Bioactive and Compatible Polymers 2017;32:309-24. [DOI: 10.1177/0883911516668667] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
49 Sarker B, Zehnder T, Rath SN, Horch RE, Kneser U, Detsch R, Boccaccini AR. Oxidized Alginate-Gelatin Hydrogel: A Favorable Matrix for Growth and Osteogenic Differentiation of Adipose-Derived Stem Cells in 3D. ACS Biomater Sci Eng 2017;3:1730-7. [DOI: 10.1021/acsbiomaterials.7b00188] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 7.6] [Reference Citation Analysis]
50 Reakasame S, Trapani D, Detsch R, Boccaccini AR. Cell laden alginate-keratin based composite microcapsules containing bioactive glass for tissue engineering applications. J Mater Sci Mater Med 2018;29:185. [PMID: 30519790 DOI: 10.1007/s10856-018-6195-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
51 Nawaz A, Bano S, Yasir M, Wadood A, Ur Rehman MA. Ag and Mn-doped mesoporous bioactive glass nanoparticles incorporated into the chitosan/gelatin coatings deposited on PEEK/bioactive glass layers for favorable osteogenic differentiation and antibacterial activity. Mater Adv 2020;1:1273-84. [DOI: 10.1039/d0ma00325e] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
52 Silva R, Singh R, Sarker B, Papageorgiou DG, Juhasz JA, Roether JA, Cicha I, Kaschta J, Schubert DW, Chrissafis K, Detsch R, Boccaccini AR. Soft-matrices based on silk fibroin and alginate for tissue engineering. International Journal of Biological Macromolecules 2016;93:1420-31. [DOI: 10.1016/j.ijbiomac.2016.04.045] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
53 Kong X, Chen L, Li B, Quan C, Wu J. Applications of oxidized alginate in regenerative medicine. J Mater Chem B 2021;9:2785-801. [PMID: 33683259 DOI: 10.1039/d0tb02691c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Elshishiny F, Mamdouh W. Fabrication of Nanofibrous/Xerogel Layer-by-Layer Biocomposite Scaffolds for Skin Tissue Regeneration: In Vitro Study. ACS Omega 2020;5:2133-47. [PMID: 32064374 DOI: 10.1021/acsomega.9b02832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Sharma K, Mujawar MA, Kaushik A. State-of-Art Functional Biomaterials for Tissue Engineering. Front Mater 2019;6:172. [DOI: 10.3389/fmats.2019.00172] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
56 Alizadeh Sardroud H, Nemati S, Baradar Khoshfetrat A, Nabavinia M, Beygi Khosrowshahi Y. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation. J Microencapsul 2017;34:488-97. [PMID: 28699824 DOI: 10.1080/02652048.2017.1354940] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
57 Singh R, Wieser A, Reakasame S, Detsch R, Dietel B, Alexiou C, Boccaccini AR, Cicha I. Cell specificity of magnetic cell seeding approach to hydrogel colonization. J Biomed Mater Res A 2017;105:2948-57. [PMID: 28639348 DOI: 10.1002/jbm.a.36147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Mukhopadhyay A, Rajput M, Barui A, Chatterjee SS, Pal NK, Chatterjee J, Mukherjee R. Dual cross-linked honey coupled 3D antimicrobial alginate hydrogels for cutaneous wound healing. Mater Sci Eng C Mater Biol Appl 2020;116:111218. [PMID: 32806236 DOI: 10.1016/j.msec.2020.111218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
59 Urruela-Barrios R, Ramírez-Cedillo E, Díaz de León A, Alvarez AJ, Ortega-Lara W. Alginate/Gelatin Hydrogels Reinforced with TiO₂ and β-TCP Fabricated by Microextrusion-based Printing for Tissue Regeneration. Polymers (Basel) 2019;11:E457. [PMID: 30960441 DOI: 10.3390/polym11030457] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
60 Aqib R, Kiani S, Bano S, Wadood A, Ur Rehman MA. Ag–Sr doped mesoporous bioactive glass nanoparticles loaded chitosan/gelatin coating for orthopedic implants. Int J Appl Ceram Technol 2021;18:544-62. [DOI: 10.1111/ijac.13702] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
61 Hatton J, Davis GR, Mourad AI, Cherupurakal N, Hill RG, Mohsin S. Fabrication of Porous Bone Scaffolds Using Alginate and Bioactive Glass. J Funct Biomater 2019;10:E15. [PMID: 30836701 DOI: 10.3390/jfb10010015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
62 Wang Y, Hu X, Kankala RK, Yang DY, Zhu K, Wang SB, Zhang YS, Chen AZ. Endothelialized microrods for minimally invasive in situ neovascularization. Biofabrication 2019;12:015011. [PMID: 31553962 DOI: 10.1088/1758-5090/ab47eb] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
63 Attalla R, Puersten E, Jain N, Selvaganapathy PR. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Biofabrication 2018;11:015012. [PMID: 30537688 DOI: 10.1088/1758-5090/aaf7c7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
64 Yang X, Liu J, Xu Y, Gu Z, Xu Y, Li L, Yu X. Effects of pH on the alginate dialdehyde (ADA)-crosslinking of natural biological tissues and in vitro study of the endothelial cell compatibility of ADA-crosslinked biological tissues. RSC Adv 2016;6:24527-35. [DOI: 10.1039/c5ra23237f] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
65 Borges J, Sousa MP, Cinar G, Caridade SG, Guler MO, Mano JF. Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Self‐Assembling Peptide Amphiphiles. Adv Funct Mater 2017;27:1605122. [DOI: 10.1002/adfm.201605122] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
66 Liu X, Gaihre B, George MN, Miller AL 2nd, Xu H, Waletzki BE, Lu L. 3D bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. J Biomed Mater Res A 2021;109:6-17. [PMID: 32418273 DOI: 10.1002/jbm.a.37002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
67 Yu W, Jiang Y, Sun T, Qi C, Zhao H, Chen F, Shi Z, Zhu Y, Chen D, He Y. Design of a novel wound dressing consisting of alginate hydrogel and simvastatin-incorporated mesoporous hydroxyapatite microspheres for cutaneous wound healing. RSC Adv 2016;6:104375-87. [DOI: 10.1039/c6ra20892d] [Cited by in Crossref: 29] [Article Influence: 4.8] [Reference Citation Analysis]
68 He Y, Derakhshanfar S, Zhong W, Li B, Lu F, Xing M, Li X. Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering. Journal of Nanomaterials 2020;2020:1-11. [DOI: 10.1155/2020/2057097] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
69 Tayebi L, Rasoulianboroujeni M, Cui Z, Ye H. 3D-printed thick structured gelatin membrane for engineering of heterogeneous tissues. Materials Letters 2018;217:39-43. [DOI: 10.1016/j.matlet.2018.01.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
70 Nemati S, Alizadeh Sardroud H, Baradar Khoshfetrat A, Khaksar M, Ahmadi M, Amini H, Saberianpour S, Delkhosh A, Akbar Movassaghpour A, Rahbarghazi R. The effect of alginate-gelatin encapsulation on the maturation of human myelomonocytic cell line U937. J Tissue Eng Regen Med 2019;13:25-35. [DOI: 10.1002/term.2765] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
71 Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017;98:748-76. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
72 Patel KD, Silva LB, Park Y, Shakouri T, Keskin-erdogan Z, Sawadkar P, Cho KJ, Knowles JC, Chau DY, Kim H. Recent advances in drug delivery systems for glaucoma treatment. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100178] [Reference Citation Analysis]
73 Rehman MAU, Batool SA. Development of sustainable antibacterial coatings based on electrophoretic deposition of multilayers: gentamicin-loaded chitosan/gelatin/bioactive glass deposition on PEEK/bioactive glass layer. Int J Adv Manuf Technol. [DOI: 10.1007/s00170-022-09024-3] [Reference Citation Analysis]
74 Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020;:e2000795. [PMID: 32940020 DOI: 10.1002/adhm.202000795] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
75 Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. ACS Appl Mater Interfaces 2020;12:4343-57. [PMID: 31909967 DOI: 10.1021/acsami.9b22062] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
76 Ivanovska J, Zehnder T, Lennert P, Sarker B, Boccaccini AR, Hartmann A, Schneider-Stock R, Detsch R. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells. Tissue Eng Part C Methods 2016;22:708-15. [PMID: 27269631 DOI: 10.1089/ten.TEC.2015.0452] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 6.4] [Reference Citation Analysis]
77 Bajpai SK, Shah FF, Bajpai M. Dynamic release of gentamicin sulfate (GS) from alginate dialdehyde (AD)-crosslinked casein (CAS) films for antimicrobial applications. Des Monomers Polym 2017;20:18-32. [PMID: 29491776 DOI: 10.1080/15685551.2016.1231037] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
78 Liu F, Chen Q, Liu C, Ao Q, Tian X, Fan J, Tong H, Wang X. Natural Polymers for Organ 3D Bioprinting. Polymers (Basel) 2018;10:E1278. [PMID: 30961203 DOI: 10.3390/polym10111278] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 11.0] [Reference Citation Analysis]
79 Schwarz S, Kuth S, Distler T, Gögele C, Stölzel K, Detsch R, Boccaccini AR, Schulze-tanzil G. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Materials Science and Engineering: C 2020;116:111189. [DOI: 10.1016/j.msec.2020.111189] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
80 Zehnder T, Boccaccini AR, Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix. Biofabrication 2017;9:025016. [PMID: 28266351 DOI: 10.1088/1758-5090/aa64ec] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
81 Stana J, Stergar J, Gradišnik L, Flis V, Kargl R, Fröhlich E, Stana Kleinschek K, Mohan T, Maver U. Multilayered Polysaccharide Nanofilms for Controlled Delivery of Pentoxifylline and Possible Treatment of Chronic Venous Ulceration. Biomacromolecules 2017;18:2732-46. [DOI: 10.1021/acs.biomac.7b00523] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
82 Mirtaghavi A, Baldwin A, Tanideh N, Zarei M, Muthuraj R, Cao Y, Zhao G, Geng J, Jin H, Luo J. Crosslinked porous three-dimensional cellulose nanofibers-gelatine biocomposite scaffolds for tissue regeneration. International Journal of Biological Macromolecules 2020;164:1949-59. [DOI: 10.1016/j.ijbiomac.2020.08.066] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
83 Risser GE, Banik BL, Brown JL, Catchmark JM. Structural properties of starch-chitosan-gelatin foams and the impact of gelatin on MC3T3 mouse osteoblast cell viability. J Biol Eng 2017;11:43. [PMID: 29201139 DOI: 10.1186/s13036-017-0086-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
84 Venegas-Cervera GA, Oliva AI, Avila-Ortega A, Cervantes-Uc JM, Carrillo-Cocom LM, Juarez-Moreno JA. Biocompatibility studies of polyurethane electrospun membranes based on arginine as chain extender. J Mater Sci Mater Med 2021;32:104. [PMID: 34417669 DOI: 10.1007/s10856-021-06581-z] [Reference Citation Analysis]
85 Vitale C, Marzagalli M, Scaglione S, Dondero A, Bottino C, Castriconi R. Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers 2022;14:1013. [DOI: 10.3390/cancers14041013] [Reference Citation Analysis]
86 Distler T, McDonald K, Heid S, Karakaya E, Detsch R, Boccaccini AR. Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering. ACS Biomater Sci Eng 2020;6:3899-914. [PMID: 33463325 DOI: 10.1021/acsbiomaterials.0c00677] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
87 Reakasame S, Dranseikiene D, Schrüfer S, Zheng K, Schubert DW, Boccaccini AR. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. Mater Sci Eng C Mater Biol Appl 2021;128:112336. [PMID: 34474887 DOI: 10.1016/j.msec.2021.112336] [Reference Citation Analysis]
88 Distler T, Kretzschmar L, Schneidereit D, Girardo S, Goswami R, Friedrich O, Detsch R, Guck J, Boccaccini AR, Budday S. Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels. Biomater Sci 2021;9:3051-68. [PMID: 33666608 DOI: 10.1039/d0bm02117b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
89 O'Connor NA, Jitianu M, Nunez G, Picard Q, Wong M, Akpatsu D, Negrin A, Gharbaran R, Lugo D, Shaker S, Jitianu A, Redenti S. Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties. Int J Biol Macromol 2018;111:370-8. [PMID: 29325744 DOI: 10.1016/j.ijbiomac.2018.01.042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
90 Nosenko MA, Moysenovich AM, Zvartsev RV, Arkhipova AY, Zhdanova AS, Agapov II, Vasilieva TV, Bogush VG, Debabov VG, Nedospasov SA, Moisenovich MM, Drutskaya MS. Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis. Front Immunol 2018;9:2851. [PMID: 30564244 DOI: 10.3389/fimmu.2018.02851] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
91 Xi Loh EY, Fauzi MB, Ng MH, Ng PY, Ng SF, Ariffin H, Mohd Amin MCI. Cellular and Molecular Interaction of Human Dermal Fibroblasts with Bacterial Nanocellulose Composite Hydrogel for Tissue Regeneration. ACS Appl Mater Interfaces 2018;10:39532-43. [DOI: 10.1021/acsami.8b16645] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
92 Sarker B, Boccaccini AR. Alginate Utilization in Tissue Engineering and Cell Therapy. In: Rehm BH, Moradali MF, editors. Alginates and Their Biomedical Applications. Singapore: Springer; 2018. pp. 121-55. [DOI: 10.1007/978-981-10-6910-9_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
93 Distler T, Lauria I, Detsch R, Sauter CM, Bendt F, Kapr J, Rütten S, Boccaccini AR, Fritsche E. Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels. Biomedicines 2021;9:261. [PMID: 33808044 DOI: 10.3390/biomedicines9030261] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Kamaraj M, Sreevani G, Prabusankar G, Rath SN. Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs. Mater Sci Eng C Mater Biol Appl 2021;131:112478. [PMID: 34857263 DOI: 10.1016/j.msec.2021.112478] [Reference Citation Analysis]
95 Tiwari S, Patil R, Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers (Basel) 2018;11:E1. [PMID: 30959985 DOI: 10.3390/polym11010001] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 12.8] [Reference Citation Analysis]
96 Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydrate Polymers 2020;248:116776. [DOI: 10.1016/j.carbpol.2020.116776] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
97 Schwager SC, Bordeleau F, Zhang J, Antonyak MA, Cerione RA, Reinhart-King CA. Matrix stiffness regulates microvesicle-induced fibroblast activation. Am J Physiol Cell Physiol 2019;317:C82-92. [PMID: 31017799 DOI: 10.1152/ajpcell.00418.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
98 Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng Part B Rev 2020;26:164-80. [PMID: 31910095 DOI: 10.1089/ten.TEB.2019.0256] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 28.5] [Reference Citation Analysis]
99 Singh R, Sarker B, Silva R, Detsch R, Dietel B, Alexiou C, Boccaccini AR, Cicha I. Evaluation of hydrogel matrices for vessel bioplotting: Vascular cell growth and viability: ALGINATE-PROTEIN HYDROGELS: BIOCOMPATIBILITY WITH VASCULAR CELLS. J Biomed Mater Res 2016;104:577-85. [DOI: 10.1002/jbm.a.35590] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
100 Ababzadeh S, Farzin A, Goodarzi A, Karimi R, Sagharjoghi Farahani M, Eslami Farsani M, Gharibzad K, Zahiri M, Ai J. High porous electrospun poly(ε-caprolactone)/gelatin/MgO scaffolds preseeded with endometrial stem cells promote tissue regeneration in full-thickness skin wounds: An in vivo study. J Biomed Mater Res B Appl Biomater 2020;108:2961-70. [PMID: 32386283 DOI: 10.1002/jbm.b.34626] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
101 Arifin MA, Mel M, Swan SY, Samsudin N, Hashim YZH, Salleh HM. Optimization of ultraviolet/ozone (UVO3) process conditions for the preparation of gelatin coated polystyrene (PS) microcarriers. Prep Biochem Biotechnol 2021;:1-16. [PMID: 34010098 DOI: 10.1080/10826068.2021.1923031] [Reference Citation Analysis]
102 Morán MC, Carazo J, Busquets MA. Dual responsive gelatin-based nanoparticles for enhanced 5-fluorouracil efficiency. Colloids and Surfaces B: Biointerfaces 2018;172:646-54. [DOI: 10.1016/j.colsurfb.2018.09.027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
103 Ahlfeld T, Cidonio G, Kilian D, Duin S, Akkineni AR, Dawson JI, Yang S, Lode A, Oreffo ROC, Gelinsky M. Development of a clay based bioink for 3D cell printing for skeletal application. Biofabrication 2017;9:034103. [PMID: 28691691 DOI: 10.1088/1758-5090/aa7e96] [Cited by in Crossref: 129] [Cited by in F6Publishing: 107] [Article Influence: 25.8] [Reference Citation Analysis]
104 Kumar R, Kehr NS. 3D-Printable Oxygen- and Drug-Carrying Nanocomposite Hydrogels for Enhanced Cell Viability. Nanomaterials 2022;12:1304. [DOI: 10.3390/nano12081304] [Reference Citation Analysis]
105 Sitoci-ficici KH, Matyash M, Uckermann O, Galli R, Leipnitz E, Later R, Ikonomidou C, Gelinsky M, Schackert G, Kirsch M. Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. Acta Neurochir 2018;160:449-57. [DOI: 10.1007/s00701-017-3389-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
106 Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomaterialia 2020;113:1-22. [DOI: 10.1016/j.actbio.2020.06.040] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 15.5] [Reference Citation Analysis]
107 Schmid R, Schmidt SK, Hazur J, Detsch R, Maurer E, Boccaccini AR, Hauptstein J, Teßmar J, Blunk T, Schrüfer S, Schubert DW, Horch RE, Bosserhoff AK, Arkudas A, Kengelbach-Weigand A. Comparison of Hydrogels for the Development of Well-Defined 3D Cancer Models of Breast Cancer and Melanoma. Cancers (Basel) 2020;12:E2320. [PMID: 32824576 DOI: 10.3390/cancers12082320] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
108 Ghalei S, Nourmohammadi J, Solouk A, Mirzadeh H. Enhanced cellular response elicited by addition of amniotic fluid to alginate hydrogel-electrospun silk fibroin fibers for potential wound dressing application. Colloids Surf B Biointerfaces 2018;172:82-9. [PMID: 30138790 DOI: 10.1016/j.colsurfb.2018.08.028] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 9.5] [Reference Citation Analysis]
109 Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021;136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Reference Citation Analysis]
110 Banerjee A, Das S, Mandal M, Ganguly S. Fluidic embedding of additional macroporosity in alginate-gelatin composite structure for biomimetic application. J Biomater Sci Polym Ed 2020;31:2396-417. [PMID: 32838704 DOI: 10.1080/09205063.2020.1815278] [Reference Citation Analysis]
111 Genç H, Hazur J, Karakaya E, Dietel B, Bider F, Groll J, Alexiou C, Boccaccini AR, Detsch R, Cicha I. Differential Responses to Bioink-Induced Oxidative Stress in Endothelial Cells and Fibroblasts. Int J Mol Sci 2021;22:2358. [PMID: 33652991 DOI: 10.3390/ijms22052358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Luca A, Butnaru M, Maier SS, Knieling L, Bredetean O, Verestiuc L, Dimitriu DC, Popa M. Atelocollagen-based Hydrogels Crosslinked with Oxidised Polysaccharides as Cell Encapsulation Matrix for Engineered Bioactive Stromal Tissue. Tissue Eng Regen Med 2017;14:539-56. [PMID: 30603508 DOI: 10.1007/s13770-017-0063-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
113 Gao H, Liu C, Wu B, Cui H, Zhao Y, Duan Y, Gao F, Gu Q, Wang H, Li W. Effects of Different Biomaterials and Cellular Status on Testicular Cell Self-Organization. Adv Biosyst 2020;4:e1900292. [PMID: 32453509 DOI: 10.1002/adbi.201900292] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Curti F, Drăgușin D, Serafim A, Iovu H, Stancu I. Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability. Materials Science and Engineering: C 2021;122:111866. [DOI: 10.1016/j.msec.2021.111866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Leite ÁJ, Sarker B, Zehnder T, Silva R, Mano JF, Boccaccini AR. Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication 2016;8:035005. [DOI: 10.1088/1758-5090/8/3/035005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
116 Zhang J, Wehrle E, Vetsch JR, Paul GR, Rubert M, Müller R. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomed Mater 2019;14:065009. [PMID: 31426033 DOI: 10.1088/1748-605X/ab3c74] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
117 Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, Khoshroo K, Tahriri M, Bastami F, Lobner D, Tayebi L. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent Mater 2017;33:1205-16. [PMID: 28882369 DOI: 10.1016/j.dental.2017.06.016] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 9.4] [Reference Citation Analysis]
118 Heltmann-Meyer S, Steiner D, Müller C, Schneidereit D, Friedrich O, Salehi S, Engel FB, Arkudas A, Horch RE. Gelatin methacryloyl is a slow degrading material allowing vascularization and long-term usein vivo. Biomed Mater 2021;16. [PMID: 34406979 DOI: 10.1088/1748-605X/ac1e9d] [Reference Citation Analysis]
119 Fernandes Patrício TM, Panseri S, Montesi M, Iafisco M, Sandri M, Tampieri A, Sprio S. Superparamagnetic hybrid microspheres affecting osteoblasts behaviour. Materials Science and Engineering: C 2019;96:234-47. [DOI: 10.1016/j.msec.2018.11.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
120 Dodero A, Donati I, Scarfì S, Mirata S, Alberti S, Lova P, Comoretto D, Alloisio M, Vicini S, Castellano M. Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Mater Sci Eng C Mater Biol Appl 2021;124:112067. [PMID: 33947560 DOI: 10.1016/j.msec.2021.112067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
121 Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthcare Mater 2017;6:1700789. [DOI: 10.1002/adhm.201700789] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
122 Silva LP. Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting. In: Maniruzzaman M, editor. 3D and 4D Printing in Biomedical Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2019. pp. 373-421. [DOI: 10.1002/9783527813704.ch15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
123 Xiao D, Yan H, Wang Q, Lv X, Zhang M, Zhao Y, Zhou Z, Xu J, Sun Q, Sun K, Li W, Lu M. Trilayer Three-Dimensional Hydrogel Composite Scaffold Containing Encapsulated Adipose-Derived Stem Cells Promotes Bladder Reconstruction via SDF-1α/CXCR4 Pathway. ACS Appl Mater Interfaces 2017;9:38230-41. [DOI: 10.1021/acsami.7b10630] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
124 Utech S, Boccaccini AR. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 2016;51:271-310. [DOI: 10.1007/s10853-015-9382-5] [Cited by in Crossref: 148] [Cited by in F6Publishing: 82] [Article Influence: 21.1] [Reference Citation Analysis]
125 Tamosaityte S, Galli R, Uckermann O, Sitoci-Ficici KH, Later R, Beiermeister R, Doberenz F, Gelinsky M, Leipnitz E, Schackert G, Koch E, Sablinskas V, Steiner G, Kirsch M. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models. PLoS One 2015;10:e0142660. [PMID: 26559822 DOI: 10.1371/journal.pone.0142660] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
126 Mohandas A, Kumar P T S, Raja B, Lakshmanan VK, Jayakumar R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. Int J Nanomedicine 2015;10 Suppl 1:53-66. [PMID: 26491307 DOI: 10.2147/IJN.S79981] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
127 Afjoul H, Shamloo A, Kamali A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. Mater Sci Eng C Mater Biol Appl 2020;113:110957. [PMID: 32487379 DOI: 10.1016/j.msec.2020.110957] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]